Co-Optimization of Power and Reserves in Dynamic T&D Power Markets With Nondispatchable Renewable Generation and Distributed Energy Resources


Marginal-cost-based dynamic pricing of electric· ity services, including real power, reactive power, and reserves, may provide unprecedented efficiencies and system synergies that are pivotal to the sustainability of massive re· newable generation integrat ion. Extension of wholesale high-voltage power markets to allow distribution network connected prosumers to participate, albeit desirable, has stalled on high transaction costs and the lack of a tractable market clearing framework. This paper presents a distributed, massively parallel architecture that enables tractable transmission and distribution locational marginal price (T&DLMP) discovery along with optimal scheduling of centralized generation, decentralized conventional and flexible loads, and distributed energy resources (DERs). DERs include distributed generation; electric vehicle (EV) battery charging and storage; heating, ventilating, and air conditioning (HVAC) and c:ombined heat & power (CHP) microgenerators; computing; volt/var control devices; grid-friendly applianc:es; smart transformers; and more. The proposed iterative distributed architecture can discover T&DLMPs while capturing the full c:omplexity of each participating DER's intertemporal preferences and physical system dynamics.

Publisher's Version