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Abstract 
 
The use of transmission constrained unit commitment models to determine nodal energy prices in 
electricity markets is widely recognized as an efficient way implement electricity market that 
provide efficient pricing signals in the short term. However, complexities of unit commitment 
models arising from non-convexities in generation cost functions and network models can cause 
the absence of classical Walrasian equilibrium; this means that the unit commitment based 
dispatch model will not be able, under some situations, to find a single equilibrium price for 
which the energy market is cleared.  Based on recent research on non-linear pricing for single-
node unit commitment models, this paper proposes a transmission constrained non-linear pricing 
alternative based coordination functions added to the classic decomposition Lagrangian relaxation 
algorithm to solve transmission constrained unit commitment models. The new coordination 
algorithms finds agent’s purchase and sell prices that coordinate the market in the absence of 
classic equilibrium. 
  
Since non-linear prices differ for each agent connected to a transmission node, the value of 
congestion rents is redefined so that the new pricing mechanism is taken in to account. The 
redefinition of congestion rents is necessary so that the implementation of financial transmission 
rights, in their varied forms, is still possible in order to provide a price hedging mechanism in the 
nodal spot market.  
 
Index Terms—Electricity markets, unit commitment, classical equilibrium, non-linear pricing, 
congestion rents, financial transmission rights. 
 
 

I. Introduction 
 
The evolution of the electricity industry, from a centralized and regulated situation, towards a new 
philosophy of competition, has generated a wide range of organizational structures and market 
designs [1-2]. Regarding spot market design there is a need to build a model that finds prices that 
clear the market, in the Walrassian sense [3], for all the conditions in the transmission constrained 
system [4, 5], and do not contain design elements that can prevent workable competition to be 
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realized at the spot market level.  In this paper, we deal with power “Pool” energy auctions where 
central unit commitment is used as the market clearing mechanisms such as in the original 
England and Wales Pool [6], and the current PJM and NY-ISO markets [1]. 
 
Contrary to the goods or articles that are commercialized in other markets, electric power cannot 
be stored; balance among power supply and demand has to take place at every time instant in the 
system; in addition, several non-convex technical and security constraints have to be observed at 
every time in the system [4].  For these reasons, the electricity market’s clearing mechanisms have 
to take into account such characteristics, specially the transmission system and generators 
capabilities. The incorporation of such characteristics in unit commitment models for the spot 
market require extra considerations for its solution and, specially, for price determination.  
 
For the solution to Transmission Constrained Unit Commitment (TCUC) models, the Lagrangian 
Relaxation (LR) technique has become an industry standard due to its reliability to solve for large 
systems.  Most of LR variations to solve TCUC models consist of the following stages [9, 10, 12-
14, 24]: i) adding duplication variables in the primal problem to handle transmission constraints, 
ii) adding artificial penalty-type constraints to reduce oscillations in the solution to the dual of the 
new Augmented Lagrangian problem; iii) applying the Auxiliary Problem Principle (APP) to 
enable separation of the new penalty terms in the Augmented Lagrangian; iv) solving the dual 
problem to a particular optimality criteria using one of several existing techniques for non-
differentiable optimization, v) using heuristics, if needed,  to find a primal feasible solution.  
 
Price determination for unit commitment power pool auctions became an imperative design issue 
in different electricity markets, non-convexities in the unit commitment models that difficult 
pricing [16] and difficultness associated with parameter tuning [28] of pioneer LR techniques 
have been overcome over the time. In [16] it was recognized that such non-convexities in UC 
models prevent, under particular situations, the existence of classic equilibrium, and create 
conflicts of interests since the scheduled agents may be forced to operate to a non-profit 
maximizing state. In [7, 8] the first non-linear, or extended pricing approach, to cope with the 
pricing problem of single-node UC models was proposed along with new non-differentiable 
optimization techniques to cope with parameter tuning issues in the LR algorithm. In [17] a linear 
programming approximation to non-convex integer, unit commitment-like problems, is proposed 
as an alternative to find clearing prices, the proposed approach is applied also to small-scale uni-
nodal unit commitment models. In [18], a non-linear pricing algorithm based on agents 
coordination trough disincentive functions is proposed, the method is able to coordinate agents 
and eliminate the duality gap when equilibrium does not exists in the energy auction. In [19]  and 
[20] formalizations of price uplifts, that have been used in other ad-hoc versions in markets such 
as PJM [27], are proposed to cope with the same problem. All the non-linear pricing 
methodologies so far proposed have been able to overcome the initial difficultness but only for 
pricing single-node unit commitment models. However, recognizing that nodal pricing is 
considered necessary in different markets designs to provide efficient locational and congestion 
price signals [1], there is still a need to identify and solve the pricing problem when transmission 
constrained unit commitment models are used for the spot market. 
 
