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Abstract

Using the concept of market-distribution functions, we derive general
optimality conditions for discriminatory divisible-good auctions, which are
also applicable to Bertrand games and non-linear pricing. We introduce the
concept of offer distribution function to analyze randomized offer curves,
and characterize mixed-strategy Nash equilibria for pay-as-bid auctions
where demand is uncertain and costs are common knowledge; a setting
for which pure-strategy supply function equilibria typically do not exist.
We generalize previous results on mixtures over horizontal offers as in
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mixtures over partly increasing supply functions.
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1 Introduction

Modelling auctions has been one of the major successes in the application of
game theory, since in this setting the rules controlling the interactions between
agents are particularly well defined. With auction theory it has been possible to
predict bidding behaviour under different auction formats, and this has helped
auction designers to choose efficient formats and to avoid disastrous ones. In this
paper we focus on multi-unit auctions where the auctioneer buys or sells several
homogeneous objects at once and bidders are free to choose a separate price for
each object. When the number of traded objects is large, such auctions are called
divisible-goods auctions [5] [22], auctions of shares [23] or supply function auctions
[12] [15], and each bid consists of a curve. Important markets with this character
are treasury auctions, electricity auctions and auctions of emission permits.
Divisible-good auctions have two typical mechanisms. In a pay-as-bid (or dis-

criminatory) procurement auction the auctioneer pays each supplier according to
its offer curve, whereas in a uniform-price auction all sellers are paid the clear-
ing price for all of their accepted supply. The debate between proponents of the
two formats has a long history and the issue is still largely unsettled. Ausubel
and Cramton [4] show that it will depend on the character of the market which
format is preferable to the auctioneer. A survey has found that 39 out of 42 coun-
tries used the discriminatory format in their treasury auctions [6]. On the other
hand, the vast majority of electricity markets use the uniform-price format. But
there are exceptions. The balancing market in Britain switched to a pay-as-bid
format in 2001, and a similar move has been considered in California [14] and
more recently in Italy. Moreover, balancing markets in several European zonal
markets are a blend of the uniform-price and pay-as-bid format, because pro-
ducers’ post-clearing adjustments that are used to relax local system constraints
(counter-trading) are compensated in a discriminatory way. Some of the power
system reserves are also procured using this mechanism, e.g. in Germany [20].
Most theoretical comparisons of bidding behaviour in divisible good auctions

are limited to comparisons of pure-strategy equilibria. But such equilibria are
sometimes non-existent, and in electricity markets with the pay-as-bid format this
seems to be the rule rather than exception [13]. Thus to make satisfactory game-
theoretical comparisons of the auction formats in divisible good auctions, mixed
strategy models are often needed. Previous models of mixed strategy equilibria
are limited to one-dimensional mixtures in discriminatory auctions where each
producer offers its entire capacity at one price. These are essentially Bertrand-
Edgeworth Nash equilibria [1] [7] [17] [18] with the added complexity that the
auctioneer’s demand [9], [11] [19] or bidders’ costs/valuations [5] are uncertain.
In this paper we generalise these results by considering general cost functions and
general distributions of the auctioneer’s demand. More importantly, we are the
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first (to our knowledge) to derive equilibria with mixtures over increasing offer
curves. Our focus is on discriminatory electricity auctions, where non-existing
pure-strategy Nash equilibria are a major concern, but our novel approach is
general enough to be applied to other types of auctions. We do not compare
auction formats in this paper, but we provide essential tools for such comparisons.
We use the concept of a market distribution function [2], which implicitly

determines the contour of the residual demand for each probability level, to derive
optimality conditions of discriminatory divisible good auctions. This allows us to
derive more general conditions for discriminatory divisible-good auctions than in
the past; ours are valid for any uncertainty in the seller’s residual demand curve,
i.e. for any combination of demand uncertainty and uncertainty in competitors’
offers (e.g. when competitor costs are unknown or when they randomize their
offer curves). These general conditions also have applications in Bertrand games
and in the theory of non-linear pricing [21][24]. In the latter case, the seller
faces a continuous distribution of consumers with different demand curves, which
can be represented by the market distribution function. Ex-ante it is difficult
to determine whether a particular discriminatory auction will have a mixed- or
pure-strategy equilibrium, so in an empirical study it is useful that our optimality
conditions work for both types of strategies. Given firms’ cost functions, our
methodology also enables one to test the hypothesis that firms are bidding to
maximize expected profits. But a restriction is that bidders are assumed to know
their own costs, so the results are not directly applicable to settings with common
[23] [5] [22] or affiliated uncertain values/costs [4].
The optimality conditions we derive enable us to calculate Nash equilibria

for auctions where supplier costs are common knowledge and the exogenous non-
strategic demand is uncertain. Nash equilibria in such settings are referred to
as supply function equilibria (SFE) [15]. A corresponding sales auction version
has been used to analyze how strategic bidding in treasury auctions is influenced
by an uncertain amount of non-competitive bids [22]. It has been shown that
pure-strategy SFE in pay-as-bid auctions with positive mark-ups do not exist
if there is any output level for which both marginal costs are sufficiently flat
and the hazard rate of the demand shock is increasing [13]. In this paper, we
generalise this second-order condition and make it more precise: the mark-up
times the hazard rate of the demand shock must be non-increasing, otherwise
pure-strategy SFE cannot exist in pay-as-bid auctions. In electricity markets,
marginal costs are approximately stepped, i.e. locally constant, and demand
shocks are approximately normally distributed, which have an increasing hazard
rate, so the existence of pure-strategy SFE in discriminatory electricity auctions
is very much in doubt.
While the optimality conditions are valid for any number of heterogeneous

agents, we restrict attention to games with two players when calculating Nash
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equilibria. To work with mixed strategy equilibria, we introduce the concept
of an offer-distribution function. Such a function implicitly defines the contour
of a producer’s supply function for each probability level. This enables us to
define a market distribution function and characterize the best response of the
supplier’s rival, which enables us to calculate mixed-strategy SFE for cases when
pure-strategy Nash equilibria can be ruled out.
The type of equilibria that are observed in these duopoly games depends on

whether producers are pivotal or not. A pivotal producer is one for which the
sum of capacities of rival firms is less than demand with positive probability.
In a market with inelastic demand the removal of a pivotal producer from the
market would create a supply shortage with positive probability. Hence, a pivotal
producer has monopoly power when all its rivals are at capacity. We find that
mixed-strategy equilibria essentially divide into two classes depending on the
presence or absence of pivotal producers.
In markets with inelastic demand, no price cap and non-pivotal producers,

an equilibrium mixture over strictly increasing supply functions can be found.
They might be representative for other markets, but we do not expect them to
occur in electricity markets, which typically have pivotal producers and price
caps. We show that these more realistic circumstances lead to mixtures over
supply functions that are horizontal and slope-constrained for low output levels.
For low mark-ups, offer curves in the mixture may be upward sloping for high
outputs, so that the offer curve gets a hockey-stick shape. Mixtures over such
“hockey-stick” bids are a new feature of models representing equilibria in pay-
as-bid markets. For high mark-ups, the whole curve is slope-constrained and we
get mixtures over horizontal (one-dimensional) bid curves. The slope-constrained
mixed-strategy equilibria are uniquely determined by the price cap.
The slope-constrained equilibria can be intuitively explained as follows. Ex-

post, after the demand shock has been realized, it is always optimal to offer all
accepted bids horizontally in a pay-as-bid auction, so that the maximum price is
obtained for all the quantity supplied. Hence, unless the demand density is suf-
ficiently decreasing or marginal costs are sufficiently steep relative to mark-ups,
producers have incentives to offer the very first unit at the same price as some of
the units with a higher marginal cost. Hence, the lowest part of the offer curve be-
comes horizontal and producers have incentives to slightly undercut each other’s
lowest offers down to the marginal cost, as in a Bertrand game. With constant
marginal costs and non-pivotal producers there is a pure-strategy Bertrand Nash
equilibrium [22] [9] (which may not be unique if the demand density is sufficiently
decreasing). But similar to a Bertrand-Edgeworth game there will be profitable
deviations from such an outcome if producers are pivotal [11] [13] or costs are
increasing, so the equilibrium must be a mixed one. Increasing marginal costs
may become steep relative to mark-ups for higher outputs so that the producer
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will have incentives to increase the offers of more expensive units. In this case
the offer gets a hockey-stick shape.
The paper is laid out as follows. In the next section we define the market

distribution function and derive optimality conditions for agents offering in a
general discriminatory divisible-good setting. In Section 3, we restrict the analysis
to pure-strategy supply function equilibria in pay-as-bid auctions. In Section 4,
we study mixed-strategy equilibria over strictly increasing supply functions, and
we rule out pivotal producers and elastic demand for this case. In Section 5
we analyze pivotal producers and a price cap, and we show that there can be
slope-constrained mixed-strategy equilibria in this case. The highest bids in the
mixture are horizontal. When the price cap is sufficiently low, we show that mixed
strategies will contain hockey-stick bids that have both horizontal and increasing
sections.

2 Optimality conditions for pay-as-bid auctions

The optimality conditions we derive here are valid for situations in which a sup-
plier is facing an uncertain residual demand curve and is offering a divisible
homogeneous good with a discriminatory price-schedule. We assume that the
level curves of the residual demand distribution (the market distribution func-
tion) are smooth, but otherwise we do not impose any restrictive assumptions
on the uncertainty of the residual demand curve, it can be caused by demand
uncertainty and uncertainty in competitors’ offer curves (e.g. when competitor
costs are unknown or when they randomize their offer curves). The producer may
be a monopolist in the market or in the most general case, face competition from
other producers offering differentiated goods (as long as product differentiation
does not introduce any non-smoothness in the residual demand distribution). The
optimality conditions also consider cases where a monotonicity constraint in the
price-schedule binds. This provides useful first-order conditions for cases when
the discriminatory price schedule is partly horizontal or vertical, including a first-
order condition that is valid for any Bertrand game where the level curves of the
residual demand distribution are smooth. In Section 2.1 we show the applicability
of the optimality conditions to non-linear pricing.
Having emphasized the generality of the conditions we now turn our focus

back to the standard setting where producers offer homogeneous goods with a
price-schedule to a discriminatory divisible-good auction. Each agent offers a
supply curve that indicates the amount they are prepared to supply at any given
price. The market then clears when supply equals demand and each agent is paid
according to their supply function. In particular if an agent with cost function
C(q) offers quantity q at price p(q), and the market clears the agent at quantity
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q̄, then the agent is paid
R q̄
0
p(q)dq, and achieves a profit ofZ q̄

0

p(q)dq − C(q̄).

This objective function is to be maximized over monotonic functions p(q): p
may not be continuous and it may not be strictly monotonic (so that there can
be horizontal segments). We will also make use of the inverse of the offer curve
which we call a supply function q(p); again these are monotonic and may have
discontinuities or horizontal sections. For convenience, we choose all the supply
functions to be right-continuous with respect to the price, and we use notation
like q(p−) to denote the appropriate limit: limδ&0 q(p − δ). Throughout this
paper we will assume that each agent has some maximum capacity, which we
write as qm.
Following [2] we define the market distribution function ψ(q, p) to be the

probability that a supply offer of quantity q at price p is not fully cleared by the
market. The expected payoff of a supplier offering a curve p(t) into a pay-as-bid
market can be written as

Π =

Z qm

0

µZ q

0

(p(t)dt− C(q)
¶
dψ(q, p(q)) (1)

+ (1− ψ(qm, p(qm)))

µZ qm

0

(p(t)dt− C(q)
¶

The integral with respect to ψ could be interpreted in the Lebesgue-Stieltjes sense
since this formulation would apply even if ψ was not continuous. However, we
will assume that ψ is well-behaved and in fact differentiable at every point where
ψ(q, p) ∈ (0, 1): we only allow the market distribution function to be non-smooth
at the ends of this interval. We will assume that C is differentiable with C(0) = 0.
Then integrating by parts gives

Π =

∙µZ q

0

(p(t)− C 0(t))dt
¶
ψ(q, p(q))

¸qm
0

−
Z qm

0

(p(q)− C 0(q))ψ(q, p(q))dq

+ (1− ψ(qm, p(qm)))

µZ qm

0

(p(t)− C 0(t))dt
¶

= ψ(qm, p(qm))

Z qm

0

(p(t)− C 0(t))dt−
Z qm

0

(p(q)− C 0(q))ψ(q, p(q))dq

+ (1− ψ(qm, p(qm)))

µZ qm

0

(p(t)− C 0(t))dt
¶

whence

Π =

Z qm

0

(p(q)− C 0(q))(1− ψ(q, p(q)))dq. (2)
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This formula has another interpretation. We may consider each increment of
capacity dq offered to the market to earn a marginal profit of (p(q) − C 0(q))dq.
The probability of this increment being dispatched is (1−ψ(q, p(q))), and so (2)
represents the expected profit.
Now consider the problem of choosing a curve p(q), q ∈ [0, qm] to maximize Π.

In some cases this will not have an optimal solution, but where there is a price cap
in operation this existence question can be dealt with using the same approach as
was used by Anderson and Hu [3] for the uniform price version of this problem. We
can model a supply function using a continuous curve s = {(x(t), y(t)), 0 ≤ t ≤
T}, in which the components x(t) and y(t) are continuous monotonic increasing
functions of a parameter t, and x(t) and y(t) trace, respectively, the quantity and
price components. An agent will have an offer curve that starts at some point
(0, y(0)) and finishes at (qm, y(T )). The clearing price is determined as though
the offer curve began with a vertical segment from the origin to (0, y(0)), thus
without loss of generality we may take x(0) = y(0) = 0 and we write Ω for the
set of feasible offer curves (continuous monotonic curves s starting at the origin
and ending with x(T ) = qm).

Proposition 1 If there is a price cap P and both ψ(q, p) and C 0(q) are continuous
for q ∈ [0, qm] and p ∈ [0, P ], then there exists an optimal solution for the problem
of maximizing profit Π over offer curves in Ω.

Proof. A result of Anderson and Hu [3] (with the roles of price and quantity
reversed) demonstrates that if Ω is the set of monotonic continuous curves starting
at the origin and ending on the closed line segment, L, from (qm, 0) to (qm, P ),
then Ω is compact under the Hausdorff metric:

|s1 − s2|H = max
(x1,y1)∈s1

min
(x2,y2)∈s2

p
(x1 − x2)2 + (y1 − y2)2

which measures the maximum Euclidean distance between these two curves.
The next step is to show that when ψ is continuous then Π defined from (2)

is a continuous function of the offer curve using the Hausdorff metric. When s =
{(x(t), y(t)), 0 ≤ t ≤ T}we let h(s) = {(x(t), (y(t)−C 0(x(t)))(1−ψ(x(t), y(t)))), 0 ≤
t ≤ T}. Then Π(s1)−Π(s2) is the area between h(s1) and h(s2) (taking account of
the right-hand boundary where x(t) = qm). This area is bounded by the length of
the curve h(s1) multiplied by |h(s1)− h(s2)|H . Since s1 is monotonic the length
of h(s1) is bounded by P + qm, and so we can deduce that the profit from using
an offer curve s is a continuous function of the curve h(s). Now if ψ(q, p) and
C 0(q) are continuous then they are uniformly continuous with Euclidean metrics
and this is enough to establish that h is a continuous function in the Hausdorff
metric. Hence in this case we have the required continuity property for Π which
together with compactness of Ω establishes the result.
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In the absence of any constraints an optimal p(q) must satisfy the Euler equa-
tion

∂

∂p
(p(q)− C 0(q))(1− ψ(q, p(q))) = 0,

which may be rewritten

1− ψ (q, p(q))− ψp(q, p(q))(p(q)− C 0(q)) = 0. (3)

In our case we require p(q) to be monotonically non-decreasing (i.e. a supply
curve). In the next lemma we establish that the Euler curve formula applies
whenever the supply curve is neither horizontal or vertical.

Lemma 2 On any section of an optimal curve with 0 < p0(q) <∞ we have

1− ψ(q, p(q))− ψp(q, p(q))(p(q)− C 0(q)) = 0.

Proof. Consider a vertical perturbation of the curve by δ > 0, between limits
q1 and q2 with 0 < p

0(q) <∞ throughout [q1, q2]. This gives a new curve

r(q) =

⎧⎨⎩ p(q) + δ, q1 ≤ q ≤ q2
max{p(q), p(q2) + δ} q2 ≤ q

p(q), otherwise,

Then

Π(r)−Π(p) =

Z qm

0

(r(q)− C 0(q))(1− ψ(q, r(q))dq

−
Z qm

0

(p(q)− C 0(q))(1− ψ(q, p(q))dq

= δ

Z q2

q1

(1− ψ(q, p(q))dq − δ

Z q2

q1

ψp(q, p(q))(p(q)− C 0(q))dq + o(δ)

Since p(q) is optimal we must have Π(r)−Π(p) ≤ 0, and so we obtainZ q2

q1

(1− ψ(q, p(q))− ψp(q, p(q))(p(q)− C 0(q))dq ≤ 0.

A similar perturbation by δ < 0 yieldsZ q2

q1

(1− ψ(q, p(q))− ψp(q, p(q))(p(q)− C 0(q)))dq ≥ 0.
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Since this holds on any section of the curve we have

1− ψ(q, p(q))− ψp(q, p(q))(p(q)− C 0(q)) = 0,

which gives the result.
We write

Z (q, p) =
∂

∂p
(p(q)− C 0(q))(1− ψ(q, p(q))) (4)

= 1− ψ (q, p)− ψp(q, p)(p− C 0(q)).

We may deduce from the proof of Lemma 2 that for an optimal increasing supply
curve it is necessary that Z(q, p) ≤ 0 for p > p(q) and sufficiently close to p(q).
Also Z(q, p) ≥ 0 for p < p(q) and sufficiently close to p(q). Note that Z (q, p)
gives the marginal expected profit increase if we increase the price of unit q from
p to p + dp. This follows from observing that [1− ψ (q, p)] dp, the increase of
mark-up times the probability that this bid is accepted, is the marginal revenue
from this perturbation. But the probability that the bid is accepted is reduced
by ψp(q, p)dp. Multiplying the reduction in the acceptance probability by the
mark-up gives the expected loss of an increase in the mark-up. On an optimal
increasing supply curve these two terms will be equal and Z (q, p) = 0. To ensure
a local profit maximum Z (q, p) needs to be decreasing in p for a fixed q. Thus
Z(q, p) is negative for (q, p) above and to the left of the increasing offer curve
(and positive for (q, p) below and to the right of the offer curve). We can express
this in terms of the partial derivative of Z. If we let qi(p) be the offer curve of
the analyzed firm, then,

∂Z (q, p)

∂q

¯̄̄̄
q=qi(p)

≥ 0. (5)

Now if the Euler curve decreases at some point then it cannot be a candidate
supply curve. In this case part of p(q) will be horizontal. Similarly if the Euler
curve bends back on itself then p(q) will have a vertical segment. The following
results characterize these situations.

