

Concepts of the CAISO Scarcity Pricing Design

Shucheng Liu, Ph.D. Principal Market Developer California Independent System Operator

HEPG Plenary Session

March 13, 2009 San Diego, California

FERC directs the CAISO to implement a reserve shortage Scarcity Pricing mechanism.

- Raising prices automatically during periods of genuine reserve shortage
- Applying administratively-determined graduated prices to various levels of reserve shortage
- Implementing the mechanism in both day-ahead (DAM) and real-time markets (RTM)

A demand curve approach Scarcity Pricing mechanism can improve market performance.

- Being transparent
- Clearing market with the demand curve in situation of reserve shortage
- Setting prices to reflect various levels of reserve shortage
- Encouraging cost based bidding

The CAISO may procure higher quality reserve to meet the requirement for lower quality reserve.

- Reserves from high to low quality
 - Regulation Up, Spinning, Non-spinning
 - Regulation Down
- Reserve substitution
 - Higher quality can be procured to meet the requirement for lower quality reserve if it is economic to do so

The CAISO may also procure reserves by A/S sub-regions.

- NERC and WECC reliability criteria specify reserve requirements for the CAISO system (A/S region)
- CAISO sets reserve procurement targets for A/S sub-regions as needed
 - Reserves procured in an A/S sub-region also meet the requirements of the A/S region

Market recognizes the value of high quality reserves and reserves needed in the sub-regions.

- Price of a higher quality reserve is always higher than or equal to the price of a lower quality reserve in the same location
- Price of a reserve in a sub-region is always higher than or equal to the price of the same reserve in the outer region
- This is also true in situation of reserve shortage

The proposed reserve demand curve may set reserve scarcity prices higher than energy bid cap.

	CAISO	Sub-region
Regulation Up	\$200	\$100
Spinning	\$100	\$100
Non-Spinning Shortage > 210 MW Shortage > 70 &	\$700	\$250
≤ 210 MW Shortage ≤ 70 MW	\$600 \$500	
Sum	\$1000	\$450
Regulation Down	\$600	

- Reserve scarcity prices are additive
- Scarcity price can get as high as \$1,000/MWh systemwide and \$1,450/MWh in A/S sub-region

Scarcity Pricing interacts with other market components.

- With demand response
 - Scarcity Pricing can set price to trigger demand response
 - Demand response resources provide reserves
- With Resource Adequacy (RA) program
 - Scarcity Pricing complements the RA program and rewards capacity with high ramping capability

Market power mitigation is an important aspect of the Scarcity Pricing design.

- The CAISO procures 100% A/S requirements in DAM
- RA capacity DAM must-offer requirement prevents capacity withholding
- Demand curve approach Scarcity Pricing mechanism caps reserve prices in situation of reserve shortage

Appendix: Numerical Examples

All examples follow these common assumptions.

- SUB a sub-region in the CAISO system
 ROS the rest of the CAISO system
- Generator G1 in ROS and G2 in SUB supplying energy and one type of reserve
- Minimum A/S procurement requirement for SUB and for the system
- Fixed energy demand for the system.

Example 1 – No shortage

Input: supply, demand, and reserve demand curve values

Supply		Max Cap (MW) (MW)		Energy Bid (\$/MWh)	A/S Bid (\$/MWh)
ROS	G1 3,500		195	37	6
SUB	G2	1,000	95	50	23

Demand (MW)	Energy	Min A/S	
System	4,050	235	
SUB		90	

Reserve Demand Curve Val			
System	800		
SUB	400		

Example 1 – No shortage (cont.)