This paper shows that under similar circumstances to the single-node case, dual variables from 
transmission-constrained LR unit commitment models, nodal prices do not represent market 
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clearing prices and we propose a non-linear pricing scheme for such situation when; the objective 
of the scheme is to find prices that clear the market when “marginal costs” from dual variables out 
of the LR are not in equilibrium and force agents to operate at a loss. Our approach is based on a 
simplification the approach in [18] applied to single-node UC models. Since the proposed Non-
Linear Coordinated Simplified Pricing (NLCSP) for TCUC electricity auctions leads to different 
prices for each agent connected to a transmission node, the paper also proposes a new definition 
of congestion rents which is now required in the absence of unique nodal prices. Financial 
Transmission Rights (FTR), in their varied forms [21, 26, 27], are required to provide price-
hedging mechanism in the spot market, and are several times considered as mechanisms that 
provide incentives for construction of remote generations projects and merchant transmission 
investments [22]. 
 
The reminder of this paper is organized as follows: section II of this paper summarizes the TCUC 
model and its solution through LR where transmission network security constraints are 
represented by a DC power flow model; section III describes the proposed non-linear pricing 
alternative for the transmission constrained model in order to cope with nodal prices in 
disequilibrium resulting from dual variables at the solution of the LR algorithm; In section IV 
examples are shown that describe the need for non-liner pricing in transmission constrained unit 
commitment models, and the solution through the proposed non-linear pricing alternative, along 
with the application of the redefined FTR’s in the new piece scheme. Finally, section V gives 
conclusions and final remarks. 
 
 
II. General TCUC and Lagrangian Relaxation  

 
In this section the TCUC problem is presented and its solution through LR is outlined. The TCUC 
is, in general, a large non-linear mixed-integer, and therefore non-convex, mathematical 
programming problem who’s NP-completeness can be easily proven [13]. The type of 
transmission model included in the TCUC model considerably affects the complexity of the 
model, in this paper, as generally accepted for different pricing purposes [1], a linear model is 
used --DC model as known in the electric power literature [23]. The TCUC model can be written 
as follows: 
 

( )
1

min    
n

i ii
C p

=∑                      (1) 

1
.      

n
i di

s t p p
=
=∑                      (2) 

            i i ip D∈ ∀                     (3) 
              ii ip q= ∀                     (4) 

iq S∀ ∈                      (5) 
 
Where ( )i iC p , represent generator’s power production cost function generally assumed quadratic: 
( ) 2
i i i iC p p pα β γ= + + . Equation (2) represents the system- wide generation ( )ip  - demand 

( )dp  power balance; (3) represents the operational limits of each generation unit, ramp rates, 
minimum and maximum output, minimum on and off times; (4) is a constraint whose objective is 
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to duplicated variables ip  in  iq  so that transmission constraints in (5) can be decomposed in the 
LR algorithm. S  represents the linear feasible region that represents network constraints. The 
Lagrangian relaxation solves the dual problem to the primal TCUC problem (1)-(5): 
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Where the dual function is given by: ( )
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Whereλ , is the dual variable related to the power balance constraint (2), and is  are the duals to 
the variable duplication constraint (3). Using (7), the dual function in (6) is separable in a by-
generator profit iπ  maximization sub-problems and one transmission sub problem, as follows: 
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Using the linear representation of the transmission constraints S  [23], the transmission sub 
problem 1

min
i

n
i iiq S
s q

=∀ ∈ ∑  in last equation can be written as: 

 