Lemma 3 Suppose an optimal curve is increasing at q1 and horizontal at q2 > q1.
Then Z q2

q1

(1− ψ(q, p(q))− ψp(q, p(q))(p(q)− C 0(q)))dq ≥ 0.
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Proof. Consider a vertical perturbation of the curve downwards by δ > 0,
between limits q1 and q2, to give a new curve

r(q) =

⎧⎨⎩ p(q)− δ, q1 ≤ q ≤ q2
min{p(q), p(q1)− δ}, q ≤ q1

p(q), otherwise.

Then

Π(r)−Π(p) =

Z qm

0

(r(q)− C 0(q))(1− ψ(q, r(q))dq

−
Z qm

0

(p(q)− C 0(q))(1− ψ(q, p(q))dq

= −δ
Z q2

q1

(1− ψ(q, r(q))dq + δ

Z q2

q1

ψp(q, p(q))(p(q)− C 0(q))dq + o(δ)

This must give Π(r)−Π(p) ≤ 0, and so we obtainZ q2

q1

(1− ψ(q, p(q))− ψp(q, p(q))(p(q)− C 0(q)))dq ≥ 0,

which gives the result.
Similarly we can prove

Lemma 4 Suppose an optimal curve is horizontal at q1 and increasing at q2 > q1.
Then Z q2

q1

(1− ψ(q, p(q))− ψp(q, p(q))(p(q)− C 0(q)))dq ≤ 0.

Combining these results gives the following lemma.

Lemma 5 Suppose an optimal curve is horizontal between q1 and q2 and these
quantities are the end points of the horizontal segment. ThenZ q2

q1

(1− ψ(q, p(q))− ψp(q, p(q))(p(q)− C 0(q)))dq = 0.

Proof. Choose q0 < q1 with p(q) increasing in (q0, q1). Then lemma 2 and
lemma 3 combine to show thatZ q2

q1

(1− ψ(q, p(q))− ψp(q, p(q))(p(q)− C 0(q)))dq ≥ 0.
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But by choosing q0 > q2 with p(q) increasing in (q2, q0) and using lemma 2 and
lemma 4 we establish the reverse inequality, hence giving the result we require.

From Lemma 5 it is straightforward to show that a general first-order condition
for Bertrand games, where suppliers are restricted to offer their capacity at one
price, is given by:

Z qm

0

(1− ψ(q, p)− ψp(q, p)(p− C 0(q)))dq = 0.

Finally we can establish the equivalent result for the case of a vertical segment.

Lemma 6 Suppose an optimal curve is vertical at q̄ between p1 and p2, and these
prices are at the end points of the vertical segment. Then

(p2 − C 0(q̄))(1− ψ(q̄, p2)) = (p1 − C 0(q̄))(1− ψ(q̄, p1))

Proof. Consider a horizontal perturbation of the curve by δ > 0, between
limits p1 and p2, to give a new curve

r(q) =

½
p1, q̄ ≤ q ≤ q̄ + δ
p(q), otherwise.

Then

Π(r)−Π(p) =

Z qm

0

(r(q)− C 0(q))(1− ψ(q, r(q)))dq

−
Z qm

0

(p(q)− C 0(q))(1− ψ(q, p(q)))dq

= −δ((p2 − C 0(q̄))(1− ψ(q̄, p2))− (p1 − C 0(q̄))(1− ψ(q̄, p1))) + o(δ)

This must give Π(r)−Π(p) ≤ 0, and so we obtain

(p2 − C 0(q̄))(1− ψ(q̄, p2))− (p1 − C 0(q̄))(1− ψ(q̄, p1)) ≥ 0.

Similarly a horizontal perturbation of the curve by δ > 0, between limits p1 and
p2, to give a new curve

r(q) =

½
p2, q̄ − δ ≤ q ≤ q̄
p(q), otherwise,

yields

(p2 − C 0(q̄))(1− ψ(q̄, p2))− (p1 − C 0(q̄))(1− ψ(q̄, p1)) ≤ 0,

which gives the result.
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2.1 Non-linear pricing

Consider a monopolist who uses non-linear pricing to discriminate between a
continuum of types with individual demand curves [21][24]. Let θ be a taste
parameter indicating the type of consumer. The distribution of the types is
given by a density function h (θ) = H 0 (θ) with the support

£
θ, θ
¤
. For simplicity

we normalize the problem so that the number of consumers integrates to 1, i.e.
H (θ) = 0 and H

¡
θ
¢
= 1. The monopolist charges in total T (q) =

R q
0
p(t)dt

from any consumer buying q units. For simplicity, we assume that consumers
have quasi-linear preferences. This is a good approximation when the consumers’
expenditure on the good is small in comparison to their income [21]. Hence, a
consumer’s utility is given by U = v (q, θ) + Q, where q is the good sold with
a non-linear price-schedule T (q) and Q is the numeraire, the price of which is
normalized to 1. Let w be the income of the consumer. Hence, from the budget
constraint it follows that

U = v (q, θ) + w −
Z q

0

p (t) dt,

so the consumer maximizes its utility when

∂U

∂q
=

∂v (q, θ)

∂q
− p (q) = 0.

Thus the consumer’s demand is given by the condition that the marginal price
p (q) = T 0 (q) equals the consumer’s marginal value of the good ∂v(q,θ)

∂q
. We note

that the demand is independent of income, so the demand curve is a function
of the type and the marginal price, i.e. D (p, θ) . We assume that the types are

ordered such that ∂D(p,θ)
∂θ

> 0. Analogous to Section 2 we now define the market
distribution function ψ(q, p) to be the fraction of consumers buying less than q
units when the marginal price T 0 (q) equals p. Thus

ψ(q, p) = H (θc(q, p)) ,

where D (p, θc) = q. Analogous to (2) the profit of the monopolist is given by:

Π =

Z q

0

(p(q)− C 0(q))(1− ψ(q, p(q)))dq,
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where D
¡
p (q) , θ

¢
= q.

Many applications require that T (q) is a concave function of the purchased
quantity. This precludes customers from making arbitrage by opening multiple
accounts and purchasing a small amount from each one [24]. Concavity of T (q)
is equivalent to the requirement that the price schedule p (q) is non-increasing –
allowing quantity discounts but never imposing quantity premia. It is straight-
forward to verify that the first-order condition in Lemma 2 is directly applicable
to non-linear pricing, also when the price-schedule is strictly decreasing. The

second-order condition in (5), however, would be reversed to ∂Z(q,p)
∂q

¯̄̄
q=qi(p)

≤ 0
when the price-schedule must be non-increasing. Similarly, the inequalities in
lemma 3 and 4 would be reversed. Lemma 5 also applies to situations where offer
curves are slope-constrained due to a non-increasing constraint. Imposing such
slope constraints in the non-linear pricing literature is referred to as “ironing”
[24].

3 Supply function equilibrium

In this section we use the optimality conditions to derive necessary conditions for
pure-strategy supply function equilibria. Now, we assume that costs are common
knowledge and that demand is uncertain; a standard assumption for electricity
auctions [12]. Supply function equilibria in the pay-as-bid auction, have been
studied in the context of electricity markets by Holmberg [13]. He shows that
symmetric supply function pure-strategy equilibria can be ruled out if the shock
distribution has a locally increasing hazard rate when marginal costs are locally
sufficiently flat. We re-examine this in the context of market distribution func-
tions.
In the model we discuss, demand is elastic, being represented by a differ-

entiable demand curve D(p), and an additive demand shock ε with probability
distribution F having a well-defined density function f with support [ε, ε]. At
this point we should also point out that the pay-as-bid formulation creates some
difficulties in circumstances in which there is elastic demand. Similar to Bertrand
models [18], the question is how much of the excess demand at lower offered prices
will remain at higher prices. As in Federico and Rahman [10], we assume that
demand depends on the highest accepted offer in the market and we refer to
this price as the clearing price - though much of the demand is met at lower
prices, because of the pay-as-bid mechanism. The corresponding assumption in
Bertrand models is called parallel rationing [18], which is equivalent to the as-
sertion that demand of the good does not depend on income [17]. 1 Moreover,

1The other common assumption in Bertrand models is called proportional rationing [18],
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as in other models of electricity markets and Bertrand models we assume that
the consumers’ bidcurves are simply determined by their marginal value of the
commodity. We know from the derivation in Section 2.1 that this will be the
case when consumers have quasi-linear preferences and pay the average of the
producers’ accepted offers. The latter assumption implies that consumers’ to-
tal expenditures equal producers’ total revenue, which would not be the case if
consumers paid according their bids and producers were paid according to their
offers.
Now consider a producer i, who submits a supply curve qi(p). Suppose that

its competitors’ total quantity offered at price p is given by qj(p). It is easy to
see that

ψ(q, p) = F (q + qj(p)−D(p)).

Thus, when qj is differentiable, the Euler curve (3) can be rewritten

1− F (q + qj(p)−D(p))− (p− C 0(q))f(q + qj(p)−D(p))(q0j(p)−D0(p)) = 0.

Then for q = qi(p) to be an optimal increasing offer in response to qj(p) we require
that

(1− F (q + qj(p)−D(p)))−

(p− C 0(q)) f(q + qj(p)−D(p))(q0j(p)−D0(p))

⎧⎨⎩ ≤ 0, q < qi(p)= 0, q = qi(p)
≥ 0, q > qi(p)

(6)

In the region where F (q + qj(p)−D(p)) < 1 we can rewrite the equality in
(6) as

1− (p− C 0(q))H(q + qj(p)−D(p))(q0j(p)−D0(p)) = 0

where H(x) = f (x) /(1− F (x)) is the hazard rate of the demand shock. More-
over, the inequalities in (6) imply that

∂

∂q
[(p− C 0(q))H(q + qj(p)−D(p))]

¯̄̄̄
q=qi(p)

≤ 0, (7)

provided that q0j(p) > 0 (and hence q
0
j(p)−D0(p) > 0).

This generalizes a previous result by Holmberg [13], who shows that ifH 0(x) >
0, and costs are close to linear, then there is no pure-strategy supply function

and was used in the original work by Edgeworth on price competition between pivotal firms [8].
The two rationing assumptions are identical for perfectly inelastic demand.
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equilibrium in the pay-as-bid auction. Note that both the first-order and second-
order condition need to be satisfied at each level of output. Marginal costs in
electricity markets are approximately stepped, i.e. locally constant, so that the
second-order condition (7), which is required for pure-strategy SFE in such mar-
kets, is close to a requirement that H 0(x) ≤ 0. This is a very strong restriction
on the form of F . It means that the density of the demand shock must decrease
faster than e−x throughout its range which rules out most demand shocks that
one would encounter in practice.
We can gain some intuition for what is going on here by considering the effect

of one player raising the price as much as possible for the initial quantity δ that
it offers. So p(q) becomes horizontal over a range (0, δ). If this player ends up
supplying an amount more than δ then it improves its profit due to the higher
price received for this first part of its output. The only loss occurs when demand
is very low and the player ends up supplying less than δ. For a supply function
that is not horizontal to occur, these considerations must balance. This can only
happen when there is approximately equal probability of supplying an amount
less than or greater than δ. This demonstrates that we will need a demand
function weighting low demand values very highly, and hence the very steeply
decreasing density functions implied by H 0(x) ≤ 0.

4 Mixtures with non-binding slope constraints

In the previous section we concluded that pure-strategy SFE can be ruled out
for many pay-as-bid markets that we encounter in practice. Now we begin the
main task of this paper which is an analysis of mixed-strategy equilibria for pay-
as-bid markets. In this section we analyze cases where producers mix over a
range of offer curves each of which satisfies the Euler condition Z(q, p) = 0. We
call these supply functions with non-binding slope constraints. We will show that
equilibria of this form may occur, but the conditions for such an equilibrium are
very restrictive; normally they only exist when demand is inelastic and producers
are non-pivotal (so that demand can still be met even if the largest firm exits
the market). A second class of equilibrium mixture with slope-constrained bids
is analyzed in Section 5.
We consider an equilibrium in which there is mixing over a whole range of

solutions each of which falls into a region Γ for which

Z(q, p) ≡ 0, (p, q) ∈ Γ. (8)

We suppose that the interior of the region Γ is a non-empty connected set.
In some cases of interest ψ is non-smooth at the boundary of the set where

ψ(q, p) ∈ (0, 1); for example this happens when the distribution of demand is
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uniform on [ε, ε]. Thus Z may not be defined on the boundary of Γ if it coincides
with the boundary of the set where ψ(q, p) ∈ (0, 1). Without loss of generality,
it is convenient to define Z by continuity from the interior of Γ and so we take Z
as zero at the boundary of Γ, which implies that Γ becomes a closed set.
Substituting for Z using (4) implies that the function (p− C 0 (q)) (1− ψ(q, p))

is independent of p in the region Γ. Hence

(p− C 0 (q)) (1− ψ(q, p)) = θ (q)

for some arbitrary function θ. Thus the market distribution function of a mixing
producer can be written

ψ (q, p) = 1− θ (q)

p− C 0 (q) =
p− k (q)
p− C 0 (q) , (9)

where k (q) is some arbitrary function, such that C 0 (q) ≤ k (q) ≤ p. The market
distribution function is required to be monotonic in both arguments. Now

ψp (q, p) =
p− C 0 (q)− [p− k (q)]

[p− C 0 (q)]2
=
k (q)− C 0 (q)
[p− C 0 (q)]2

≥ 0; (10)

but we also require

ψq (p, q) =
−k0 (q) [p− C 0 (q)] + [p− k (q)]C 00 (q)

[p− C 0 (q)]2
≥ 0, (11)

so

C 00 (q)

[p− C 0 (q)] ≥
k0 (q)

[p− k (q)] .

It is necessary, but not sufficient, that C 00 (q) ≥ k0 (q).
In a mixed strategy equilibrium, each producer’s strategy can be expressed by

means of its offer distribution function G (q, p) , which is defined as the probability
that the producer offers strictly more than q units at a price p. Implicitly this
function determines the contours of the producer’s supply for each probability
level. The simplest way for a producer to generate its offer distribution function
is to pick a probability value γ from a uniform distribution on (0, 1) and then to
offer the contour G (q, p) = γ. As supply functions are monotonic by assumption,
we have that ∂

∂p
G ≥ 0 and ∂

∂q
G ≤ 0, where these derivatives exist. We will

assume that all quantities supplied are non-negative. We write qL (p) for the
lowest supply function offered by producer i (i.e. lowest quantity at a given
price). If the mixture has a finite mass on the lowest supply function then G
will be discontinuous at this point. But if G is continuous (in its first argument)
then from the definition of G we will have G

¡
qL (p) , p

¢
= 1. We let qU (p) be

the highest supply function; then G
¡
qU (p) , p

¢
= 0 even if it has a discontinuity

there.
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4.1 Mixed supply function equilibria

For simplicity we limit our analysis to a symmetric equilibrium in a symmetric
duopoly market. We consider the offer of producer i and we denote the offer dis-
tribution function of its competitor by Gj(q, p). The accepted output of producer
i at price p is given by the difference between two independent random variables:
the shock outcome ε and the supply function of the competitor, qj (p) . Hence,
the probability that an offer of qi by producer i is not fully dispatched if offered
at the price p is

ψi (qi, p) =

∞Z
−∞

f (ε)Gj (ε+D (p)− qi, p) dε.

Making the substitution t = ε+D (p)− qi yields

ψi(q, p) = F (q −D (p)) +
∞Z
0

f (t+ q −D (p))Gj (t, p) dt, (12)

since Gj (t, p) = 1 for t < 0. Here we have assumed that F is continuous and
f is well-defined, but we could clearly write the equivalent formulae with sums
instead of integrals in the case that the demand distribution is discrete.
We let p be the infimum of clearing prices with a positive output. This can

be defined explicitly as

p = inf{p : qU1 (p) + qU2 (p) ≥ D(p) + ε > 0)} (13)

for some ε ∈ [ε, ε]. Analogously we introduce a highest clearing price p, which is
defined by

p = sup{p : qL1 (p) + qL2 (p) ≤ D(p) + ε}. (14)

Our analysis of mixed-strategy equilibria will proceed in stages. The low-
est clearing price with a positive output, i.e. p , will be very important in this
development. We will prove that the most competitive supply curve in the mix-
ture, qUi (p), offers at least the minimum possible demand at this lowest price.
In the special case with certain demand this establishes that producers cannot
be pivotal. We illustrate, by means of an example, how this result can be used
to determine a mixed-strategy equilibrium. In markets with demand uncertainty
it seems that we require demand to be inelastic to find mixed equilibria with
non-binding slope constraints (and we provide some sufficient conditions for this
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result to be true). In such cases both producers will offer the maximum demand
at p, and so must be non-pivotal. Again we illustrate with an example how this
result can be used to determine ψi (q, p) and hence the mixed strategy equilibrium
in a market with uncertain demand.
The first result of our analysis shows that p marks the lower boundary of the

region Γ, so that the offer curves qLi (p) and q
U
i (p) diverge at p. Moreover by

using the fact that in this sort of equilibrium, the first units of any firm cannot
be accepted with certainty, because then it would be optimal to increase the price
of these units, we show that the highest offer qUi must be at least as large as the
lowest demand at p.

Lemma 7 Any Nash equilibrium with mixtures over supply functions with non-
binding slope constraints has qUi (p) = qLi (p) = 0 for p < p. In addition, if

p > C 0(0), then, for each i, qUi
¡
p
¢
> qLi

¡
p
¢
= 0, qUi

¡
p
¢
≥ ε + D

¡
p
¢
and

Gi
¡
q, p
¢
= 0, for q > 0.

Proof. In a pay-as-bid auction, it is always unprofitable to offer a positive
output below p (since raising all prices to p will increase revenue without altering

any clearing prices that occur). Hence qUi (p) = q
L
i (p) = 0, for p < p.

Next we prove the inequality for qUi
¡
p
¢
. Let wi = ε+D

¡
p
¢
− qUj

¡
p
¢
, which is

the minimum value of the residual demand faced by firm i at price p. We suppose

that wi > 0. From (13) we have qUi
¡
p
¢
≥ wi and so we deduce that qUi

¡
p
¢
> 0.

Observe that since we use mixtures with non-binding slope constraints, we have
Zi = 0 in the interior of the section of the q

U
i offer curve which may be intersected

by the residual demand (this is true even if the region Γ is at a higher price than
p). Thus if wi < q

U
i

¡
p
¢
we have Zi(q, p) = 0 for q ∈

¡
wi,min

¡
qUi
¡
p
¢
, ε+D

¡
p
¢¢¢
.