Objective Function $\min(37 \cdot E_1 + 50 \cdot E_2 + 6 \cdot AS_1 + 23 \cdot AS_2 + 800 \cdot SLK_{Sys} + 400 \cdot SLK_{SUB})$ St:

Energy Balance	$E_1 + E_2 = 4050$	λ_E
SUB A/S Requirement	$AS_2 + SLK_{SUB} \ge 90$	$\lambda_{AS,SUB}$
System A/S Requirement	$AS_1 + AS_2 + SLK_{Sys} \ge 235$	$\lambda_{\scriptscriptstyle AS,SYS}$
G1 A/S Capacity	$AS_1 \leq 195$	
G2 A/S Capacity	$AS_2 \le 95$	
G1 Total Capacity	$E_1 + AS_1 \le 3500$	
G2 Total Capacity	$E_2 + AS_2 \le 1000$	
Non-negative	$SLK_{Sys} \ge 0, SLK_{SUB} \ge 0, E_i \ge 0, AS_i \ge 0$	(<i>i</i> = 1, 2)

Where: E_i , AS_i = energy and A/S schedule for generator i (i = 1, 2) SLK_{SUB} , SLK_{Sys} = A/S requirement constrain slack variables λ_E , $\lambda_{AS,SUB}$, $\lambda_{AS,SYS}$ = shadow prices of energy and A/S requirement constraints

Example 1 – No shortage (cont.)

Optimal Energy Schedules and A/S Awards (MW)								
	E_1	E_2	AS_1	AS_2	SLK_{Sys}	SLK SUB		
	3,355	695	145	90	0	0		
Shadow Price	es (\$/MWh)							
λ_E $\lambda_{AS,SYS}$ $\lambda_{AS,SUB}$								
	50	19	4					
Market Cleari	ing Prices (\$/	/MWh)						
		Ene	ergy	A/S				
Post of the	System	50		19				
Rest of the System		(λ_E)		$(\lambda_{AS,SYS})$				
Sub-region		5	0	23				
		(λ_E)		($\lambda_{AS,SYS} + \lambda_{AS,SUB}$)				

Example 2 – Ramping capacity shortage in the sub-region

Reduced maximum A/S capacity of G2

Supply		Max Cap (MW) (MW)		Energy Bid (\$/MWh)	A/S Bid (\$/MWh)
ROS	G1	3,500	195	37	6
SUB	G2	1,000	85	50	23

Optimal Energy Schedules and A/S Awards (MW)								
	E_1	E_2	AS_1	AS_2	SLK_{Sys}	SLK_{SUB}		
	3,350	700	150	85	0	5		
Shadow Price	es (\$/MWh)							
	λ_{E}	$\lambda_{\scriptscriptstyle AS,SYS}$	$\lambda_{\scriptscriptstyle AS,SUB}$					
	50	19	400					
Market Clearing Prices (\$/MWh)								
		Energy	A/S					
Rest of the	e System	50	19					
Su	b-region	50	419					

Example 3 – Ramping capacity shortage in the sub-region and rest of the system

Reduced maximum A/S capacity of G1 and G2

Supply		Max Cap (MW) (MW)		Energy Bid (\$/MWh)	A/S Bid (\$/MWh)	
ROS	G1	3,500	138	37	6	
SUB	G2	1,000	85	50	23	

Optimal Energy Schedules and A/S Awards (MW)									
	E_1	E_2	AS_1	AS_2	SLK_{Sys}	SLK_{SUB}			
	3,362	688	138	85	12	5			
Shadow Price	Shadow Prices (\$/MWh)								
	λ_{E}	$\lambda_{\scriptscriptstyle AS,SYS}$	$\lambda_{\scriptscriptstyle AS,SUB}$						
	50	800	400						
Market Clearing Prices (\$/MWh)									
		Energy	A/S						
Rest of the	e System	50	800						
Su	lb-region	50	1,200						

Example 4 – Total capacity shortage

Reduced maximum capacity of G2

Supply		Max Cap (MW) (MW)		Energy Bid (\$/MWh)	A/S Bid (\$/MWh)	
ROS	ROS G1		195	37	6	
SUB	G2	780	95	50	23	

Optimal Energy Schedules and A/S Awards (MW)								
	E_1	E_2	AS_1	AS_2	SLK_{Sys}	SLK_{SUB}		
	3,360	690	140	90	5	0		
Shadow Prices (\$/MWh)								
	λ_E	$\lambda_{\scriptscriptstyle AS,SYS}$	$\lambda_{\scriptscriptstyle AS,SUB}$					
	831	800	4					
Market Clearing Prices (\$/MWh)								
		Energy	A/S					
Rest of the	e System	831	800					
Su	lb-region	831	804					