1
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n
i ii
s q
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ds.t    q ´= + δp B                   (10) 
ij ijδ− ≤ ≤p X p                   (11) 

 
Where (10) represents the nodal power balance constraints, ´B  is the susceptance matrix and 

δ́B  the vector of nodal voltage angles [23]. Equation (11) represents the transmission lines 
capacity limits, expressed using linear relation by the node-branch reactance matrixX . Since the 
objective function in (9) is linear, oscillatory behavior can be expected when solving the dual 
problem (6) as noted in [9], in order to avoid such situation the nonlinear penalty function (12) is 
added to (9):   
 

( )2
2

℘ = −i i
c p q                    (12) 

 
Where /2c  is a positive constant, whose election is made so that it favors the convergence when 
solving (6) through a non-differential optimization technique such as the sub-gradient method. 
However, the addition of the term (12) does not allow for separation of the dual function as 
achieved in (8); the Auxiliary Problem Principle (APP) [24], is used to linearize (12) as follows: 
 

( )( ) ( ) ( )2 21 1 1 1ˆ
2

− − − − ℘ = − − + − + −  
k k k k

i i i i i i i i
bc p q p q p p q q                    (13) 
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Where, 1−k
ip  and 1−k

iq  represent the value of variables ip  and iq  in the previous iteration while 
maximizing the dual function (6) through the sub-gradient method. With this linearization the 
dual function can still be separated in a per-generator sub-problem and a transmission sub-
problem basis: 
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The new transmission sub-problem is as follows: 
 

( )1 1 1 2
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2
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ds.t    q ´= + δp B                    
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The gradient vector of the dual function (14), which is used as a maximization direction to solve 
problem (6) in an iterative fashion is: 
 

( ) 1 1, = =
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Details of the sub-gradient and other several methods to solve the dual problem (6) can be found 
in [16], [29]. At the solution of the dual problem (6) the dual variable λ  represents a market 
clearing price only if particular conditions are meet [7] (duality gap equal to zero). When an 
equilibrium price does not exist other pricing alternatives must be studied as pointed in [7] and 
later in [18]. When transmission constraints are active, the dual variables to the nodal balance 
power constraints in (15) will represent the locational prices; however, under the same 
circumstances, these nodal prices as well will not clear the transmission constrained market; 
therefore, a type of  non-linear pricing (second-best option [3]) will be needed to define such 
locational prices); the proposed coordination methodology to do so is presented in the next 
section. 
 
III. Non-Linear Pricing for Market Clearing in Transmission Constrained 

Unit Commitment 
 
The pricing alternative developed in this section is based on price coordination which acts as 
profit redistributors when the prices obtained at the solution of the UC problem do not clear the 
market. In [7] a simplified price-adjustment produce is proposed to do so, in [18] the first 
coordination procedure to solve the same problem is proposed for a single-node unit commitment 
model. In this section we use a simplification of the coordination procedure in [18] to non-linear 
price the solution to the transmission constrained case. To illustrate the procedure consider a 
simplified version of a UC model: 
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Let *

is  be the solution to the dual problem (6), then *
is  represents a clearing price of the energy 

market if the individual profit maximization problem (17) leads to the same non-negative profit 
solution ( )( )* 0isπ <  obtained in (6).  

 
( ) ( )* * * * *,i i i i i is s p C u pπ = −                   (21) 

 
When this condition is not met (the duality gap is also non-zero), the market is not cleared, and a 
new pricing scheme may be needed; the price coordination mechanism to find such new prices 
redefines each generation sub-problem as follows: 
 
( ) ( ) ( )* *max , ,

i i
i i i i i i i ip P
s s p D u p C u pπ

∈
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Where ( ),i i i iD u p pβ= ∆ , is the disincentive function associated with the i-th producer and can be 
seen as an additional cost (positive or negative) associated to the generation output [18]. Which is, 
under disequilibrium, the coordination mechanism is so that the profits of some agents are 
increased while others are decreased in a zero-sum fashion:  
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The parameters iβ∆ , are calculated using the following mathematical program: 
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To sum up, the augmented term in (22) makes the function of a profit-adjusted in the market 
when the dual variables obtained at the solution of (6) do not represent market clearing prices. 
The general algorithm to incorporate non-linear pricing in TUCU model is as follows: 
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A. Augmenting pricing steps 
 
Step 1) solve (TCUC) to obtain the schedule ( )* *,i iu p of each participating producer (generator’s), 

as well as the nodal price, ( )is , obtained as a by-product of solving (TCUC) algorithm. 