Now consider perturbing qUi upwards by an amount δ > 0 along the entire
horizontal section at p: thus we change qUi (p) to ri(p) with ri(p) = 0 for p ∈
(p, p + δ], and ri(p) = qUi (p) otherwise. If wi < qUi

¡
p
¢
, then there is a section

where Zi is zero and the associated change in profit for this section is of order δ
2

(this is true even when Z is defined by continuity from the interior of Γ). Since
ψi(q, p) = 0 for q ≤ wi, we can deduce from (2) that the profit Πi increases by

δwi +O(δ
2).

This is positive for δ chosen small enough, contradicting the optimality of qUi
as part of the mixture played by firm i. Hence wi ≤ 0, i = 1, 2 and we have
established the result for qUj

¡
p
¢
, and hence for qUi

¡
p
¢
by symmetry.

To show that Gi
¡
q, p
¢
= 0 we suppose otherwise and let Gi

¡
t, p
¢
> δ0 > 0 for

t ∈ (0, T ), where T is chosen small enough for p > C 0(T ). In other words player
i is offering a curve with a horizontal section at p with a nonzero probability.
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Note that this implies qUi (p) > T . Also observe that, since wi ≤ 0, the horizontal
section at p may be intersected by the residual demand. This ‘accumulation’ of
offers will make it profitable for player j to marginally undercut. Specifically
consider the change from qUj (p) to another supply function given by rj(p) = T
for p ∈ (p− ε0, p] and rj(p) = q

U
j (p) otherwise. If rj is used then there is a finite

probability of being dispatched fully rather than having to share dispatch. This
gives an improvement in profit provided p − ε0 > C 0(T ). Any reduced profits
made in other circumstances through offering at a price p− ε0 rather than p are
dependent on ε0. Hence by taking ε0 small enough we will ensure that the profit
for player j with rj is higher than the profit for player j with q

U
j which contradicts

the optimality of qUj for firm j. Hence, we can conclude that Gi
¡
q, p
¢
= 0, for

q > 0.
Now that we have shown Gi

¡
q, p
¢
= 0, so that there is no accumulation of

offers at any point (q, p), then we have also established that qLi
¡
p
¢
= 0, since

otherwise we would have such an accumulation of horizontal offers at p in the

output range
£
0, qLi

¡
p
¢¤
, giving a contradiction.

In the case with certain demand we have ε = ε. Hence, in this special case
Lemma 7 implies that qUi

¡
p
¢
≥ ε+D

¡
p
¢
, so that each firm’s capacity is sufficient

to meet the highest demand at the lowest price. In other words producers must
be non-pivotal.
The results we have derived so far are sufficient to calculate symmetric equi-

libria with mixtures over strictly increasing supply functions if demand is certain.
We suppose that ε = ε, in this case (12) degenerates into

ψi (u, p) = Gj (ε+D(p)− u, p) if u ∈ (0, ε−D(p)) .

Thus with q = ε+D(p)−u and by applying Lemma 7 and (9) we see that Gj (q, p)
must satisfy:

Gj (q, p) =
p− k (ε+D(p)− q)
p− C 0 (ε+D(p)− q) if p ∈

£
p, p
¤
and q ∈ (0, ε) .

We also requireGj(q, p) non-negative, from which we deduce that p > C
0 ¡ε+D(p)¢.

We know from Lemma 7 and symmetry of the equilibrium that Gj
¡
q, p
¢
= 0 if

q ∈ (0, ε), so k (ε+D(p)− q) = p and hence

Gj (q, p) =
p− p

p− C 0 (ε+D(p)− q) if p ∈
£
p, p
¤
and q ∈ (0, ε) .

Example 1: Symmetric duopoly with certain demand
We illustrate this with an example of a duopoly market with ε = ε = 1

and C (q) = q2/2. We suppose that D(p) = 0 and both firms have capacity
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greater than 1. Moreover there is no price cap in operation. We will return to
this example throughout the paper with different assumptions on the demand
uncertainty and the firm capacities in order to illustrate the different forms of
equilibria that may occur. If we choose p = 1, then

G (q, p) =
p− 1

p− 1 + q .

The simplest way to generate this offer distribution is for each player to pick a
value γ from a uniform distribution on (0, 1) and then offer the supply function

q(p) =
(1− γ)

γ
(p− 1),

which is the contour of G corresponding to this value (see Figure 1 for the form
of G ). In this example we may also choose any value of p greater than 1,

1.00.80.60.40.20.0

q

0

2

4

6

8

10

p

Figure 1: Contours of G for mixed strategy equilibrium

however this is the lowest value possible since from (9) we require p > C 0(q) for
all (q, p) ∈ Γ.
We can confirm that this is indeed a Nash equilibria. If one player mixes in

this way then the other player has to choose a supply function given that Z = 0
throughout the region p > p. All choices of supply function in which prices are at
p or higher will have the same profit. It is straightforward to check that there is
no advantage to offering a supply function which includes prices less than p since
this can be improved by increasing all such prices to p.

It is of interest to ask whether an equilibrium with mixtures over supply
functions with non-binding slope constraints can occur in a market with uncertain
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demand. Except for cases with constant marginal costs, we have not been able
to find such an equilibrium when demand is uncertain and ε + D

¡
p
¢
> 0. The

problem is that discontinuities in the shock density or in its derivatives gives
discontinuities in Z(q, p) and its derivatives, and this can be used to rule out the
existence of such equilibria. Thus we will now focus on cases with ε+D

¡
p
¢
≤ 0.

Outcomes with ε +D
¡
p
¢
< 0 are only possible if demand is elastic; in this case

the minimum demand curve may intersect producers’ vertical segment at zero
output at a price below p.
In Appendix 1 we examine in more detail the case where

∂

∂q

¡
p− C 0 (q)

¢
f (q + ε)

1− F (q −D(p))

¯̄̄̄
¯
q=0+

> 0,

for each ε ∈
£
−D(p), ε

¤
, which is sufficient to rule out pure strategy SFE. Here

we use the notation ∂
∂q

¯̄̄
q=0+

for the right hand derivative at q = 0 and the

assumption implies that these partial derivatives exist for each ε in the range.
This assumption (which we label Assumption 1) together with the condition
ε + D

¡
p
¢
≤ 0, is enough to show that the result qUi

¡
p
¢
≥ ε + D(p) (ruling

out pivotal producers) of lemma 7 applies to uncertain demand as well. This in
turn can be used to establish that mixed-strategy SFE with non-binding slope
constraints cannot occur when demand is elastic.
Now we will concentrate on the case of inelastic demand. We continue to

assume that ε + D
¡
p
¢
≤ 0, which becomes equivalent to taking D(p) = 0 and

ε = 0. So when Assumption 1 holds, qUi
¡
p
¢
≥ ε and the entire horizontal line

(0, p) to (ε, p) is the lower boundary of the region Γ where mixing takes place
(see Lemma 16 in Appendix 1). Thus using the equations (9) and (12) as well as
G
¡
q, p
¢
= 0 from Lemma 7 we get

F (q) = ψ
¡
q, p
¢
=
p− k(q)
p− C 0 (q) ,

provided p > C 0(ε). This determines the function

k(q) = p−
¡
p− C 0 (q)

¢
F (q) (15)

and substitution back into (9) shows that

ψi(q, p) =
p− p+

¡
p− C 0 (q)

¢
F (q)

p− C 0 (q) for q ∈ (0, ε) and p ≥ p.
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Example 2: Symmetric duopoly with uniform demand
As before we consider a symmetric duopoly market with C (q) = q2/2. We

assume that D (p) = 0, and ε is uniformly distributed on [0, 1]. Note that in this
case

∂

∂q

¡
p− C 0 (q)

¢
f (q + ε)

1− F (q −D(p))

¯̄̄̄
¯
q=0+

= p− 1.

So when p > 1, Assumption 1 holds and we only need to consider solutions with

qUi
¡
p
¢
≥ ε = 1. We have

ψi(q, p) =
p− p+ (p− q)q

p− q for q ∈ (0, 1) and p ≥ p.

We also know from (12) that

ψi (q, p) = F (q) +

1−qZ
0

f (t+ q)G (t, p) dt = q +

1−qZ
0

G (t, p) dt.

Thus we can take derivatives with respect to q of the two expressions for ψi (q, p)
to obtain

∂

∂q
ψi (q, p) = 1−G (1− q, p)

=
(p− q)

¡
p− 2q

¢
+ p− p+ (p− q)q

(p− q)2
.

From this we can derive

G (1− q, p) =
(p− 1)

¡
p− p

¢
(p− q)2

,

and so

G (q, p) =
(p− 1)(p− p)
(p+ q − 1)2

.

The contours of G correspond to the offer curves over which mixing takes place,
and are shown in Figure 2 for p = 2. Exactly the same argument that was used
for the previous example demonstrates that this is indeed a Nash equilibrium;
that is neither player can improve their profit by selecting some supply function
not included in this mixture.
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Figure 2: Contours of G for mixed strategy equilibrium for p = 2.

5 Mixtures over slope-constrained bid curves

We saw in Section 3 that pure-strategy SFE can be ruled out in markets where
(p− C 0(q))H(q + Sj(p)−D(p)) is locally increasing. In Section 4, we were able
to find equilibria with mixtures over supply functions with non-binding slope
constraints under such circumstances when demand is inelastic and firms have
sufficiently large capacities. As we show in the Appendix, at least under the
additional Assumption 1, such mixed-strategy equilibria do not exist for markets
with pivotal producers, or with elastic demand. In this section we will show that
mixtures over slope-constrained offer curves can exist under such circumstances.
This takes us back to the discussion in section 2 in which we provided optimality
conditions for solutions having this type of structure. We no longer require Z = 0
over a region Γ: the conditions now involve an integral of the Z function. We
analyze two cases. We start with mixtures over horizontal bids, i.e. supply curves
are slope-constrained along the whole output. We show that there exist equilibria
where all offer curves in the mixture are of this type if the price cap is sufficiently
high. For lower price caps, there is another mixed-strategy equilibrium, which
we call a hockey-stick mixture. Offers in this mixture also start with horizontal
segments. But in this case, the supply slopes upwards at high outputs for the
lowest offer curves in the mixture.

5.1 Mixtures over horizontal bids

In this subsection we will consider mixtures over horizontal bid curves, i.e. supply
curves are slope constrained for the whole output. We consider the case with two
players, with capacities qmi , i = 1, 2, where demand may exceed max (q

m
1 , q

m
2 ) but

not qm1 + q
m
2 . As before we let p be the lowest clearing price and p be the highest
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clearing price, where this exists. We consider a situation in which producer j 6= i
offers its capacity at a price p or below with probability Gj(p). From (12) we
have the resulting market distribution function of firm i.

ψi (qi, p) = F (qi −D (p)) +
qmjZ
0

f (t+ qi −D (p))Gj (p) dt

= (1−Gj(p))F (qi −D (p)) +Gj (p)F (qi + qmj −D(p)). (16)

Note that F (ε) = 1 for ε > ε. The payoff of a horizontal offer at price p is given
by (2)

Πi(p) =

Z qmi

0

(p− C 0i(q))(1− ψi(q, p))dq.

In equilibrium we require the offer of qmi at any price p in the support of Gj to
yield the same expected profit, and we let Ki be the value of Πi(p) in this region.
After substituting for ψi this gives

Ki =

Z qmi

0

(p− C 0i(q))(1− (Gj(p)F (q + qmj −D(p)) + (1−Gj(p))F (q −D(p)))dq.

After rearranging we get

Gj(p) =

R qmi
0
(p− C 0i(q))(1− F (q −D(p)))dq −KiR qmi

0
(p− C 0i(q))(F (q + qmj −D(p))− F (q −D(p)))dq

. (17)

This generalizes the necessary first-order condition for mixed-strategy Nash equi-
libria in discriminatory auctions by Fabra et al. [9] and Son et al. [19], who
consider cases with constant marginal costs and vertical demand.2

In Bertrand-Edgeworth games, demand is often assumed to equal D(p) with
certainty, i.e. ε = ε = 0. In this case, and under the assumption that qmi ≤ D(p)
for prices that occur, (17) can be simplified to

Gj(p) =

R qmi
0
(p− C 0i(q))dq −KiR qmi

D(p)−qmj
(p− C 0i(q))dq

(18)

=
pqmi − Ci(qmi )−Ki

p(qmi + q
m
j −D(p))− Ci(qmi ) + Ci(D(p)− qmj )

. (19)

2Unlike us, Fabra et al. [9] consider a strategy space in which offers are constrained to
be horizontal. Still our and their first-order condition are identical, because pay-offs for the
horizontal offers are the same at any price p in the support of Gj in both models. Note that
our first-order condition needs to be partially integrated to become similar to their condition.
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Since Gj(p) = 0 we have

Gj(p) =
(p− p)qmi

p(qmi + q
m
j −D(p))− Ci(qmi ) + Ci(D(p)− qmj )

.

The choice of p gives different possible mixtures. This condition generalizes the
previous conditions that have been used to calculate mixed-strategy Nash equi-
libria in Bertrand-Edgeworth games, which assume zero marginal costs and linear
demand [7], [17].
Example 3: Symmetric duopoly with elastic demand
To illustrate such an equilibrium consider a symmetric duopoly market with

C (q) = 0. We assume that D (p) = 1− p
10
, and ε = ε = 0. Suppose qmi = q

m
j =

3
4
,

and p = 5
24
. Thus

G(p) =
5

16

24p− 5
p (5 + p)

, p ∈ [ 5
24
,
5

4
].

This gives

ψ(q, p) =

⎧⎨⎩
0 q < (1− p

10
− 3

4
)

5
16

24p−5
p(5+p)

(1− p
10
− 3

4
) < q < (1− p

10
)

1 q > (1− p
10
)

and an expected payoff ofK = 5
32
for any horizontal offer of 3

4
at a price p ∈ [ 5

24
, 5
4
].

It is easy to see that there is no incentive to deviate outside this mixture. For

example an offer of 3
4
at a price p = 5

4
+² will be dispatched a quantity 1−

5
4
+²

10
− 3
4

and earn

(1−
5
4
+ ²

10
− 3
4
)(
5

4
+ ²) =

5

32
− 1

10
²2 < K.

We note that this is the unique equilibrium without imposing a price cap.
Any equilibrium mixture must have p ≤ 5

24
, because G(p) is bounded away from

1 if p is chosen outside this range. Moreover any mixture over a price range with

p < 5
24
will have K < 5

32
, and a price P less than 5

4
where G(P ) = 1, so we must

impose a price cap at P to prevent a player deviating to an offer at p = 5
4
which

will yield a certain profit of 5
32
.

Finally we would like to point out that this example is special in that de-
terministic elastic demand implies that ψ(q, p) is discontinuous across the line
q = 1

4
− p

10
, and so the optimality conditionZ qm

0

Z(q, p)dq = 0

25



as stated in lemma 5 does not apply in this special case, because we must account
for the jump in ψ(q, p) as the horizontal offer crosses the line q = 1

4
− p

10
.

Mixtures with horizontal offers like that in example 3 do not always exist when
there is elastic demand or when marginal costs are increasing. In a discriminatory
divisible-good auction we can more or less eliminate the possibility of this type of
equilibrium when the smallest producer is non-pivotal, i.e. when max (qm1 , q

m
2 ) >

D(p) + ε at prices that occur.

Proposition 8 In an equilibrium where a player i mixes over horizontal bid
curves in some price interval (p1, p2), it must be the case that D(p) + ε ≥ qmj
for every p ∈ (p1, p2), unless demand is inelastic at that price and there are con-
stant marginal costs.

Proof. From Lemma 3 we know that a necessary characteristic of an optimal
horizontal offer is that Z(q, p) is positive for small values of q, otherwise we can
obtain an improvement by reducing the first section of the offer. We will show
that this property fails for player i when the offer is at a price p for which D(p)+ε
is less than the competitor’s capacity. In this case F (qmj −D(p)) = 1 and hence
we can write (17) as

Gj(p) = 1−
Ki

W (p)
,

where

W (p) =

Z qmi

0

(p− C 0i(q))(1− F (q −D(p)))dq,

and we have

W 0(p) = D0(p)

Z qmi

0

(p− C 0i(q))f(q −D(p))dq +
Z qmi

0

(1− F (q −D(p)))dq.

Observe that if p is in the mixture then W (p) > 0 and so p > C 0i(0). We need
to show that a stronger inequality holds: p ≥ C 0i(D(p) + ε), i.e. p is higher than
the marginal cost at the highest amount that can be dispatched. Now, from (16)

ψi (q, p) = (1−Gj(p))F (q −D (p)) +Gj (p) .

And thus

Z(q, p) = (1−Gj (p))(1− F (q −D(p)))
+ (p− C 0i(q))[(1−Gj(p))f(q −D(p))D0(p)− gj(p)(1− F (q −D(p)))].
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Observe that if p < C 0i(D(p) + ε) then as q approaches D(p) + ε, then the second
term becomes positive and so Z(q, p) > 0. This contradicts the optimality of the
offer curve, since it implies that we can find an improving perturbation which
increases a section of the horizontal bid running from (D(p) + ε− δ, p) to (qmi , p)
for some δ > 0. This is easily seen using a similar argument to Lemma 4 and
observing that since the maximum amount dispatched is D(p)+ε, the offer curve
beyond this point is irrelevant.
Hence we have shown that (p − C 0i(q))f(q −D(p)) ≥ 0 and since D0(p) ≤ 0,

we have

W 0(p) ≤
Z qmi

0

(1− F (q −D(p)))dq. (20)

Using the fact that D0(p) ≤ 0 we have

Z(0, p) ≤ (1− F (−D(p)))[(1−Gj(p))− (p− C 0i(0))gj(p)]. (21)

= (1− F (−D(p)))[ Ki

W (p)
− (p− C 0i(0))

KiW
0(p)

W (p)2
]

=
Ki(1− F (−D(p)))

W (p)2
[W (p)− (p− C 0i(0))W 0(p)].

Substituting for W (p) and using (20) we can show

Z(0, p) ≤ Ki(1− F (−D(p)))
W (p)2

Z qmi

0

(C 0i(0)− C 0i(q))(1− F (q −D(p)))dq ≤ 0.

(22)

If demand is elastic then inequality (21) is strict, and if marginal costs are not con-
stant then C 0i(0) < C

0
i(qi) and inequality (22) is strict. So in either case Z(0, p) < 0

which gives the contradiction we need.
This proposition shows that the special case in whichD(p) = 0 and Ci(x) = cx

is the only case in which we can have a mixture over horizontal bids when qmj > ε.
In this case we can simplify (17) to

Gj(p) = 1−
Ki

(p− c)
R qmi
0
(1− F (q))dq

= 1−
p− c
p− c

This gives

ψi (qi, p) = (1−Gj(p))F (qi) +Gj (p)

= 1−
¡
p− c

¢
(1− F (q))
p− c
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which, from (17) shows that this situation has Z = 0 throughout the region in
which offers are made. Thus we are again in the non-slope-constrained case, even
though the equilibrium offers are horizontal. As for the non-slope-constrained
mixtures in Section 4, the highest offer needs to be unbounded, so the equilib-
rium over horizontal mixtures does not exist for finite price caps and non-pivotal
producers.
Although first-order conditions for mixtures over horizontal bids are similar in

our framework and in the game analyzed by Fabra et al. and Bertrand-Edgeworth
games, our strategy space is less constrained as it allows for strictly increasing
supply functions. Thus one would expect sufficiency conditions to be different
in our framework. For example, there would be profitable deviations from any
potential equilibrium with p < C 0 (qm) . Genc [11] analyzes a supply function
auction similar to ours, and shows that sufficiency conditions for mixtures over
horizontal bids are satisfied if marginal costs are constant, and demand is inelastic
and uniformly distributed.
Our analysis is in a more general setting to [11], but we will restrict attention

to the case where firms are symmetric, so that C 01(q) = C 02(q) = C 0(q) and
qm1 = q

m
2 = qm, and we look for an equilibrium in which both firms offer the same

mixture of offers, G1(p) = G2(p) = G(p). Moreover, we assume that D (p) = 0
and ε ≥ 0.
It will be convenient to introduce some notation to shorten the expressions

we deal with. We let

A =

Z qm

0

(1− F (q))dq, B =

Z qm

0

(1− F (q + qm))dq,

and

L(p) =

Z qm

0

(p− C 0(q))(F (q + qm)− F (q))dq.

It is also convenient to define

J = −L(0) =
Z qm

0

C 0(q)(F (q + qm)− F (q))dq.

Under these assumptions we can rewrite (16) and (17) as

ψ(q, p) = F (q) +G(p)(F (q + qm)− F (q)) (23)

and

G(p) =

R qm
0
(p− C 0(q))(1− F (q))dq −K

L(p)
, (24)
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where

K =

Z qm

0

(p− C 0(q))(1− (G(p)F (q + qm) + (1−G(p))F (q)))dq (25)

=

Z qm

0

(p− C 0(q))(1− F (q))dq (26)

=

Z qm

0

(p− C 0(q))(1− F (q + qm))dq, (27)

because K is equal to the pay-off for all price levels, including the highest and
lowest clearing price. Hence,

G(p) =
(p− p)A
L(p)

. (28)

Writing g(p) = G0(p) for the density function, we obtain

g(p) =
L(p)A

[L(p)]2
, (29)

which implies that g (p) ≥ 0 as long as p ≥ p ≥ C 0 (qm) . Moreover,

g0(p) =
−2L(p)A(A−B)

[L(p)]3
≤ 0 (30)

if p ≥ p ≥ C 0 (qm) . Thus the density of the mixture is weighted towards lower
prices.
A relation between the minimum and maximum prices in the horizontal mix-

ture can be calculated from (26) and (27)

p = (pB + J)/A (31)

Observe that the existence of p defined by this expression guarantees that there
is a finite maximum price (at which G(p) reaches 1).
We can establish the following general result for equilibria with mixtures over

horizontal bids, when there is a price cap, P . As in Genc [11] and Fabra et al.
[9] the existence of a price cap singles out a unique equilibrium.

Proposition 9 When D (p) = 0 and ε/2 ≤ qm < ε then an equilibrium where
producers mix over horizontal bids can only exist if the price cap P satisfies

P ≥ 1

B2
¡
A2C 0 (qm)− (A+B)J

¢
. (32)
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Moreover, the equilibrium is uniquely determined by (28), (31) and p = P . The
condition

∂

∂q

∙
(p− C 0 (q))(F (q + qm)− F (q))

1− F (q)

¸
> 0, for q ∈ [0, ε− qm) (33)

is sufficient to ensure that this is an equilibrium.

Proof. By means of (23) and (4) we can calculate

Z(q, p) = 1− F (q)− [G(p) + (p− C 0 (q))g(p)] (F (q + qm)− F (q)) (34)

= [1− F (q)]Λ (q, p) ,

where

Λ (q, p) = 1− [G(p) + (p− C 0 (q))g(p)] (F (q + qm)− F (q))
1− F (q) . (35)

We begin by establishing the first part of the proposition relating to the nec-
essary conditions for an equilibrium. It follows from Lemma 5 that a necessary
condition for a equilibrium with horizontal mixtures is:Z qm

0

Z(t, p)dt = 0, (36)

so that the marginal profit from increasing the bid of the whole segment is zero.
This implies that (28) is satisfied, since this is the condition to ensure the same
payoff for horizontal bids at any price p ∈

£
p, p
¤
. Due to Lemma 3 we also require

that R q
0
Z(t, p)dt ≥ 0, q ≤ qm. (37)

Otherwise the producer would find it profitable to deviate by reducing the price
of the first part of the segment.
Now suppose p > p then from (34) we get

Z(q, p) = 1− F (q + qm), (38)

because g (p) = 0 and G (p) = 1. Hence,
R qm
0
Z(t, p+)dt > 0 and producers have

incentives to raise their highest bids unless it is prevented by the price cap: so
we require that p = P.
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Using (31) we can show (after some algebra) that the condition (32) is equiv-
alent to

p ≥ p∗ = C 0 (qm)A− J
B

.

Note that since 2qm ≥ ε we have

Λ
¡
qm, p

¢
= 1− (p− C 0 (qm))g(p) (39)

= 1−
(p− C 0 (qm))A
p(A−B)− J .

When p = p∗ we obtain

Λ
¡
qm, p

¢
= 1− (C 0 (qm) (A−B)− J)A

(C 0 (qm)A− J) (A−B)−BJ
= 0.

Also it is easy to see from (39) that Λ
¡
qm, p

¢
is decreasing in p. Hence if p <

p∗ then Λ
¡
qm, p

¢
> 0 and hence Z

¡
qm, p

¢
> 0. But this would imply thatR q

0
Z(t, p)dt is increasing in q as q approaches qm from below, which leads to a

contradiction from (37). Thus we have established the condition we require that
p ≥ p∗, which in turn leads to the condition (32).
Now we want to establish that under (33) this mixture over horizontal bids is

a Nash equilibrium. Our assumption (33) implies that, for q ∈ [0, ε− qm),

(p− C 0 (q)) ∂
∂q

½
(F (q + qm)− F (q))

1− F (q)

¾
> C 00 (q)

(F (q + qm)− F (q))
1− F (q) .

As the right hand side is positive this establishes that p > C 0 (ε− qm) and that
∂
∂q

n
(F (q+qm)−F (q))

1−F (q)

o
> 0 in this interval. Observe that

Λq (q, p) = −
∂

∂q

½
[G(p) + (p− C 0 (q))g(p)] (F (q + qm)− F (q))

1− F (q)

¾
= −G(p) ∂

∂q

½
(F (q + qm)− F (q))

1− F (q)

¾
− ∂

∂q

½
(p− C 0 (q))g(p)(F (q + qm)− F (q))

1− F (q)

¾
Thus Λq (q, p) < 0 for p ≥ p and q ∈ [0, ε− qm). On the other hand, from (35)
we note that Λq (q, p) = C

00 (q) g(p) ≥ 0 if q > ε− qm.
We know that Z (qm, p) ≤ 0 and

R qm
0
Z(q, p)dq ≥ 0 for p ≥ p , and so Z(q, p) >

0 for at least part of the interval (0, qm). As the derivative of Λ changes from
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negative to positive at ε−qm we can deduce that Λ (and therefore Z) has a single
zero crossing moving from positive to negative at some point q∗(p) ∈ (0, ε− qm)
for p ≥ p .
Suppose that one player uses the mixture we have defined and consider the

optimal choice of offer by the other player. It is clear that the lowest price used
is p. Now an optimal offer cannot contain a section with 0 < p0(q) < ∞ since
from Lemma 1 this only happens when Z = 0 and the optimal solution cannot
follow the q∗(p) curve since this would contradict the condition (5). Hence an
optimal solution can only consist of horizontal and vertical segments. However
we know that the integral of Z on the first horizontal segment will be positive if
it finishes before qm, and hence the solution can only be improved by raising this
first horizontal section which is not admissible. Thus any optimal solution must
consist of a single horizontal section, and thus is in the set of solutions already
considered as part of our Nash equilibrium.
In the special case that there are constant marginal costs c and uniform de-

mand we can deduce that there is always a solution of this form for pivotal
producers and any price cap larger than c.

Corollary 10 When C(x) = cx and demand is inelastic and uniformly dis-
tributed on the interval [0, 1] then there is a mixed-strategy SFE with horizontal
offers for any P > c and qm ∈ (1/2, 1].

Proof. In this case we can rewrite the condition (32) as

P ≥ c

B2
¡
A2 − (A+B) (A−B)

¢
= c

From (31) we have

p = c+ (P − c)B
A

= c+ (P − c) (1− qm)
2

qm(2− qm)
> c

The sufficient condition is satisfied, since

∂

∂q

∙
(p− C 0 (q))(F (q + qm)− F (q))

1− F (q)

¸
= (p− c) qm

(1− q)2
> 0, for q ∈ [0, 1− qm) .

Thus we have checked all the conditions of Proposition 9.
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5.2 Mixtures with hockey stick offers

For increasing marginal costs, Proposition 9 shows that the price cap needs to be
sufficiently high for mixtures over horizontal bids to exist. The problem for low
price caps is that Z (q, p) increases steeply in the interval q ∈ (ε− qm, ε], so that
Z (q, p) crosses zero at some point qA ∈ (ε− qm, ε]. Hence, we get Z (qm, p) > 0,
and the producer would have incentives to increase the price for the segment in
the output interval (qA, qm] . The proposition below shows that in this case we
can get another type of equilibrium where the lowest offer curves in the mixture
are horizontal and slope-constrained in the interval [0, qA (p)) and then strictly
increasing and unconstrained along the curve qA (p) where Z (qA (p) , p) = 0. We
call this a hockey-stick bid. The highest bids in the mixture are still horizontal
along the whole output.

Proposition 11 Assume that D (p) = 0, ε/2 < qm < ε and C 0 (qm) ≤ P . Then
an equilibrium where producers mix over hockey stick bids has the following form:

1. There is some pm such that for p ∈ [pm, P ] producers mix over horizontal
bids and the mixture is defined from

G(p) =
Ap− J −BP
Ap− J −Bp . (40)

2. There is some p such that for p ∈
£
p, pm

¤
producers mix over hockey stick

bids, where the individual offer associated with a price p is defined by p(q) =
p, for q ∈ [0, qA(p)] and p(q) = q−1A (q) for q ∈ [qA(p), qm]. Moreover the
functions G(p) (defining the mixture) and qA(p) in the range

£
p, pm

¤
satisfy

the linked differential equations:

g(p) = G0(p) =
1−G(p)

(p− C 0 (qA (p)))
, (41)

q0A (p) =

R qA(p)
0

1− F (q)− [p−C0(q)−G(p)(C0(qA(p))−C0(q))]
(p−C0(qA(p))) (F (q + qA (p))− F (q))dq

G(p)
R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq
,

(42)

provided that qA
¡
p
¢
> ε/2. The initial conditions for these differential

equations are

p =

R qA(p)
0

£
C 0
¡
qA
¡
p
¢¢
(1− F (q))− C 0(q)(F (q + qA

¡
p
¢
)− F (q))

¤
dqR qA(p)

0 (1− F (q + qA
¡
p
¢
))dq

,

(43)

G(p) = 0, (44)
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and, in addition,

q0A
¡
p
¢
=

2
R qA(p)
0

£
C 0
¡
qA
¡
p
¢¢
− C 0 (q)

¤
(F (q + qA

¡
p
¢
)− F (q))dq¡

p− C 0
¡
qA
¡
p
¢¢¢ R qA(p)

0

∙
2(p− C 0 (q))f(q + qA

¡
p
¢
)

+ (1− F (q))C 00
¡
qA
¡
p
¢¢ ¸

dq

.

(45)

3. The value of p is chosen so that a solution to the differential equations
satisfies

G(pm) =
Apm − J −BP
Apm − J −Bpm

(46)

qA(pm) = qm.. (47)

A sufficient condition for a mixture satisfying conditions (1), (2) and (3)
above to be a Nash equilibrium is that

∂

∂q

∙
(p− C 0 (q)) f(q + u)

1− F (q)

¸
> 0, (48)

for every pair (u, q) ∈ {u ≥ 0, 0 ≤ q ≤ qm : u+ q < ε} . Under this condi-
tion any mixed hockey stick equilibrium has qA

¡
p
¢
> ε/2.

Proof. We begin by showing that the conditions of the Proposition statement
are necessary for a hockey stick mixture to be an equilibrium. We start by
considering the range above pm (the first condition) where we have as before

ψ(q, p) = F (q) +G(p)(F (q + qm)− F (q))

and Z(q, p) = [1− F (q)]Λ (q, p) where

Λ (q, p) = 1− [G(p) + (p− C 0 (q))g(p)] (F (q + qm)− F (q))
1− F (q)

Now we note from our previous discussions that we can derive the equation for
G in (40) by taking

G(p) =

R qm
0
(p− C 0(q))(1− F (q))dq −KR qm

0
(p− C 0(q))(F (q + qm)− F (q))dq

where

K =

Z qm

0

(P − C 0(q))(1− F (q + qm))dq
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which is the profit achieved by offering at the price cap. Thus this is exactly what
is required to ensure that all the horizontal offers with p ≥ pm achieve the same
profit, and hence, by construction,

R qm
0
Z(t, p)dt = 0 for p ∈ [pm, P ].

We also have P as the highest price offered, as in Proposition 9 . Otherwise
producers would have incentives to increase their highest bid, because of the result
in (38).
Now we turn to the part of the solution below pm. We will show that the differ-

ential equations (41) and (42) arise from the requirement that
R qA(p)
0

Z(t, p)dt = 0
and Z(qA(p), p) = 0 for p ∈

£
p, pm

¤
. We have

ψ(q, p) = F (q) +G(p)(F (q + qA (p))− F (q))

for p ∈
£
p, pm

¤
. This follows from the fact that with probability G(p) the other

player offers one of the hockey stick offers with price below p, and each of these
offer curves coincides at the quantity qA(p) at price p. We can now calculate

Z(q, p) = 1− ψ(q, p)− (p− C 0 (q))ψp(q, p)
= 1− F (q)− [G(p) + (p− C 0 (q))g(p)] (F (q + qA (p))− F (q)) (49)

− (p− C 0 (q))q0A (p) f(q + qA (p))G(p)
= [1− F (q)]Λ (q, p) ,

where

Λ (q, p) = 1− [G(p) + (p− C 0 (q))g(p)] (F (q + qA (p))− F (q))
1− F (q) (50)

− (p− C 0 (q))q0A (p)
f(q + qA (p))

1− F (q) G(p).

As we assume that qA
¡
p
¢
> ε/2, we also have qA (p) > ε/2 and we can simplify

(49) at q = qA (p) to obtain

Z(qA (p) , p) = 1− F (qA (p))− [G(p) + (p− C 0 (qA (p)))g(p)] (1− F (qA (p))).
(51)

Since increasing supply functions must follow a Z(q, p) = 0 curve, we require
Z(qA (p) , p) = 0. This implies (41), as required for p ∈

£
p, pm

¤
.

From (41) and (49) we also have

Z (q, p) = 1− F (q)−
µ
p− C 0 (q)−G(p)(C 0 (qA (p))− C 0 (q))

p− C 0 (qA (p))

¶
(F (q + qA (p))− F (q))

(52)

− (p− C 0 (q))q0A (p) f(q + qA (p))G(p).
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Since
R qA(p)
0

Z(t, p)dt = 0 we can deduce (42) as required.
By definition the lowest price p has G(p) = 0. So, we can deduce from (41)

that

g(p) =
1

(p− C 0
¡
qA
¡
p
¢¢
)
. (53)

Thus, (49) can be simplified to

Z(q, p) = 1− F (q)−
(p− C 0 (q))
p− C 0

¡
qA
¡
p
¢¢(F (q + qA ¡p¢)− F (q)).

Hence, the condition
R qA(p)
0

Z(t, p)dt = 0 yields:

0 =

Z qA(p)

0

"
1− F (q)−

(p− C 0 (q))
p− C 0

¡
qA
¡
p
¢¢(F (q + qA ¡p¢)− F (q))# dq. (54)

from which we obtain (43).
Now consider the value of q0A

¡
p
¢
as given by the expression (42) evaluated at

p. Using (54) and the fact that G(p) = 0 shows that both the numerator and

denominator are equal to zero. Hence, we must calculate q0A
¡
p
¢
from (45) by

means of l’Hôpital’s rule. Let q0A (p) = N (p) /M(p) where

N (p) =

Z qA(p)

0

[1− F (q)] (p− C 0 (qA (p)))dq

−
Z qA(p)

0

(p− C 0 (q)−G(p) [C 0 (qA (p))− C 0 (q)]) (F (q + qA (p))− F (q))dq

and

M (p) = (p− C 0 (qA (p)))G(p)
Z qA(p)

0

(p− C 0 (q))f(q + qA (p))dq.

In order to apply l’Hôpital’s rule we calculate N 0 ¡p¢ and M 0 ¡p¢ using G(p) = 0
and Z(qA

¡
p
¢
, p) = 0.

N 0 ¡p¢ = (1− C 00 ¡qA ¡p¢¢ q0A ¡p¢)Z qA(p)

0

(1− F (q)) dq

−
Z qA(p)

0

¡
1− g(p)

£
C 0
¡
qA
¡
p
¢¢
− C 0 (q)

¤¢
(F (q + qA (p))− F (q))dq

− q0A
¡
p
¢ Z qA(p)

0

(p− C 0 (q))f(q + qA
¡
p
¢
)dq
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and

M 0(p) = (p− C 0
¡
qA
¡
p
¢¢
)g(p)

Z qA(p)

0

(p− C 0 (q))f(q + qA
¡
p
¢
)dq.

Since q0A
¡
p
¢
= N 0 ¡p¢ /M 0 ¡p¢ and using (53) we have
q0A
¡
p
¢ Z qA(p)

0

(p− C 0 (q))f(q + qA
¡
p
¢
)dq = N 0 ¡p¢ .

Collecting all terms with q0A
¡
p
¢
), and using (43) gives the relationship (45).