Step 2) solve the profit maximization problem (21), with the parameters ( )*is , to obtain the profits 
of each producer (generator’s). 

Step 3) IF ( )( )* 0isπ ≥  for all i , a competitive market equilibrium has been obtained, which 

satisfies the profits optimally criterion. Stop. 
Step 4) ELSE, form and solve (AP) (24)-(26) to obtain the simplified coordinated price parameter 

iβ∆ , as well as the real price ( )argρ , that everything producer and consumer for the 
electricity pay. Market equilibrium has been found. END. 

 
 
IV. Numerical Examples: Non-Linear Pricing for TCUC 
 
This section presents a series of examples to illustrate, both, the need for non-linear pricing in 
transmission constrained unit commitment markets and also the application of the proposed 
NLCSP methodology developed in this paper, at the same time the need to re-define congestion 
rents in order continue providing FTR’s needed in nodal market designs to provide price hedging 
is illustrated. 
 

A. Numerical example: under equilibrium, nodal linear prices clear the market 
  
The data for an auction with four generators with linear, quadratic but not start-up costs are 
presented in Table I.  The minimum output power for all the generators is considered zero, the 
transmission network is presented in Figure 1, and the transmission capacity is considered 100 
MW. The results of the TCUC model including prices and profits are presented in Table II. 
 

TABLE I 
FOUR BIDDERS WITH QUADRATIC COST FUNCTIONS  

i  1 2 3 4 
( )ip MW  100 200 50 50

( )$/i MWβ 10 30 15 20

( )2$/MWiγ  0.1 0.8 0.2 0.3

 
TABLE II 

OPTIMAL DISPATCH, UNIT COSTS, NODAL PRICES, INCOME AND PROFITS 
dp  i  *

ip  ic  ρ  *
ipρ×  iπ  

270 1 81.36 1475.54 26.27 2137.33 661.78 
 2 150.00 22500.00 270.00 40500.00 18000.00 
 3 28.18 581.52 26.27 740.29 158.77 
 4 10.45 241.76 26.27 274.52 32.76 
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Figure 1.  Optimal dispatch, and nodal prices in equilibrium. 

 
As can be seen, due to the congestion in the transmission line, the prices result in 26.27 $/MW at 
node 1 and 270 $/MW at node 2; the later corresponding to the marginal cost of generator 2. The 
congestion is preventing the export of cheaper power from node 1 to node 2. These prices are 
correct pricing signals, or equilibrium prices, since all generators are operating are positive profits 
and supply and demand are at balance in every location. Under this situation, single nodal prices 
for each location, the value of the congestion rents ( )iCR  can be estimated straightforward by: 
 

( )= − ×i j i ijCR p p p                   (27) 
 

That is, 100 X (270-26.27) = $ 24, 733. In general, congestion rents need be estimated as the 
difference between load payments and generators income at nodal prices. 
 
= −∑ ∑i di j jCR p pρ ρ                   (28) 

 
Which leads to the same valuation of congestion rents as can be obtained from Table III. 
 

TABLE III 
PAYMENTS: (BY) LOADS AND (TO) GENERATORS 

Supplier Retribution Demand Payments 
1 $   2137.33 1 $   525.40 
2 $ 40500.00 2 $ 67500.00 
3 $     740.29  
4 $     274.52  

Total $43652.14 $68025.40 

 
Assuming an allocation of Z MW in FTR’s is awarder to load at node 2, as a mean to mitigate it 
nodal price, the equivalent, or mitigated, price as seen by this load is: 
 

( ) × − −  = d j j ieq
j

d

p Z

p

ρ ρ ρ
ρ                  (29) 

 
If the FTR is by the full transmission capacity, Z=100 MW, the price that load 2 would observe, 
obtained through the equation (29), is only 172.51 $/MW, and if the FTR were by only half of the 
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CR (50 MW), demand 2 would observe it price mitigated only to 221.25 $/MW from its 270 
$/MW original price. Nodal prices have the advantage of giving efficient locational price signals, 
however their variation due to congestion may be perceived by some agents as volatile, FTR’s are 
a mechanism to mitigate such price “volatility” as presented in the latter example when awarding 
the FTR to load B.  
 