The condition (46) follows from (40) and the fact that G(p) is continuous at
pm which is the price at which the curve qA(p) hits the right-hand boundary qm.
Now we consider the second part of the Proposition. We begin by showing that

qA(p) > ε/2 follows from the assumption ∂
∂q

£
(p− C 0 (q))f(q + u)/ (1− F (q))

¤
>

0. Under this assumption we can deduce

∂

∂q

∙
(p− C 0 (q))(F (q + qA (p))− F (q))

1− F (q)

¸
=

∂

∂q

"
(p− C 0 (q))
1− F (q)

Z qA(p)

0

f(q + u)du

#

=

Z qA(p)

0

∂

∂q

∙
(p− C 0 (q)) f(q + u)

1− F (q)

¸
du > 0

(55)

if q + qA
¡
p
¢
≤ ε. Hence, if 2qA

¡
p
¢
≤ ε then (50) and G(p) = 0 implies

Λq
¡
q, p
¢
= −g(p) ∂

∂q

(
(p− C 0 (q))

(F (q + qA
¡
p
¢
)− F (q))

1− F (q)

)
< 0.

if q < qA
¡
p
¢
. This would imply that Z

¡
q, p
¢
reaches 0 from a positive Z-value

as q → qA
¡
p
¢
. But it would violate the necessary conditions from Lemma 5 and

Lemma 3, respectively, that
R qA
0
Z(t, p)dt = 0 and

R q
0
Z(t, p)dt ≥ 0 for q ≤ qA (p) .

Hence, we have established 2qA (p) ≥ 2qA
¡
p
¢
> ε, as required.

In order to show sufficiency we will need to establish a number of different
things. First we show that the conditions are enough to guarantee that G(p) and
qA(p) are non-decreasing as functions of p. First observe from (43) that

p ≥
C 0
¡
qA
¡
p
¢¢ R qA(p)

0

£
(1− F (q))− (F (q + qA

¡
p
¢
)− F (q))

¤
dqR qA(p)

0 (1− F (q + qA
¡
p
¢
))dq

= C 0
¡
qA
¡
p
¢¢
.
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Note that the assumption of the Proposition statement can be written more
explicitly as

(p− C 0 (q)) ∂
∂q
f(q + u)/ (1− F (q))− f(q + u)/ (1− F (q))C 00 (q) > 0

for u ≥ 0, 0 ≤ q ≤ qm with u+ q < ε. This assumption would be violated for q =
qA
¡
p
¢
≤ qm < ε if p = C 0

¡
qA
¡
p
¢¢
. Hence, we can establish that p > C 0

¡
qA
¡
p
¢¢
,

so that the above inequality is strict. So G0(p) > 0 and from (45) we observe that

q0A
¡
p
¢
≥ 0. Now consider differentiating the identity

R qA(p)
0

Z(t, p)dt = 0 with
respect to p under the assumption that q0A (p) = 0 and we make use of (41).Z qA(p)

0

(p− C 0 (q))q00A (p) f(q + qA (p))G(p)dq

= −
Z qA(p)

0

∂

∂p

∙
(p− C 0 (q)) +G(p)(C 0 (q)− C 0 (qA (p)))

(p− C 0 (qA (p)))

¸
(F (q + qA (p))− F (q))dq

=

Z qA(p)

0

∙
2 [1−G(p)] (C 0 (qA (p))− C 0 (q))

(p− C 0 (qA (p)))2
¸
(F (q + qA (p))− F (q))dq ≥ 0.

Hence, q00A (p) ≥ 0 whenever q0A (p) = 0. Thus the derivative q0A (p) can move from
negative to positive but not the other way around as p increases. Since q0A

¡
p
¢
≥ 0

and this value is defined by continuity from above, there can be no changes of
sign in q0A between p and pm and so qA is increasing throughout this range.
We know that Z(qA(p), p) = 0. Now we will analyze other potential solutions

Z(q, p) = 0 in the interval q ∈ (0, qA(p)). We know that at least one such point
must exist, because

R qA(p)
0

Z(q, p)dq = 0. From (50) we note that Λq (q, p) =
C 00 (q) g(p) ≥ 0 if q > ε − qA(p), and so Λ is non-decreasing in this interval and
zero at qA(p). However if marginal costs are constant in an interval containing
qA(p), then we will have Λ(q, p) = 0 for an interval, and hence Z(q, p) = 0 on
the same interval. In fact if we suppose that C 00 (q) = 0 for q ∈ (qB, qC) then
Z(q, p) = 0 for q ∈ (max [qB, ε− qA(p)] , qC). Now for q > qC , the condition on
Λq implies that Λ(q, p) > 0 and hence Z(q, p) > 0 for qC < q < qm.We know that
Λ(ε− qA(p), p) ≤ 0 and hence, Z(ε− qA(p), p) ≤ 0. Together with the conditionR qA(p)
0

Z(q, p)dq = 0 this implies that there must be at least one q∗ ∈ [0, ε− qA(p)]
with Z(q∗, p) = 0.
From (50) we have

Λq (q, p) = −
∂

∂q

∙
[G(p) + (p− C 0 (q))g(p)] (F (q + qA (p))− F (q))

1− F (q)

¸
− ∂

∂q

∙
(p− C 0 (q))q0A (p)

f(q + qA (p))

1− F (q) G(p)

¸
.
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Notice that the first term can be rewritten

∂

∂q

∙
[G(p) + (p− C 0 (q))g(p)] (F (q + qA (p))− F (q))

1− F (q)

¸
=

µ
G(p)

p− C 0 (q) + g(p)
¶

∂

∂q

∙
(p− C 0 (q))(F (q + qA (p))− F (q))

1− F (q)

¸
+

G(p)

p− C 0 (q)C
00 (q)

(F (q + qA (p))− F (q))
1− F (q)

and so from (55) and the fact that p > C 0 (q), this term is positive for q < ε−qA(p).
As q0A (p) ≥ 0 the second term in Λq (q, p) is non-positive from (48) and so we
have established that Λq (q, p) < 0 for q < ε − qA(p). This implies that there is
exactly one point at which Λ (q, p) = 0 in this interval. Since Λ changes sign at
q∗ the same must be true for Z. We can sum up the situation as follows:

Z(q, p) > 0, for q ∈ (0, q∗) and q ∈ (qC , qm),
Z(q, p) < 0, for q ∈ (q∗,max [qB, ε− qA(p)]),
Z(q, p) = 0, for q = q∗ and q ∈ (max [qB, ε− qA(p)] , qC).

Now we want to establish that this mixture over hockey stick bids is a Nash
equilibrium. Suppose that one player uses the mixture we have defined and
consider the optimal choice of offer by the other player. As in Proposition 9 it
is clear that the other player has no incentives to bid below p. We know that
Z has a single zero crossing in the interval [0, ε− qA(p)] moving from positive to
negative at some point q∗(p) ∈ (0, ε−qA(p)) for p ∈ (p, pm). Now an optimal offer
cannot follow the q∗(p) curve since this would contradict the condition (5). So
the only place where an optimal offer can have 0 < p0(q) <∞ is along the curve
qA(p) (or in a region surrounding qA(p) where Z = 0 in the case when marginal
costs are constant). Apart from the section along this curve, an optimal offer
can only consist of horizontal and vertical sections. Consider the final horizontal
section, say from qX to qY . Now we must have either qY = qm if p ≥ pm, or
qY ≥ qA(p) if p ∈ (p, pm). Suppose that this horizontal section does not start at
zero, so qX > 0.
First we consider the case p ∈ (p, pm) and suppose that qY = qA(p). ThenR qA(p)

qX
Z(t, p)dt < 0 since

R qA(p)
0

Z(q, p)dq = 0 and either Z(t, p) < 0 throughout

the interval t ∈ (qX , qA(p)) or Z(t, p) > 0 for t ∈ (0, qX). Hence this solution can
be improved by moving the horizontal section slightly downwards (as in Lemma
3) contradicting the claimed optimality. Thus we must have qY > qA(p) and
this implies that there is a vertical segment starting at (qY , p). Since there are
no more horizontal segments this must finish on the qA curve. In the region,
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qA(p) ≤ q ≤ qC , where Z(q, p) = 0, profits are insensitive to the shape of the
offer curve. Hence, deviations can only be strictly profitable if qY > qC , so that
Z(q, p) > 0. But this would imply that Z (q, p) = ∂

∂p
(p(q)−C 0(q))(1−ψ(q, p(q))) >

0 throughout the vertical section, contradicting Lemma 6.
The argument for the case when p ≥ pm is easier. We simply establish thatR qm

qX
Z(t, p)dt < 0 and hence use Lemma 3 to show the solution is not optimal.
Thus we have established that there is exactly one horizontal section starting

at zero and finishing on the qA curve or at qm. So any optimal response is already
represented in the mixture and this is enough to show that the solution is a Nash
equilibrium.
The proposition below provides sufficient conditions for a hockey-stick mixture

to exist.

Proposition 12 Assume that D (p) = 0, ε/2 < qm < ε and p ∈
£
pmin, pmax

¤
,

where

pmin =

R ε̄/2

0
[C 0 (ε̄/2) (1− F (q))− C 0(q)(F (q + ε̄/2)− F (q))] dqR ε̄/2

0
(1− F (q + ε̄/2))dq

(56)

and

pmax=
C 0 (qm)A− J

B
. (57)

Then there is a price cap value P > pm for which a mixed hockey stick equilibrium
exists if for some δ > 0

∂

∂q

∙
(p− C 0 (q)) f(q + u)

1− F (q)

¸
> δ

for (u, q) ∈ {u ≥ 0, 0 ≤ q ≤ qm : u+ q < ε} .

Proof. From the result of Proposition 11 it is enough to find a set of price
cap values P such that there will be choices of p and pm and a solution of the
differential equations (41) and (42) with initial conditions (43), (44) and (45) sat-
isfying the conditions (46) and (47). We will generate these solutions by showing
that each of a range of possible starting points is matched to a final price cap
value P . We do this by starting with one of the initial points given by (43), (44)
and constructing a solution to the differential equations (41) and (42) from this
point (which will automatically satisfy (45) ).
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We need to establish that the set of possible starting points is non-empty.
First recall the defining relationship for qA

¡
p
¢
in (54)

0 =

Z qA(p)

0

"
1− F (q)−

(p− C 0 (q))
p− C 0

¡
qA
¡
p
¢¢(F (q + qA ¡p¢)− F (q))# dq. (58)

We can differentiate both sides of (58) with respect to p. The calculations are

simplified since the integrand is Z
¡
q, p
¢
and Z

¡
qA
¡
p
¢
, p
¢
= 0.

0 = −
Z qA(p)

0

(F (q + qA
¡
p
¢
)− F (q))

p− C 0
¡
qA
¡
p
¢¢ dq

+

Z qA(p)

0

"
(p− C 0 (q))(F (q + qA

¡
p
¢
)− F (q))£

p− C 0
¡
qA
¡
p
¢¢¤2

#
dq

−
Z qA(p)

0

(p− C 0 (q))f(q + qA
¡
p
¢
)
∂qA(p)

∂p

p− C 0
¡
qA
¡
p
¢¢ dq

=

Z qA(p)

0

"
(C 0

¡
qA
¡
p
¢¢
− C 0 (q))(F (q + qA

¡
p
¢
)− F (q))£

p− C 0
¡
qA
¡
p
¢¢¤2

#
dq

−
Z qA(p)

0

(p− C 0 (q))f(q + qA
¡
p
¢
)
∂qA(p)

∂p

p− C 0
¡
qA
¡
p
¢¢ dq,

which implies that
∂qA(p)

∂p
≥ 0, because C 0

¡
qA
¡
p
¢¢
− C 0 (q) ≥ 0. So the highest

value of p occurs when qA
¡
p
¢
is qm. With this value we get (57) from (43).

Moreover, the lowest value of p occurs when qA
¡
p
¢
= ε/2, which gives us (56).

We show that the capacity constraint qm must bind at some price pm where
G (pm) < 1. We know from (41) that

G0(p)

1−G(p) =
1

(p− C 0 (qA (p)))
.

Since G(p) = 0, integration gives

− ln(1−G(p)) =
Z p

p

dp

p− C 0 (qA (p))
= α(p),

so

G(p) = 1− e−α(p).
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The assumption that the inequality (48) holds for

(u, q) ∈ {u ≥ 0, 0 ≤ q ≤ qm : u+ q < ε}

shows that p−C 0 (q) is bounded away from zero as q approaches qm. Hence there
exists some δ such that

p− C 0 (qA (p)) ≥ p− C 0 (qm) ≥ δ > 0

for every p ∈
£
p, pm

¤
. Thus α(p) is finite for finite p, whence G(p) < 1, i.e. a

hockey stick mixture never reaches G(p) = 1 at a finite price.
Next we will show that qA(p) > qm as p → ∞. We make the contradictory

assumption that qA(p) ≤ qm. For p > p we then have from (42) that

q0A (p) =

R qA(p)
0

1− F (q)−
h
G(p) + (p−C0(q))[1−G(p)]

(p−C0(qA(p)))

i
(F (q + qA (p))− F (q))dqR qA(p)

0
(p− C 0 (q))f(q + qA (p))G(p)dq

>

R 1−qm
0

[1− F (q + qm)] dq
p

+O

µ
1

p2

¶
=
k

p
+O

µ
1

p2

¶
,

where k is some positive constant. Thus

qA(p) = qA(p) +

Z p

p

q0A (p) dp > qA(p) + k ln p+O

µ
1

p

¶
Hence, qA(p) > qm for sufficiently large p, which is a contradiction. Hence, the
capacity constraint qm must bind at some finite price pm where G (pm) < 1.
Finally we define the price cap P from (46).
Now we are ready to establish the following:

Theorem 13 Assume that D (p) = 0, ε/2 < qm < ε and that for some δ > 0

∂

∂q

∙
(pmin − C 0 (q)) f(q + u)

1− F (q)

¸
> δ

for (u, q) ∈ {u ≥ 0, 0 ≤ q ≤ qm : u+ q < ε} .

Then a unique hockey stick mixture exists for each price cap P ∈ [Pmin, Pmax]
where Pmin is determined from the mixture starting at pmin and

Pmax =
1

B2
¡
A2C 0 (qm)− (A+B)J

¢
.
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Proof. It follows from Proposition 12 that a hockey-stick mixture will ex-
ist for some price cap for any p∈

£
pmin, pmax

¤
. The necessary equations outlined

in Proposition 11 ensures that the hockey-stick solution (G (p) , qA (p)) is differ-
entiable, and hence continuous, with respect to p. Proposition 23 in Appendix
proves that there is a unique continuous hockey-stick solution for each p. Lemma
27 and Theorem 29 in the Appendix prove that the price cap is continuous and
strictly increasing with respect to p. Thus the lowest price cap for which a hockey-
stick mixture occurs can be calculated from the initial value pmin. Moreover, the

highest price cap occurs when p = pmax, i.e. when qA
¡
p
¢
= qm. Using (25) we see

that this value corresponds to a price cap at

Pmax =
1

B2
¡
A2C 0 (qm)− (A+B) J

¢
.

Note that according to Proposition 9 P = 1
B2
(A2C 0 (qm)− (A+B)J) is the

lowest price cap for which a mixture over horizontal offers can exist. Thus there
is no overlap between the mixtures.
It can also be shown that:

Lemma 14 For a hockey-stick mixture satisfying p > C 0
¡
qA
¡
p
¢¢
we have C 0

¡
qA
¡
p
¢¢
>

C 0 (0) .

Proof. This follows directly from (43).
Hence, hockey-stick mixtures satisfying (48) cannot exist for constant marginal

costs. Moreover, we know from Proposition 12 that such mixtures always have a
horizontal mixture at the top, i.e. P > pm. Thus by means of Proposition 8 we
can rule out hockey-stick mixtures satisfying (48) for non-pivotal producers.

5.3 Examples

We conclude this section with some examples of equilibria with mixed strategies.
In all examples we assume a symmetric duopoly with each player having capacity
qm ∈ (12 , 1) and C(q) =

1
2
q2, and inelastic demand that is uniformly distributed

on [0, 1].
Example 4: Horizontal bids
With a uniform demand shock and quadratic costs we get

A =
1

2
qm(2− qm),

B =
1

2
(1− qm)2,
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and

J =
1

6
(−1 + 3qm − q3m).

This gives

P ≥ 1

B2
¡
A2C 0 (qm)− (A+B)J

¢
=
13q3m − 12q4m + 3q5m + 1− 3qm

3 (1− qm)4

for an equilibrium. We can see that this is sufficient because using this value of
P gives

p =

R qm
0
C 0(q)(1− F (q))dq +

R qm
0
(P − C 0(q))(1− F (q + qm))dqR qm

0
(1− F (q))dq

=

R qm
0
q(1− q)dq +

R 1−qm
0

(P − q)(1− (q + qm))dqR qm
0
(1− q)dq

=
−2q3m + 6q2m − 3qm + 1

3 (1− qm)2

which is easily seen to be strictly greater than 1 for qm ∈ (12 , 1). This means that

∂

∂q

∙
(p− C 0 (q))(F (q + qm)− F (q))

1− F (q)

¸
= qm

p− 1
(q − 1)2

> 0, for q ∈ [0, 1− qm)

which is sufficient for an equilibrium by Proposition 9. So for every value of

qm ∈ (12 , 1) and price cap P ≥
1
3
13q3m−12q4m+3q5m+1−3qm

(1−qm)4
there is a mixed-strategy

equilibrium with horizontal bids. The equilibrium can be uniquely determined
by

p =
−1
6
q3m − 1

6
+ 1

2
qm +

1
2
P − Pqm + 1

2
Pq2m

qm − 1
2
q2m

and

G(p) =
3qm (2− qm)

¡
p− p

¢
−3p− 3qm + 12pqm + q3m − 6pq2m + 1

.

In this example we have assumed that demand is inelastic. Using the same
approach, we are able to construct similar examples in which D(p) 6= 0, as long
as qm < D(P ) + ²̄.
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Example 5: Hockey-stick bids
The choice qm =

3
4
gives

1

3

13q3m − 12q4m + 3q5m + 1− 3qm
(1− qm)4

= 98
1

12
.

If we choose a price cap P < 98 1
12
, then by Proposition 9 there does not ex-

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.25 0.50 0.75

Figure 3: Mixed-strategy equilibrium for p = 1 and P = 10.734, showing hockey-
stick bids.

ist a mixed-strategy equilibrium in horizontal bids. However for every P ∈
(10.734, 98 1

12
) there are equilibria with mixtures over hockey-stick bids and hori-

zontal bids. The most competitive equilibrium is plotted in Figure 3. The lines
shown are at contours of G taking values 0, 0.1, 0.2, up to 1.0. It has qA(p) start-
ing at p = 1, and shows a typical hockey-stick offer using a solid line. All the
hockey-stick curves in the mixture meet qm = 0.75 at pm = 4.5 (approximately),
and correspond to a price cap P = 10.734. Observe that the offers in the mixtures
are horizontal for p > pm = 4.5. As a comparison, the most competitive mixture
is compared with another mixture in Figure 4. The higher priced equilibrium
starts at p = 29

15
, and gives qA(p) =

6
10
and pm approximately 5.54. The lowest

priced hockey stick offer in this mixture is shown as a dashed line in Figure 4.,
along with the lowest priced horizontal offer in this mixture (at pm =5.54). The
highest priced offer in this mixture (at P = 24.6) is not shown.
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0 .0 0

2 .0 0

4 .0 0

6 .0 0

8 .0 0

1 0 .0 0

0 0 .2 5 0 .5 0 .7 5

Figure 4: Comparison of two hockey-stick mixtures with p = 1 (solid) and p = 29
15

(dashed). The price cap (24.6) for the dashed mixture is not shown.

6 Conclusions

In this paper we derive general optimality conditions for pay-as-bid procurement
auctions that are valid for any uncertainty in a producer’s residual demand curve,
i.e. for any combination of demand uncertainty, uncertainty in competitors’ costs
or randomization of competitors’ offer curves. It is our belief that these conditions
can also be useful in the theory of Bertrand games and non-linear pricing. We use
the conditions to derive necessary conditions for pure-strategy equilibria in elec-
tricity auctions, i.e. when costs are common knowledge and demand uncertain.
We show that they fail to exist whenever the market clears at a point where a pro-
ducer’s mark-up times the hazard rate of the demand shock is increasing. Hence,
it is of great interest to analyze mixed strategy equilibria under those circum-
stances. As far as we know we are the first to analyze mixed-strategy equilibria
in multi-unit/divisible good auctions with offer curves that are not necessarily
horizontal. We consider a symmetric duopoly market. It is shown that mixtures
over strictly increasing supply functions can occur in markets with non-pivotal
producers and inelastic demand. With pivotal producers we get mixtures over
slope-constrained supply curves with horizontal segments, and the equilibria are
determined by the price cap when demand is inelastic. When price caps are suffi-
ciently high all offer curves of the producers are slope-constrained along the whole
output. These one-dimensional mixtures correspond to mixed-strategy equilibria
previously analyzed by Fabra et al. [9], Genc [11] and Son et al. [19], and they are
also Nash equilibria in corresponding Bertrand-Edgeworth games with uncertain
demand. For lower price caps, so that the mark-up for the lowest offers becomes
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small relative to the curvature of the cost curve, we get a new type of mixture
where the lowest bids are hockey-stick shaped. They are slope-constrained and
horizontal for low outputs and strictly increasing for high outputs. The highest
bids in the mixture are still horizontal along the whole output. We show that
there are no mixed-strategy equilibria of these types when the market has a price
cap and producers are non-pivotal.
Mixed-strategy equilibria are a nuisance for agents in the market, as they

cause additional uncertainty. Another disadvantage is that mixed strategies will
lead to welfare losses due to inefficient production. With symmetric producers
and convex increasing costs, production is most efficient if all producers have
the same output. But with randomized offer curves, the realized production
will typically be asymmetric. On the other hand, mixed-strategies reduce the
problem with multiple equilibria, because all bids are accepted with a positive
probability. So there are no out-of-equilibrium bids which could otherwise sup-
port very non-competitive equilibria. Similarly, collusion is harder in pay-as-bid
auctions compared to uniform-price auctions, because bids can not be used as
costless threats and signals [16]. Hence, in spite of the potential problems with
mixed-strategy equilibria, the pay-as-bid auction can still be attractive for market
designers.
With our model it becomes possible to quantitatively compare strategic bid-

ding in uniform-price and pay-as-bid electricity auctions for previously unexplored
but still very relevant cases, for example when producers are pivotal, marginal
costs are stepped and demand shocks are normally distributed. Moreover, the
use of market distribution functions and offer distribution functions should be of
general interest, since they can be applied to characterize mixed-strategy equilib-
ria in any multi-unit or divisible-good auction, including uniform-price auctions.
We believe that the optimality conditions that we derive will be useful in empir-
ical work, for example to test whether producers maximize their expected profit
in discriminatory divisible-good auctions. As it is very difficult to tell before-
hand what type of equilibria will occur in such auctions, it is helpful that the
conditions can be applied in general circumstances, including both mixed and
pure-strategies.
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7 Appendix 1: Can mixtures with non-binding

slope constraints occur with elastic demand?

In this appendix we look in detail at the existence of mixtures with non-binding
slope constraints when there is uncertain demand. We give a condition which is
sufficient to ensure that equilibria of this type can only occur when demand is
inelastic.
First we will derive a result that we will use later. We show that if demand

is elastic then an equilibrium in mixtures with non-binding slope constraints can
only exist if qUi

¡
p
¢
is less than maximum demand. The following lemma makes

this precise.

Lemma 15 If D(p) is continuous, p > C 0(0) and if there exists any price ep ∈¡
p, p
¤
such that D(ep) < D(p) then, in a Nash equilibrium with mixtures with

non-binding slope constraints, qUi
¡
p
¢
< ε+D

¡
p
¢
.
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Proof. Assume that qUi
¡
p
¢
≥ ε + D

¡
p
¢
> 0. We consider the behaviour of

ψi(q, p) for q = qδ = ε + D
¡
p
¢
− δ. Thus qδ > 0 for δ chosen small enough.

Now qδ < ε +D
¡
p
¢
, and hence qδ < q

U
i

¡
p
¢
by our assumption. From Lemma 7

qLi
¡
p
¢
= 0 so (qδ, p) is in the region Γ where mixing occurs.

Choose γ > 0 with γ < D(p)−D(ep) and write ∆ = ep− p. Now G (t, p) = 1
for t < qLj (p). Hence, from (12) for q ≥ ε+D (p)− qLj (p),

ψi(q, p) = F (q −D (p)) +
ε+D(p)−qZ

0

f (t+ q −D (p)) dt = 1. (59)

Thus ψi(qδ, p+∆) = 1 if qδ ≥ ε+D
¡
p+∆

¢
− qLj

¡
p+∆

¢
, i.e. if

D
¡
p
¢
− δ ≥ D

¡
p+∆

¢
− qLj

¡
p+∆

¢
.

Since 0 ≤ qLj
¡
p+∆

¢
and D(p)−D(p+∆) > γ, this inequality holds if γ ≥ δ.

Thus we have for any δ sufficiently small, that ψi(qδ, p) < 1 and that ψi(qδ, p+
∆) = 1 if γ ≥ δ. So for each δ, there exists ∆(δ) = sup{∆ : ψi(qδ, p +∆) < 1}.
Notice from (59) that ψi(qδ, p) is a continuous function of p. But in the region
where mixing takes place we have from (9)

ψi(qδ, p) = 1−
θ (q)

p− C 0 (q) ,

which cannot approach 1 as p approaches p+∆(δ) from below. Consequently we
cannot have mixing taking place as (qδ, p) approaches the ψi = 1 boundary. This
gives a contradiction unless (qδ, p) crosses the q

L
i (p) boundary as p increases. But

this possibility can be ruled from the definition of p in (14), which implies that
qLi
¡
p+∆(δ)

¢
+qLj

¡
p+∆(δ)

¢
≤ qLi (p−)+qLj (p−) ≤ ε+D (p) ≤ ε+D

¡
p+∆(δ)

¢
.

Thus qLi
¡
p+∆(δ)

¢
≤ ε+D

¡
p+∆(δ)

¢
−qLj

¡
p+∆(δ)

¢
= qδ. Consequently there

can be no δ > 0, such that qδ = ε+D
¡
p
¢
− δ < qUi

¡
p
¢
and we can conclude that

ε+D
¡
p
¢
> qUi

¡
p
¢
.

In Section 3 we have seen that pure-strategy SFE can only exist for intervals
q ∈ Q, where (p− C 0(q))H(q + qj(p)−D(p)) is non-increasing in q. (Note that
q+ qj(p)−D(p) is the value of ε which leads to a dispatch of q ). It is of interest
therefore to focus on the opposite case where

∂

∂q

∙
(p− C 0(q)) f(q + qj(p)−D(p))
1− F (q + qj(p)−D(p))

¸
> 0.
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In fact we will make the following related assumption - concentrating on the point
where p = p and q = 0, which is the lowest demand realization such that the
market clears at p:

Assumption 1. We assume that ∂
∂q

(p−C0(q))f(q+ε)
1−F (q−D(p))

¯̄̄̄
q=0+

> 0 for ε ∈
£
−D(p), ε

¤
(where the notation ∂

∂q

¯̄̄
q=0+

implies the right hand derivative at q = 0 and the

assumption implies that these partial derivatives exist for each ε in the range).

We can express this assumption more explicitly in terms of the density func-
tion f . We can rewrite the assumption as stating that, for ε ∈

£
−D(p), ε

¤
,¡

p− C 0(0)
¢ ¡
f 0(ε)

£
1− F (−D(p))

¤
+ f(ε)f(−D(p))

¢
− f(ε)C 00(0)

£
1− F (−D(p))

¤
> 0.

As an example we see that Assumption 1 will hold when f has a uniform distri-
bution provided C 00(0) is small enough and p > C 0 (0).
The next result extends one of the results of lemma 7 in that it establishes a

stronger lower bound on qUj
¡
p
¢
.

Lemma 16 If ε + D
¡
p
¢
≤ 0 and Assumption 1 is satisfied then, in a Nash

equilibrium with mixtures with non-binding slope constraints, qUj
¡
p
¢
≥ ε+D

¡
p
¢
.

Proof. We calculate the value of Z when the price is p. Observe that

f (t+ q −D(p)) = 0 for t > ε− q +D
¡
p
¢
, and so (12) becomes

ψi (q, p) = F (q −D(p)) +
ε−q+D(p)Z

0

f (t+ q −D(p))G (t, p) dt. (60)

Differentiating (60) with respect to p and evaluating at p yields:

ψp
¡
q, p
¢
= −f(q −D

¡
p
¢
)D0 ¡p¢− ε−q+D(p)Z

0

f 0
¡
t+ q −D

¡
p
¢¢
D0 ¡p¢G ¡t, p¢ dt

+

ε−q+D(p)Z
0

f
¡
t+ q −D

¡
p
¢¢
Gp
¡
t, p
¢
dt+ f (ε)G

¡
ε− q +D

¡
p
¢
, p
¢
D0 ¡p¢ ,
(61)
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where Gp (t, p) = ∂G (t, p) /∂p. From lemma 7 we know that G
¡
t, p
¢
= 0 for any

t > 0, so we obtain for q < ε+D
¡
p
¢
that

Z(q, p) ≡ 1− ψ
¡
q, p
¢
− ψp(q, p)

¡
p− C 0 (q)

¢
= 1− F (q −D

¡
p
¢
) +

¡
p− C 0 (q)

¢
f(q −D

¡
p
¢
)D0 ¡p¢

−
¡
p− C 0 (q)

¢ ε−q+D(p)Z
0

f
¡
t+ q −D

¡
p
¢¢
Gp
¡
t, p
¢
dt.

Notice that for any t > qUj
¡
p
¢
we have G(t, p+ δ) = 0 for δ chosen small enough

and so Gp
¡
t, p
¢
= 0. Now, suppose qUj

¡
p
¢
< ε+D

¡
p
¢
. Then for any q > 0 and

chosen close enough to 0, we will have qUj
¡
p
¢
< ε− q +D

¡
p
¢
. For such a q, we

can replace the upper limit of the integral in this expression for Z and write

Z(q, p) =
£
1− F (q −D

¡
p
¢
)
¤
[1 +E1(q) +E2(q)]

E1(q) =
¡
p− C 0 (q)

¢ f(q −D
¡
p
¢
)

1− F (q −D
¡
p
¢
)
D0 ¡p¢

E2(q) = −
¡
p− C 0 (q)

¢ qUj (p)Z
0

f
¡
t+ q −D

¡
p
¢¢

1− F (q −D
¡
p
¢
)
Gp
¡
t, p
¢
dt.

We are interested in the (right-hand) derivative of Z(q, p) with respect to q at

q = 0. Since Z(0, p) = 0, D0 ¡p¢ ≤ 0, p > C 0 (0) (implied by Assumption 1) and
Gp
¡
t, p
¢
≥ 0, Assumption 1 implies that Z(q, p) is decreasing with respect to q

at q = 0. But this violates the condition that Z = 0 on the boundary of Γ. This
contradiction establishes the result we require.

Thus under Assumption 1, if ε +D
¡
p
¢
≤ 0, then the most competitive sup-

ply curve in a producer’s mixture, qUi (p) , offers at least the maximum possible
demand at p, so producers must be non-pivotal. Combined with Lemma 15 this
implies that demand must be inelastic under Assumption 1.

8 Appendix 2: Some technical lemmas

In this appendix we define some notation and prove some technical lemmas that
are used in Appendix 3 and Appendix 4. We begin by defining

Φ(q, p) = 1− F (q)− [p− C
0 (q)−G(p)(C 0 (qA (p))− C 0 (q))]

(p− C 0 (qA (p)))
(F (q + qA (p))− F (q)),
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which is the integrand in the numerator of the expression for q0A (p) in Proposition
11. We also set

ξ(q, p) = (1− F (q)) (p− C 0 (qA(p)))− (p− C 0 (q))(F (q + qA (p))− F (q)),

Observe that

(p− C 0 (qA (p)))Φ(q, p) = (1− F (q)) (p− C 0 (qA(p)))
− (p− C 0 (q)) (F (q + qA (p))− F (q))
+G(p)(C 0 (qA (p))− C 0 (q))(F (q + qA (p))− F (q))
= ξ(q, p) +G(p)(C 0 (qA (p))− C 0 (q))(F (q + qA (p))− F (q))

so it follows from (49) and (53) that¡
p− C 0

¡
qA
¡
p
¢¢¢

Φ(q, p) = ξ(q, p) =
¡
p− C 0

¡
qA
¡
p
¢¢¢

Z(q, p) (62)

since G(p) = 0. Thus (54) yieldsZ qA(p)

0

ξ(q, p)dq = 0. (63)

It follows directly from the definition of ξ(q, p)that

ξ(qA (p) , p) = 0 (64)

whenever qA (p) > ε/2. Moreover, Z(qA (p) , p) = 0,(49) and (41) implies that

Φ(qA (p) , p) = 0. (65)

Inside the proof of Proposition 11 we showed that q0A (p) ≥ 0, but as we show
below the inequality is actually strict.

Lemma 17 Assume that D (p) = 0, ε/2 < qm < ε and C 0 (qm) ≤ P then q0A (p) >
0 if p > p.

Proof. We have shown in Proposition 11 that q0A (p) ≥ 0, for p ≥ p. If
C 0 (qA (p)) = C

0 (0)) then C 0 (qA (p)) = C
0 (q)) for every q ∈ [0, qA (p)], so

Φ(q, p) = (1− F (q + qA (p)),
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giving

q0A (p) =

R qA(p)
0

Φ(q, p)dq

G(p)
R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq

=

R qA(p)
0

(1− F (q + qA (p)))dq
G(p)

R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq
> 0,

since G(p) > 0 if p > p and qA (p) ∈ (ε/2, ε).
If for some p > p, C 0 (qA (p)) > C

0 (0)) and q0A (p) = 0, then we can use the
following relation (derived in Proposition 11)Z qA(p)

0

(p− C 0 (q))q00A (p) f(q + qA (p))G(p)dq

=

Z qA(p)

0

∙
2 [1−G(p)] (C 0 (qA (p))− C 0 (q))

(p− C 0 (qA (p)))2
¸
(F (q + qA (p))− F (q))dq

to show that q00A (p) > 0, which rules out q
0
A (p) = 0 if p > p.

Lemma 18
R qA(p)
0 Φ(q, p)dq = 0 and

R qA(p)
0

Φ(q, p)dq > 0 if p > p.

Proof. When p = p, the result follows directly from (62) and (63). When
p > p we have from Proposition 11 that

q0A (p) =

R qA(p)
0

Φ(q, p)dq

G(p)
R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq

so the result follows directly from q0A (p) > 0, and G(p) > 0.

Lemma 19 For hockey-stick mixtures satisfying ε/2 < qA
¡
p
¢
≤ qm < ε we have

for every p ≥ p Z qA(p)

0

ξ(q, p)dq ≤ 0.

The inequality is strict when p > p > C 0
¡
qA
¡
p
¢¢
.

Proof. It follows from (63) that
R qA(p)
0 ξ(q, p)dq = 0. So to prove the state-

ment for p > p, it is enough to show that

∂

∂p

Z qA(p)

0

ξ(q, p)dq ≤ 0
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for p ≥ p whenever Z qA(p)

0

ξ(q, p)dq = 0. (66)

Since qA (p) > ε/2 we have ξ(qA (p) , p) = 0 so

∂

∂p

Z qA(p)

0

ξ(q, p)dq =

Z qA(p)

0

∂

∂p
ξ(q, p)dq (67)

=

Z qA(p)

0

[1− F (q + qA (p))] dq

− q0A(p)
Z qA(p)

0

[(1− F (q))C 00 (qA(p)) + (p− C 0 (q))f (q + qA (p))] dq

≤
Z qA(p)

0

[1− F (q + qA (p))] dq

− q0A(p)
Z qA(p)

0

(p− C 0 (q))f (q + qA (p)) dq

since C 00 (qA(p)) ≥ 0 and q0A(p) ≥ 0. We note that ∂
∂p

R qA(p)
0

ξ(q, p)dq is continuous

at p since q0A(p) and qA(p) are continuous at that point. It has been shown in

Lemma 14 that p > C 0
¡
qA
¡
p
¢¢
implies C 0

¡
qA
¡
p
¢¢
> C 0 (0) . Hence, the inequal-

ity above is strict when p > C 0
¡
qA
¡
p
¢¢
.We know from Proposition 11 that when

G(p) > 0,

q0A (p) =

R qA(p)
0

Φ(q, p)dq

G(p)
R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq
,

so

∂

∂p

Z qA(p)

0

ξ(q, p)dq ≤
Z qA(p)

0

(1− F (q + qA (p))) dq −
R qA(p)
0

Φ(q, p)dq

G(p)

=

Z qA(p)

0

µ
1− F (q + qA (p))−

Φ(q, p)

G(p)

¶
dq.

Recall

(p− C 0 (qA(p)))Φ(q, p) = ξ(q, p) +G(p)(C 0 (qA (p))− C 0 (q))(F (q + qA (p))− F (q)),

55



which gives

(p− C 0 (qA(p)))
µ
(1− F (q + qA (p)))−

Φ(q, p)

G(p)

¶
= (p− C 0 (qA(p))) (1− F (q + qA (p)))−

ξ(q, p)

G(p)

− (C 0 (qA (p))− C 0 (q))(F (q + qA (p))− F (q))

= (p− C 0 (qA(p))) (1− F (q))− (p− C 0 (q))(F (q + qA (p))− F (q))−
ξ(q, p)

G(p)

= ξ(q, p)− ξ(q, p)

G(p)
.

So for every p > p for which (66) holds

(p− C 0 (qA(p)))
∂

∂p

Z qA(p)

0

ξ(q, p)dq ≤
Z qA(p)

0

µ
ξ(q, p)− ξ(q, p)

G(p)

¶
dq

= 0

demonstrating that ∂
∂p

R qA(p)
0

ξ(q, p)dq ≤ 0 for every p > p for which (66) holds.
Continuity of ∂

∂p

R qA(p)
0

ξ(q, p)dq at p ensures that the inequality is satisfied also

in the limit. The inequality is strict when p > C 0
¡
qA
¡
p
¢¢
.