The way FTR’s are awarded considerably varies in different regions, they can be awarded to boat 
loads, and generators, through an administered procedure, or trough a market procedure (FTR 
auctions) or combinations of both, we recommend the reader to consult [25-27] in order to board 
the review issues regarding FTR’s design variations (in this examples we uses point-to-point 
FTR’s) and assignment. 
 
 

B. Numerical example: non-linear prices needed to clear the market 
 
In the latter example the nodal prices obtained cleared the market and linear prices where enough, 
however similar to the unconstrained case (single node UC), these linear prices may not exist for 
each node; in such circumstances non-linear prices need be defined. Consider the example with 
four bidders with star-up and linear costs shown in Table IV and connected in the single 
transmission line system in Figure 2. The solution to the TCUC leads to the dispatch, costs, prices 
and profits shown in Table V. 
 
 

TABLE IV 
THREE BIDDERS WITH LINEAR ( )iβ AND STARTUP ( )iα  COSTS  

i  1 2 3 
( )ip MW  150 150 100

( )$iα  100 150 130

( )$/i MWβ 10 20 15

 
 

 
Figure 2.  Optimal dispatch and nodal prices that do not clear the market. 
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TABLE V 
OPTIMAL SOLUTION TO THE GENERATION DISPATCH WITH NODAL PRICES 

dp  i  *
ip  ic  ρ  *

ipρ×  iπ  

250 1 150.00 1600.0 15.00 2250.00 650.00 
 2 50.00 1150.0 20.00 1000.00 -150.00 
 3 50.00 880.0 15.00 750 -130.00 

 
The transmission line limit of 100 MW leads again to different nodal prices of 15 $/MW and 
20$/MW at each node, however these prices do not clear the market since generators 2 and 3 are 
operating at negative profits. This example shows that also in transmission constrained UC 
models equilibrium prices may not exist and other type of pricing is needed to cope with the 
situation. After applying the proposed NLCSP algorithm to obtain non-linear prices, the new 
profits for generation agents are corrected as presented in Table VI.  

 
TABLE VI 

AGENTS NON-LINEAR PRICES ( )iρ  THAT REACH MARKET EQUILIBRIUM 

Load Generation 
i  dp  iρ  *

ip  ic  iρ  *
ipρ×  iπ  

1 100 15.65 150.00 1600.00 14.57 2185.50 585.50 
2 150 21.00 50.00 1150.00 23.00 1150.00 0.00 
3  50.00 880.00 17.60 880.00 0.00 

 
The new non-linear prices require that each agent receive a different price, for instance not all 
agents connected to node 1 (load, generators 1 and 3) receive the previous price of 15 $/MW bur 
rather they receive a different price of 15.65, 14.57 and 17.60 $/MW, respectively. Similarly load 
and generator at node 2 receive a different price each of 21 and 23 $/MW, respectively. These 
prices however, coordinate the market, that is, they represent a second-best choice since linear 
prices that clear the market do not exist. Since there are not single nodal prices for each location, 
the point-to-point valuation of congestions rents in (27) is no longer valid. Rather, the generalized 
valuation of congestion rents (28) needs always be used, which in this case leads to a total of 
$499,40 in congestion rents, as can be obtained from table VII. 

 
TABLE VII 

PAYMENTS: (BY) LOADS AND (TO) GENERATORS 
Supplier Retribution Demand Payments 
1 $   2185.50 1 $   1565.00 
2 $   1150.00 2 $   3150.00 
3 $    880.00   

Total $4715.00 $4215,50 

 
If an FTR is awarded to load in node 2 of the system, the point-to-point definition (29) in 

previous example of the equivalent prices is no longer valid since there are no single prices for 
each node. Rather the FTR’s need be awarded considering each agents particular non-linear price. 
For instance if an FTR of K MW’s is awarded to load in node 2, its equivalent, mitigated, price 
will be given by the expression:  
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× − ×
= j deq

j
d

p K CR
p

ρ
ρ                   (30) 

 
Under this situation if an FTR from 20 to 100 MW is awarded to load in node 2, the equivalent 

price this load sees is as shown in Table VIII.  
 