9 Appendix 3: Hockey-stick uniqueness result

In this appendix we prove that the set of differential equations defined in Proposi-
tion 11 has at most one solution qA (p) , G (p) given initial conditions qA

¡
p
¢
, G
¡
p
¢
.

This is not self-evident, because of a singularity at p. We assume that (qA (p) , G(p))
is a valid solution and study perturbations of this solution. Let (qA (p) + u (p) , G(p) + v (p))
be another solution with both u and v approaching zero as p→ p. We will show
that u and v must be identically zero, so that the original solution is unique.
Using the differential equations we have

G0(p) + v0 (p) =
1− (G(p) + v(p))

p− C 0 (qA (p) + u(p))

=
1−G(p)

p− C 0 (qA (p))
+

∂

∂qA

½
1−G(p)

p− C 0 (qA (p))

¾
u(p)

+
∂

∂G

½
1−G(p)

p− C 0 (qA (p))

¾
v(p) + o(u) + o(v).
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So

v0 (p) = A (p)u(p)−B (p) v(p) + o(u) + o(v)

where

A (p) =
(1−G(p))C 00 (qA (p))
(p− C 0 (qA (p)))2

,

B(p) =
1

p− C 0 (qA (p))
.

Next we establish a similar identity for u0(p). We have

u0(p) = −D (p)u(p) +E (p) v(p) + o(u) + o(v),

where

D(p) = − ∂

∂qA

⎧⎨⎩
R qA(p)
0

h
1− F (q)− [p−C0(q)−G(p)(C0(qA(p))−C0(q))]

(p−C0(qA(p))) (F (q + qA (p))− F (q))
i
dq

G(p)
R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq

⎫⎬⎭ ,
E (p) =

∂

∂G

⎧⎨⎩
R qA(p)
0

h
1− F (q)− [p−C0(q)−G(p)(C0(qA(p))−C0(q))]

(p−C0(qA(p))) (F (q + qA (p))− F (q))
i
dq

G(p)
R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq

⎫⎬⎭ .
The calculations are simplified because ε/2 < qA (p) , so that F (2qA(p)) = 1 and
f (2qA(p)) = 0. We also note that because of (65) the integrands are zero at
the upper limit and we have no contributions from differentiating the integration
limits. This gives

D(p) =

R qA(p)
0

∂
∂qA

n
[p−C0(q)−G(p)(C0(qA(p))−C0(q))]

(p−C0(qA(p))) (F (q + qA (p))− F (q))
o
dq

G(p)
R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq

+

Z qA(p)

0

(p− C 0 (q))f 0(q + qA (p))dq ×R qA(p)
0

h
1− F (q)− [p−C0(q)−G(p)(C0(qA(p))−C0(q))]

(p−C0(qA(p))) (F (q + qA (p))− F (q))
i
dq

G(p)
³R qA(p)

0
(p− C 0 (q))f(q + qA (p))dq

´2
=

R qA(p)
0

∂
∂qA

n
[p−C0(q)−G(p)(C0(qA(p))−C0(q))]

(p−C0(qA(p))) (F (q + qA (p))− F (q))
o
dq

G(p)
R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq

+
q0A (p)

R qA(p)
0

(p− C 0 (q))f 0(q + qA (p))dqR qA(p)
0

(p− C 0 (q))f(q + qA (p))dq
.
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Observe that

lim
p→p

∂

∂qA

½
[p− C 0 (q)−G(p)(C 0 (qA (p))− C 0 (q))]

(p− C 0 (qA (p)))
(F (q + qA (p))− F (q))

¾
> 0

(68)

because

∂

∂qA

½
[p− C 0 (q)−G(p)(C 0 (qA (p))− C 0 (q))]

(p− C 0 (qA (p)))
(F (q + qA (p))− F (q))

¾
=

p− C 0 (q)
p− C 0 (qA (p))

f(q + qA (p))

− G(p)(C
0 (qA (p))− C 0 (q))

p− C 0 (qA (p))
f(q + qA (p))

+ C 00 (qA (p))
p− C 0 (q)

(p− C 0 (qA (p)))2
(F (q + qA (p))− F (q))

− C 00 (qA (p))
G(p)(C 0 (qA (p))− C 0 (q))

(p− C 0 (qA (p)))2
(F (q + qA (p))− F (q))

− G(p)C 00 (qA (p))

(p− C 0 (qA (p)))
(F (q + qA (p))− F (q))

→
p− C 0 (q)

p− C 0
¡
qA
¡
p
¢¢f(q + qA ¡p¢)

+ C 00
¡
qA
¡
p
¢¢ p− C 0 (q)¡

p− C 0
¡
qA
¡
p
¢¢¢2 (F (q + qA ¡p¢)− F (q))

> 0

as p→ p because G(p) = 0. We can then expect the first term of D(p) to become
large and positive as p→ p, while the second term remains bounded which gives
D(p) > 0 for p sufficiently close to p.
Similarly using the definitions of Φ(q, p)and ξ(q, p) introduced in Appendix 2

E(p) =

R qA(p)
0

(C 0 (qA(p))− C 0 (q)) (F (q + qA (p))− F (q))dq
(p− C 0 (qA(p)))G(p)

R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq

−
R qA(p)
0

(p− C 0 (qA(p)))Φ(q, p)dq
(p− C 0 (qA(p)))G2(p)

R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq

= −
R qA(p)
0

ξ(q, p)dq

G2(p)(p− C 0 (qA(p)))
R qA(p)
0

(p− C 0 (q))f(q + qA (p))dq
≥ 0
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for p sufficiently close to p by virtue of Lemma 19. By means of l’Hôpital’s rule,
(63) and (67), it straightforward to show that

lim
p→p

R qA(p)
0

ξ(q, p)dq

G(p)
=

∂
∂p

R qA(p)
0

ξ(q, p)dq
¯̄̄
p=p

g(p)

is finite, so like D(p), E(p) is unbounded when p → p. From (68) we know hat
lim
p→p
D (p)G (p) > 0 and we have just shown that lim

p→p
E (p)G (p) is finite. We can

deduce from this that lim
p→p

E(p)
D(p)

is finite.

In summary, the system of differential equations for the perturbations v (p)
and u (p) is ∙

u0

v0

¸
=

∙
−D (p) E (p)
A (p) −B (p)

¸ ∙
u
v

¸
(69)

where D (p) > 0 and E (p) ≥ 0 are unbounded near the singularity at p, while
A (p) ≥ 0 and B (p) ≥ 0 are bounded. The following result proves that diagonal
terms dominate the off-diagonal terms at p =p.

Lemma 20 B
¡
p
¢
− E(p)A(p)

D(p)
> 0 for hockey-stick mixtures satisfying ε/2 <

qA
¡
p
¢
≤ qm < ε.

Proof. We write

Erel = lim
p→p

E (p)

D (p)
.

In the limit we can ignore the second term in the expression for D(p) and hence

Erel = lim
p→p

−
R qA(p)
0

[(1− F (q)) (p− C 0 (qA))− [p− C 0 (q)] (F (q + qA (p))− F (q))] dq

(p− C 0 (qA))G(p)
R qA(p)
0

∂
∂qA

½∙
G(p) + (p−C0(q))[1−G(p)]

(p−C0(qA(p)))

¸
(F (q + qA (p))− F (q))

¾
dq

.

Using the expressions for A and B

A (p) =
(1−G(p))C 00 (qA (p))
(p− C 0 (qA (p)))2

B(p) =
1

p− C 0 (qA (p))
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gives

B
¡
p
¢
−A

¡
p
¢
Erel = lim

p→p

½
1

(p− C 0 (qA (p)))
+

(1−G(p))C 00 (qA (p))
R qA(p)
0

[(1− F (q)) (p− C 0 (qA))− [p− C 0 (q)] (F (q + qA (p))− F (q))] dq

(p− C 0
¡
qA
¡
p
¢¢
)3G(p)

R qA(p)
0

∂
∂qA

½∙
G(p) + (p−C0(q))[1−G(p)]

(p−C0(qA(p)))

¸
(F (q + qA (p))− F (q))

¾
dq

⎫⎪⎪⎬⎪⎪⎭ .
After rearrangement, and using the fact that lim

p→p

h
G(p)
1−G(p)

i
= 0, we can establish

that the inequality we want to prove is

Ψ
¡
p
¢
= (p− C 0

¡
qA
¡
p
¢¢
)2
Z qA(p)

0

∂

∂qA

(
(p− C 0 (q))
p− C 0

¡
qA
¡
p
¢¢(F (q + qA (p))− F (q))) dq

(70)

+ C 00
¡
qA
¡
p
¢¢
lim
p→p

R qA(p)
0

ξ (q, p) dq

G(p)

> 0.

Now

∂

∂qA

(
(p− C 0 (q))

(p− C 0
¡
qA
¡
p
¢¢
)
(F (q + qA (p))− F (q))

)
(71)

=
C 00
¡
qA
¡
p
¢¢
(p− C 0 (q))

(p− C 0
¡
qA
¡
p
¢¢
)2

(F (q + qA
¡
p
¢
)− F (q)) +

(p− C 0 (q))
(p− C 0

¡
qA
¡
p
¢¢
)
f(q + qA

¡
p
¢
).

From (54) we see that the limit in the second term of Ψ
¡
p
¢
is of the type 0

0
and

it can be calculated using l’Hôpital’s rule. Thus we want to calculate

lim
p→p

∂

∂p

Z qA(p)

0

[(1− F (q)) (p− C 0 (qA))− (p− C 0 (q))(F (q + qA (p))− F (q))] dq

= lim
p→p

Z qA(p)

0

[1− F (q + qA (p))] dq

− lim
p→p
q0A(p)

Z qA(p)

0

[(1− F (q))C 00 (qA(p)) + (p− C 0 (q))f (q + qA (p))] dq

=

Z qA(p)

0

£
1− F (q + qA

¡
p
¢
)
¤
dq

− q0A(p)
Z qA(p)

0

£
(1− F (q))C 00

¡
qA(p)

¢
+ (p− C 0 (q))f

¡
q + qA

¡
p
¢¢¤
dq.
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Using l’Hôpital’s rule, and combining the result above with the expressions for
q0A(p) and g (p) in Proposition 11 we now get

lim
p→p

R qA(p)
0

[(1− F (q)) (p− C 0 (qA (p)))− [p− C 0 (q)] (F (q + qA (p))− F (q))] dq
G(p)

=

lim
p→p

∂
∂p

R qA(p)
0

[(1− F (q)) (p− C 0 (qA))− (p− C 0 (q))(F (q + qA (p))− F (q))] dq

g
¡
p
¢

=
¡
p− C 0

¡
qA
¡
p
¢¢¢ Z qA(p)

0

£
1− F (q + qA

¡
p
¢
)
¤
dq

−
2
R qA(p)
0

£
C 0
¡
qA
¡
p
¢¢
− C 0 (q)

¤
(F (q + qA

¡
p
¢
)− F (q))dqR qA(p)

0

£
2(p− C 0 (q))f(q + qA

¡
p
¢
) + (1− F (q))C 00

¡
qA
¡
p
¢¢¤
dq

×
Z qA(p)

0

£
(1− F (q))C 00

¡
qA(p)

¢
+ (p− C 0 (q))f

¡
q + qA

¡
p
¢¢¤
dq

≥
¡
p− C 0

¡
qA
¡
p
¢¢¢ Z qA(p)

0

£
1− F (q + qA

¡
p
¢
)
¤
dq

− 2
Z qA(p)

0

£
C 0
¡
qA
¡
p
¢¢
− C 0 (q)

¤
(F (q + qA

¡
p
¢
)− F (q))dq.

Combining the result above with (70) and (71) yields:

Ψ
¡
p
¢
≥
Z qA(p)

0

(p− C 0 (q))(p− C 0
¡
qA
¡
p
¢¢
)f(q + qA

¡
p
¢
)dq

+ C 00
¡
qA
¡
p
¢¢ Z qA(p)

0

(p− C 0 (q))(F (q + qA
¡
p
¢
)− F (q))dq

+ C 00
¡
qA
¡
p
¢¢ Z qA(p)

0

¡
p− C 0

¡
qA
¡
p
¢¢¢ £

1− F (q + qA
¡
p
¢
)
¤
dq

− 2C 00
¡
qA
¡
p
¢¢ Z qA(p)

0

£
C 0
¡
qA
¡
p
¢¢
− C 0 (q)

¤
(F (q + qA

¡
p
¢
)− F (q))dq.

Dropping the first term and rearranging the others we have

Ψ
¡
p
¢
> C 00

¡
qA
¡
p
¢¢ Z qA(p)

0

(p− C 0
¡
qA
¡
p
¢¢
)(1− F (q))dq

− C 00
¡
qA
¡
p
¢¢ Z qA(p)

0

£
C 0
¡
qA
¡
p
¢¢
− C 0 (q)

¤
(F (q + qA

¡
p
¢
)− F (q))dq.
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Now using that (54) and p > C 0
¡
qA
¡
p
¢¢
we get

Ψ
¡
p
¢
> C 00

¡
qA
¡
p
¢¢ Z qA(p)

0

£
p− C 0 (q)

¤
(F (q + qA

¡
p
¢
)− F (q))dq

− C 00
¡
qA
¡
p
¢¢ Z qA(p)

0

£
C 0
¡
qA
¡
p
¢¢
− C 0 (q)

¤
(F (q + qA

¡
p
¢
)− F (q))dq

> 0,

which implies that B
¡
p
¢
−A

¡
p
¢
Erel > 0.

Now, consider a price interval
¡
p, p0

¤
. Our proof will show that for sufficiently

small p0 > p, the only solution to (69) over
¡
p, p0

¤
is u = 0, v = 0. This will

establish that the set of differential equations defined in Proposition 11 has at
most one solution
Let D be the smallest D (p) in the interval

¡
p, p0

¤
. Similarly, Erel and Erel

are the largest and smallest values of E (p) /D (p), respectively, in the interval.
We let A and B be the largest values of A (p) and B (p) , respectively, and B is
the smallest B (p). For small enough p0 all these bounds, which are positive, are
close to their values at p and we can use continuity to show that B − ErelA > 0
from Lemma 20.
We divide the uv-plane into four regions as follows. In region 1 we have

u > Erelv and u > Erelv, so u > Erelv. In region 2 we have Erelv < u < Erelv,
which implies that v ≥ 0. In region 3 we have u < Erelv and u < Erelv, so
u < Erelv. In region 4 we have Erelv < u < Erelv, which implies that v ≤ 0. The
four regions are illustrated in Figure 5.

Lemma 21 If B −ErelA > 0, then we can make the following claims:
i) Either u0u < 0 or v0v < 0.
ii) u0 < 0 in region 1.
iii) v0 < 0 in region 2.
iv) u0 > 0 in region 3.
v) v0 > 0 in region 4.

Proof. First we note that the assumption B − ErelA > 0 implies that
B

A
> Erel.

Claim i). Make the contradictory assumption that u0u ≥ 0 and v0v ≥ 0. Thus
it follows from (69) that −u2 + Ereluv ≥ 0 and Auv − Bv2 ≥ 0, respectively.
To satisfy both inequalities we need uv ≥ 0. Thus together the two inequalities
imply B

A
≤ u

v
≤ Erel, which would violate the assumption that B −ErelA > 0.

Claim ii) The first equation in (69) implies that u0 = −Du+Ev = −D (u−Erelv) <
0, because u > Erelv in region 1.
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Figure 5: The four regions referred to in the proof of Lemma 21. The directions
of the arrows show the changes in u and v as p increases in each region.

Claim iii) Make the contradictory assumption that v0 ≥ 0 in region 2, so that
Au−Bv ≥ 0. In this region we have u < Erelv and v ≥ 0. Thus AErelv−Bv ≥ 0,
so AErel−B ≥ 0. But this would contradict our assumption that B−ErelA > 0.
Claim iv) u0 = −Du+Ev = −D (u−Erelv) > 0, because u < Erelv in region 3.
Claim v) Make the contradictory assumption that v0 ≤ 0 in region 4, so that
Au−Bv ≤ 0. In this region we have u > Erelv and v ≤ 0. Thus AErelv−Bv ≤ 0,
so AErel−B ≥ 0, because v ≤ 0. But this would contradict our assumption that
B−ErelA > 0.

Claim i) of the Lemma implies that whenever |u| is decreasing at some p then
|v| must be increasing at that point. We now consider the interval

¡
p, p0

¤
, where

p0 is chosen sufficiently close to p, so that we can find a finite k > Erel, such that

D
¡
k −Erel

¢
> k

¡
kA+B

¢
≥ 0.

Such a p0 can always be found, because D is unbounded at p. We proceed to

show that the initial value problem qA
¡
p
¢
= q0 and G

¡
p
¢
= 0 of hockey-stick

mixtures has at most one continuous solution over the interval
¡
p, p0

¤
.

Lemma 22 Suppose that there are at least two different solutions to (69) over
the price interval

¡
p, p0

¤
. Then for every p ∈

¡
p, p0

¤
either u(p) ≥ 0, v(p) > 0 or

u(p) ≤ 0, v(p) < 0.
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Proof. Suppose that there are at least two different solutions over the price
interval

¡
p, p0

¤
. The system of differential equations is Lipschitz continuous at

every price in this interval, and so any two solutions must differ at this price,
otherwise they would be identical throughout the interval

¡
p, p0

¤
. This means

that there is no p∗ ∈
¡
p, p0

¤
for which u(p∗) = v(p∗) = 0.

First we show that there is no p∗ ∈
¡
p, p0

¤
, for which |u (p∗)| > 0 and v (p∗) =

0, by proving a stronger result, namely that there is no p∗ ∈
¡
p, p0

¤
, with |u (p∗)| >

k |v (p∗)|. Suppose that such a p∗ exists. Then

D |u (p∗)|−Ev (p∗) ≥ D |u (p∗)|− E |v (p∗)| > D
¡
k −Erel

¢
|v (p∗)| > 0.

Hence (69) implies that

−u0 (p∗)u (p∗) = D |u (p∗)|2 −Ev (p∗)u (p∗) > 0,

which shows that u2(p) is strictly decreasing at p∗. Since this deduction follows
for any p∗ with |u (p∗)| > k |v (p∗)| we cannot have |u (p)| > k |v (p)| throughout¡
p, p∗

¤
for this would contradict the fact that u2(p) = 0. So, by continuity, there

is some pX ∈
¡
p, p∗

¤
with |u (pX)| = k |v (pX)|. We take the largest such pX . Now

(69) implies that

|u0 (pX)| = |Du (pX)− Ev (pX)|
≥ D |u (pX)|−E |v (pX)|
≥ D

¡
|u (pX)|−Erel |v (pX)|

¢
= D

¡
k −Erel

¢
|v (pX)|

> k
¡
kA+B

¢
|v (pX)|

= k
¡
A |u (pX)|+B |v (pX)|

¢
≥ k |v0 (pX)| .

As |u (p)| > k |v (p)|, p ∈ (pX , p∗], |u (p)| is strictly decreasing on this interval,
and so we have d

dp
|u (p)| ≤ 0 at p = pX and

d

dp
|u (pX)| = − |u0 (pX)| < −k |v0 (pX)|

≤ k d
dp
|v (pX)|

Thus |u (p)| − k |v (p)| is decreasing at pX which contradicts |u (p)| > k |v (p)|,
p ∈ (pX , p∗].
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It remains to show that there is no p∗ ∈
¡
p, p0

¤
, for which u (p∗) v (p∗) < 0. If

this inequality holds then, from (69),

u(p∗)u0(p∗) = −Du (p∗)2 +Ev (p∗)u (p∗)
< 0

so |u| is strictly decreasing at p∗. So we cannot have u (p∗) v (p∗) < 0 throughout¡
p, p0

¤
for this would contradict the fact that u(p) = 0. Thus, by continuity,

there is some pX ∈
¡
p, p∗

¤
with u (pX) v (pX) = 0, and we take the largest such

pX . Since we cannot have u (pX) = v (pX) = 0 nor v (pX) = 0, this establishes
that u (pX) = 0 which contradicts |u| strictly decreasing for p just above pX .

Proposition 23 The initial value problem qA
¡
p
¢
= q0 and G

¡
p
¢
= 0 of hockey-

stick mixtures has at most one continuous solution.

Proof. Suppose that there are at least two different solutions over the price
interval

¡
p, p0

¤
. From Lemma 22 we know that (u(p), v(p)) is either in the positive

or negative orthant and cannot move between them. We demonstrate the result
when u(p) ≥ 0 and v(p) > 0. In this case from Lemma 21 when u(p) > Erelv(p)
(in region 1) u0 < 0 and when Erelv(p) > u(p) (in region 2 or 3) v

0(p) < 0. When
u(p) = Erelv(p) we have u

0(p) ≤ 0 and v0(p) ≤ 0. Thus max(u(p), Erelv(p)) is
non-increasing throughout

¡
p, p0

¤
and, since this is zero at p, we have established

that u(p) and v(p) are identically zero throughout
¡
p, p0

¤
. The argument when

(u(p), v(p)) is in the negative orthant is exactly similar with min(u(p), Erelv(p))
increasing throughout

¡
p, p0

¤
.

10 Appendix 4: P is strictly increasing with p
¯

We now consider a family of hockey-stick solutions with different lowest prices
p. We define G(p, p) to be the mixing distribution and qA

¡
p, p
¢
to be the curved

part of the hockey stick curve corresponding to the solution with lowest price p,
and thus we write qA(p, p) for qA(p). We proceed to show that at any fixed p > p,

qA
¡
p, p
¢
and G

¡
p, p
¢
are decreasing in p. Throughout the Section we consider

hockey-stick mixtures satisfying p > C 0
¡
qA(p)

¢
.

The first result establishes that the curve describing the possible initial points,
qA(p, p), increases in p more slowly than the individual qA(p, p) curves at their
starting points.

Lemma 24 d
dp
qA(p, p) <

∂
∂p
qA(p, p)

¯̄̄
p=p
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Proof. We write ζ(p) for d
dp
qA(p, p). From (43)

p

Z qA(p,p)

0

(1− F (q + qA
¡
p, p
¢
))dq

=

Z qA(p,p)

0

£
C 0
¡
qA
¡
p, p
¢¢
(1− F (q))− C 0(q)(F (q + qA

¡
p, p
¢
)− F (q))

¤
dq.

Taking derivatives with respect to p gives

p

Z qA(p,p)

0

−f(q + qA
¡
p, p
¢
)ζ(p)dq +

Z qA(p,p)

0

(1− F (q + qA
¡
p, p
¢
))dq

=

Z qA(p,p)

0

£
C 00
¡
qA
¡
p, p
¢¢

ζ(p)(1− F (q))− C 0(q)f(q + qA
¡
p, p
¢
ζ(p)

¤
dq

since the integrands are zero at the upper limit when ε/2 < qA (p) . Thus

ζ(p) =

R qA(p,p)
0 (1− F (q + qA

¡
p, p
¢
))dqR qA(p,p)

0

£
C 00
¡
qA
¡
p, p
¢¢
(1− F (q)) + (p− C 0(q))f(q + qA

¡
p, p
¢¤
dq
.

Now we want to compare this with ∂
∂p
qA(p, p)

¯̄̄
p=p

given by (45). We have the

following relationship from (54)

¡
p− C 0

¡
qA
¡
p, p
¢¢¢ Z qA(p,p)

0

(1− F (q))dq =
Z qA(p,p)

0

(p− C 0 (q))(F (q + qA
¡
p, p
¢
)− F (q))dq.

So Z qA(p,p)

0

£
C 0
¡
qA
¡
p, p
¢¢
− C 0 (q)

¤
(F (q + qA

¡
p, p
¢
)− F (q))dq

=

Z qA(p,p)

0

(p− C 0 (q))(F (q + qA
¡
p, p
¢
)− F (q))dq

−
¡
p− C 0

¡
qA
¡
p, p
¢¢¢ Z qA(p,p)

0

(F (q + qA
¡
p, p
¢
)− F (q))dq

=
¡
p− C 0

¡
qA
¡
p, p
¢¢¢ Z qA(p,p)

0

(1− F (q + qA
¡
p
¢
))dq
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Thus (45) can be simplified to

∂

∂p
qA(p, p)

¯̄̄̄
p=p

=

R qA(p,p)
0

¡
1− F (q + qA

¡
p, p
¢
)
¢
dqR qA(p,p)

0

£
(p− C 0 (q))f(q + qA

¡
p, p
¢
) + (1/2) (1− F (q))C 00

¡
qA
¡
p, p
¢¢¤
dq

>

R qA(p,p)
0 (1− F (q + qA

¡
p, p
¢
))dqR qA(p,p)

0

£
(p− C 0(q))f(q + qA

¡
p, p
¢
+ (1− F (q))C 00

¡
qA
¡
p, p
¢¢¤
dq
= ζ(p).

The next two lemmas are related. Roughly speaking they show that as we
vary the starting price p we have monotonicity in G and in qA provided we also
have monotonicity in the other.

Lemma 25 Suppose p
1
< p

2
. If qA(p, p2) ≤ qA(p, p1) throughout the interval

p ∈ (p
2
, p0) and p−C 0

³
qA(p, p1)

´
> 0 for p ∈ [p

2
, p0], then G

³
p, p

1

´
> G

³
p, p

2

´
for p ∈ [p

2
, p0].

Proof. We write G∆(p) = G
³
p, p

2

´
− G

³
p, p

1

´
. Observe that G∆(p2) =

−G
³
p
2
, p
1

´
< 0. Now since C 0 is increasing, we have from (41) and the inequality

on qA

G0∆(p) = g
³
p, p

2

´
− g

³
p, p

1

´
=

1−G(p, p
2
)

(p− C 0
³
qA(p, p2)

´
)
−

1−G(p, p
1
)

(p− C 0
³
qA(p, p1)

´
)

≤ − 1

(p− C 0
³
qA(p, p1)

´
)
G∆(p),

for p ∈ (p
2
, p0). Using Gronwall’s lemma we obtain

G∆(p) ≤ G∆(p2) exp

⎛⎝Z p

p
2

− 1

(s− C 0
³
qA(s, p1)

´
)
ds

⎞⎠ ,
for p ∈ [p

2
, p0]. Since p−C 0

³
qA(p, p1)

´
> 0 throughout the closed interval [p

2
, p0]

and it is continuous, it is also bounded below by some constant. Thus the integral
is bounded and hence G∆(p) < 0 and the result is established.
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Lemma 26 Suppose p
1
< p

2
. If G

³
p, p

1

´
> G

³
p, p

2

´
throughout the interval

p ∈ [p
2
, p0), then qA(p, p1) > qA(p, p2) for p ∈ [p2, p0) .

Proof. Suppose that for a given p
1
the claim of the lemma is not true for some

pair (p, p
2
) then we fix p

2
and choose the lowest p ∈ [p

2
, p0) for which qA(p, p2) ≥

qA(p, p1). First consider the case when the lowest p is larger than p2. Since curves
qA(p, p) are continuous with respect to p this occurs when qA(p, p2) = qA(p, p1).
We suppose this occurs at pZ with qA(pZ , p2) = qA(pZ , p1) = T . Then from (42)

∙
∂

∂p
qA
³
p, p

i

´¸
pZ

=

R T
0
1− F (q)− [pZ−C

0(q)−G(pZ ,pi)(C
0(T )−C0(q))]

(pZ−C0(T )) (F (q + T )− F (q))dq
G(pZ , pi)

R T
0
(pZ − C 0 (q))f(q + T )dq

=

R T
0
1− F (q)− (pZ−C0(q))

(pZ−C0(T ))(F (q + T )− F (q))dq
G(pZ , pi)

R T
0
(pZ − C 0 (q))f(q + T )dq

+

R T
0

(C0(T )−C0(q))
(pZ−C0(T )) (F (q + T )− F (q))dqR T
0
(pZ − C 0 (q))f(q + T )dq

(72)

for i = 1, 2. We know from Lemma 19 thatZ T

0

1− F (q)− (pZ − C 0 (q))
(pZ − C 0 (T ))

(F (q + T )− F (q))dq < 0

because pZ > p2 > C
0
³
qA(p2)

´
so G

³
pZ , p1

´
> G

³
pZ , p2

´
implies∙

∂

∂p
qA
³
p, p

1

´¸
pZ

>

∙
∂

∂p
qA
³
p, p

2

´¸
pZ

.

This gives a contradiction, since this implies that qA(p, p2) > qA(p, p1) for p
approaching pZ from below.
Now we consider the case that qA(p2, p2) = qA(p2, p1) (corresponding to pz =

p
2
) and we take the lowest value p

2
for which this is true. From Lemma 24 we know

that qA(p, p1) > qA(p, p) for p sufficiently close to p1. Since p2 is the lowest value
at which this inequality fails to hold, we have qA(p, p1) > qA(p, p) as p approaches
p
2
from below. Hence for small δ > 0 we have qA(p2 − δ, p

1
) > qA(p2 − δ, p

2
− δ)

and from Lemma 24 applied at p
2
− δ we also have qA(p2, p2 − δ) > qA(p2, p2) =

qA(p2, p1). Thus the curve qA(p, p2 − δ) must cross the curve qA(p, p1) at some
price p ∈ (p

2
− δ, p

2
). But this case has already been ruled out by our discussion

above.
Next we establish that the monotonicity results we want apply throughout

the curved part of the hockey stick bids.
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Lemma 27 For fixed p, both G(p, p) and qA(p, p) are continuous decreasing func-
tions of p over the range where qA(p, p) ≤ qm.

Proof. We begin by establishing that the functions are decreasing. Take
p
2
> p

1
. Since G(p, p) and qA(p, p) are only defined for p > p, it is enough to show

that G(p, p
1
) > G(p, p

2
) and qA(p, p1) > qA(p, p2) for p > p2. Since g(p, p1) > 0

for p > p
1
and G(p

2
, p
2
) = 0 we have G(p, p

1
) > G(p, p

2
) for p ∈ [p

2
, p
2
+ δ)

for δ > 0 and small enough. Thus from Lemma 26 qA(p, p1) > qA(p, p2) for p ∈
[p
2
, p
2
+ δ). We can now use Lemmas 25 and 26 to show that G(p, p

1
) > G(p, p

2
)

and qA(p, p1) > qA(p, p2) for any p (provided qA(p, p1) < qm). Let pW be the
first value of p for which one of the inequalities fails; then from Lemma 25 we
have G(p, p

1
) > G(p, p

2
) for p ∈ [p

2
, pW ]. Thus we may choose an ε > 0 with

G(p, p
1
) > G(p, p

2
) for p ∈ [p

2
, pW + ε). But we can deduce from Lemma 26

that qA(pW , p1) > qA(pW , p2), which contradicts the definition of pW . Hence the
required inequalities hold throughout the range.
Now suppose that qA(p, p) is not continuous in p for some p = p∗ > p. Then

we have some p
0
and δn → 0 with qA(p∗, p0) not equal to limn→∞ qA(p∗, p0 + δn).

We may choose the sequence {δn} to be either increasing to zero or decreasing
to zero. We suppose the latter (the argument in the other case is similar).
By the monotonicity result we have just established we have qA(p, p0 + δn) and
G(p, p

0
+ δn) are increasing sequences for all p > p0, which therefore have limits

which we call q∗A(p, p0) and G
∗(p, p

0
) with qA(p∗, p0) 6= q

∗
A(p∗, p0). Now observe

that for each n the functions (∂/∂p)qA(p, p0 + δn) and g(p, p0 + δn) satisfy the
differential equations (42) and (41) and will be bounded. Moreover the derivatives
(∂2/∂p2)qA(p, p0 + δn) and (∂/∂p)g(p, p0 + δn) can also be obtained from these
equations. It is not hard to see that these second derivatives will also be bounded.

Choose K independent of n so that
¯̄̄
(∂/∂p)g(p, p

0
+ δn)

¯̄̄
< K. Applying the

mean value theorem twice we have

G(p+ δ, p
0
+ δn) = G(p, p0 + δn) + g(p+ x, p0 + δn)δ

= G(p, p
0
+ δn) +

µ
g(p, p

0
+ δn) + x

h
(∂/∂p)g(p, p

0
+ δn)

i
p+y

¶
δ

for some y < x < δ Thus

G(p+ δ, p
0
+ δn)−G(p, p0 + δn)− δg(p, p

0
+ δn) ∈ (−Kδ2, Kδ2).

We can choose a subsequence in which g(p, p
0
+ δn) approaches a limit which we

write as g∗(p, p
0
). Then taking limits in this subsequence we have

G∗(p+ δ, p
0
)−G∗(p, p

0
)− δg∗(p, p

0
) ∈ [−Kδ2,Kδ2].
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ThusG∗ has a derivative at p which is equal to g∗. Moreover since each g(p, p
0
+δn)

satisfies (41) this will also be satisfied by g∗ in the limit. The same argu-
ment can also be used for q∗A(p, p0) and so we have shown that q

∗
A(p, p0) and

G∗(p, p
0
). satisfy the differential equations (41) and (42). So q∗A(p, p0) and

G∗(p, p
0
) is another solution to these differential equations starting at p

0
, but hav-

ing qA(p∗, p0) 6= q∗A(p∗, p0) which contradicts the uniqueness result of Appendix
3. Thus we have established continuity.
The next lemma establishes that the derivative g(p, p) of G(p, p) has a positive

jump at the price pm satisfying qA (pm) = qm. Observe that the definition of g
changes at pm, since the mixtures at higher prices are over horizontal bids rather
than hockey-stick bids. Thus we write g(pm+, p) to represent the value that
satisfies

0 =

Z qm

0

Z (q, pm+) dq

=

Z qm

0

£
1− F (q)−

£
G(pm, p) + (pm − C 0 (q))g(pm+, p)

¤
(F (q + qm)− F (q))

¤
dq

(73)

and g(pm, p) to represent the value that satisfies

0 =

Z qm

0

Z (q, pm) dq

=

Z qm

0

£
1− F (q)−

£
G(pm, p) + (pm − C 0 (q))g(pm, p)

¤
(F (q + qm)− F (q))

¤
dq

−
Z qm

0

(pm − C 0 (q))q0A
¡
pm, p

¢
f(q + qm)G

¡
pm, p

¢
dq. (74)

Lemma 28 At the price pm satisfying qA (pm) = qm, g(pm+, p) > g(pm, p)

Proof. Observe thatZ qm

0

(pm − C 0 (q))q0A
¡
pm, p

¢
f(q + qm)G

¡
pm, p

¢
dq > 0

by lemma 17. Thus combining (73) and (74) givesZ qm

0

£
1− F (q)−

£
G(pm, p) + (pm − C 0 (q))g(pm, p)

¤
(F (q + qm)− F (q))

¤
dq

>

Z qm

0

£
1− F (q)−

£
G(pm, p) + (pm − C 0 (q))g(pm+, p)

¤
(F (q + qm)− F (q))

¤
dq
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yielding

g(pm, p)

Z qm

0

(pm − C 0 (q))(F (q + qm)− F (q))dq

< g(pm+, p)

Z qm

0

(pm − C 0 (q))(F (q + qm)− F (q))dq

which gives the result.

Theorem 29 Hockey stick mixtures with a strictly higher p will have a strictly

higher p if ε/2 < qA
¡
p
¢
≤ qm < ε and p− C 0 (qA (p)) > 0.

Proof. We start by showing that G(p, p) is decreasing in p for fixed p = p∗ at
the point p = p

0
where qA(p

∗, p
0
) = qm (so p is chosen so pm = p

∗ in our previous
notation). Suppose not, and

G(p∗, p
0
) ≥ G(p∗, p

0
− ε) (75)

for some ε > 0. Let p∗(ε) be the price at which the qA(p, p0− ε) curve hits qm so
qA(p

∗(ε), p
0
−ε) = qm. By continuity (Lemma 27) p

∗(ε)→ p∗ as ε→ 0. From the
same lemma we also have G(p∗(ε), p

0
− ε) > G(p∗(ε), p

0
). But the only way this

can happen in combination with (75) is for g(p, p
0
− ε) < g(p, p

0
) for some set of

p ∈ (p∗(ε), p∗). This contradicts Lemma 28 for ε chosen small enough. Thus for
small enough ε > 0 we have

G(p∗, p
0
) < G(p∗, p

0
− ε). (76)

We have already shown in Lemma 27 that G(p, p
0
) < G(p, p

0
− ε) for p < p∗ and

ε chosen small enough.
In (25) we have the following identity for mixtures over horizontal bids:

K ≡
Z qm

0

(p− C 0(q))(1− (G(p)F (q + qm) + (1−G(p))F (q)))dq (77)

≡
Z qm

0

(p− C 0(q))(1− F (q + qm))dq. (78)

Thus if we write K(p) for the constant associated with the solution starting at p,
then from (76) we have

K(p
0
) =

Z qm

0

(p∗ − C 0(q))(1− (G(p∗, p
0
)F (q + qm) + (1−G(p∗, p0))F (q)))dq

> K(p
0
− ε).

Hence applying (77) at any point p > p∗ establishes that G(p, p
0
) < G(p, p

0
− ε).

Thus we have shown that G(p, p) is decreasing in p for all values of p. And
hence K(p) is increasing in p. Thus from (78) the value of p is also increasing in
p.
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