TABLE VIII 
DIFFERENT LEVELS OF  FTR´S AND ITS EFFECT ON PRICE MITIGATION 

( )K MW  
20 40 80 80 100 

eq
jρ  

20.33 19.67 19.00 18.34 17.67 

 
 

C. Application of Non-Linear Pricing to the IEEE 14 Nodes System 
 
In the single transmission line examples before presented the need for non-linear pricing and the 
application of the proposed NLCSP can be easily visualized. In this section an application 
example to the IEEE 14 nodes system is presented, all the data is shown in Appendix A. The 
solution to the TCUC problem leads to the dispatch, cost prices and profits in Table IX.   
 

TABLE IX 
OPTIMAL SOLUTION TO THE GENERATION DISPATCH WITH NODAL PRICES 

j  dp  nodalρ  nodaldp ρ× i  *
ip  ic  *

inodal p×ρ  iπ  

1 400.00 8.85 3540.61 1 12.00 334.60 1206.66 872.06
2 250.00 11.67 2916.81 2 20.00 873.58 2011.10 1137.53
3 450.00 8.72 3923.69 3 100.00 2079.90 5248.72 31678.82
4 100.00 11.36 1135.92 4 12.00 336.33 634.37 298.04
5 75.00 23.21 1740.89 5 76.00 1144.83 4017.66 2872.82
6 50.00 26.33 1316.41 6 0.00 0.00 0.00 0.00
7 90.00 14.53 1307.75 7 0.00 0.00 0.00 0.00
8 125.00 14.53 1816.33 8 22.46 628.03 412.77 -215.26
9 250.00 16.74 4185.51 9 6.98 207.13 183.75 -23.38
10 75.00 18.37 1378.06 10 400.00 3610.84 6696.81 3085.97
11 40.00 22.06 882.43 11 66.11 1003.06 960.66 -42.40
12 100.00 52.86 5286.39 12 63.19 963.35 918.23 -45.12
13 75.00 100.56 7541.64 13 0.00 0.00 0.00 0.00
14 150.00 52.49 7873.08 14 337.10 3068.52 2983.89 -84.63
    15 155.00 1910.82 2252.24 341.42
    16 61.32 821.73 696.56 -125.17
    17 2.28 313.18 53.02 -260.16
    18 268.54 3202.01 3133.12 -68.89
    19 322.95 2927.73 2815.89 -111.84
    20 304.05 2778.13 2651.12 -127.02

 
The transmission lines limits are show in the Table X. As can be seen from the differences in 
nodal prices in Figure 13 there is congestion in the system, however these prices don not clear the 
market since generators 8-12, 14, 16-20 are operating al negative profits as shown in Figure 4. 
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After applying NLCSP to obtain non-linear prices the profits for generation agents are correct as 
present in Table XI. 

 
 

TABLE X 
TRANSMISSION LINES LIMITS ( )ijp  FROM SEND ( )SN TO RECEPTION ( )RN NODE  

SN  RN  *
ip  SN  RN  

*
ip  

1 2 80 5 6 95 
2 3 100 6 13 35 
3 4 77 7 8 50 
4 5 120 9 10 90 
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Figure 3. Nodal prices of energy for the 14 nodes system  
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Figure 4. Generators profits with nodal prices (negatives profits exist) 
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TABLE XI 
AGENTS NON-LINEAR PRICES ( )argρ  THAT REACH MARKET EQUILIBRIUM 

Load Generation 
j  dp  argρ  argρ×dp  i  *

ip  ic  argρ  *
arg ip×ρ  iπ  

1 400.00 9.10 3639.61 1 12.00 334.60 97.15 1168.79 831.19
2 250.00 11.91 2978.68 2 20.00 873.58 97.89 1957.79 1084.22
3 450.00 8.97 4035.06 3 100.00 2079.90 51.00 5100.21 3020.31
4 100.00 11.61 1160.67 4 12.00 336.33 51.70 620.40 284.07
5 75.00 23.46 1759.45 5 76.00 1144.83 51.09 3883.02 2738.19
6 50.00 26.58 1328.79 8 22.46 628.03 27.96 628.03 0.00
7 90.00 14.78 1330.03 9 6.98 207.13 29.68 207.13 0.00
8 125.00 14.78 1847.26 10 400.00 3610.84 16.38 6552.18 2941.34
9 250.00 16.99 4247.38 11 66.11 1003.06 15.17 1003.06 0.00

10 75.00 18.62 1396.62 12 63.19 963.35 15.24 963.35 0.00
11 40.00 22.31 892.33 14 337.10 3068.52 9.10 3068.52 0.00
12 100.00 53.11 5311.14 15 155.00 1910.82 14.43 2236.24 325.42
13 75.00 100.80 7560.20 16 61.32 821.73 13.40 821.73 0.00
14 150.00 52.73 7910.20 17 2.28 313.18 137.11 313.18 0.00

   18 268.54 3202.01 11.92 3202.01 0.00
   19 322.95 2927.73 9.07 2927.73 0.00
   20 304.05 2778.13 9.14 2778.13 0.00

 
The new set of non-linear prices require that each agent receive a different price for the energy, 
for instance no all agents connected to node 13 (load, generator 1 and 2) receive the previous 
price nodal of 100.56 $/MW but rather they receive a different price of 100.8, 97.15 and 97.89 
$/MW, respectively. For the rest of the system applies similar, there are as many prices as 
suppliers and consumers connected to a node. The new set of prices, however, coordinates the 
market, that is, they represent a second-best choice since equilibrium linear prices do not exist. In 
Figure 5 a comparative chart between linear nodal and augmented prices is show. In Figure 6 a 
comparative of generators profits with linear and non-linear pricing, as can be seen non-linear 
pricing acts as a profit redistributors to avoid loses of some of the generators. 
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Figure 5. Nodal prices & augmented prices 
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Figure 6. Profits with nodal and augmented prices 

 
Congestion rents computed from (28) add up to $ 7968.93. Assuming that demands at nodes 12-
14 are being affected by their prices, the provision of FTR’s to these load can be a mechanism to 
mitigate such prices. Since non-linear prices where required in the market FTR´s need be awarded 
considering each agent particular non-linear price. For instance if an FTR of K  MW´s is Figure 7 
for different levels 0, to 100% of FTRs, distributed equally to each load.. 
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Figure 7. Different levels of FTR´s (0-100%), and the effects on price mitigation at nodes 12-14. 

  
These examples have shown how also in transmission constrained electricity markets linear 

nodal prices may not represent equilibrium prices if particular conditions are present. Under these 
situations non-linear prices achieve a second-best solution for which each agent observes a 
different market price in each node of the system, but lead to an operation at a profit maximizing 
scenario, i.e, no agent looses. Since single nodal prices no longer exist, the notion of point-to-
point FTR’s need be revised, the examples show how FTR need be awarded according to each 
agent price rather to the now non-existent nodal prices.  
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V. Conclusions  
 
Several electricity markets use transmission constrained unit commitment models as the clearing 
mechanisms for the spot market for energy. The existence of equilibrium prices in non 
constrained unit commitment models has been recently investigated, however such situations can 
also appear in transmission constrained market as shown in this paper, which means, that under 
particular situations, nodal (or locational) prices may also not clear the market.    Based on recent 
research on non-linear pricing for single-node unit commitment models, this paper proposes a 
nodal non-linear pricing alternative based on coordination functions inside a Lagrangian 
relaxation algorithm to solve the transmission-constrained unit commitment models. The new set 
of non-linear prices coordinates and clears the market but leads to as many prices as agents 
connected to each node in the system. Since unique nodal prices do not longer exist, the 
traditional point-to-point definition of Financial Transmission Rights is revised and redefined for 
its application with the new non-linear pricing methodology.  
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Appendix A 
 
Figure 6 shows the 14 node system used in the example, generators data Table XII, and nodal load 
data in Table XIII. 

  
TABLE XII 

TWENTY BIDDERS WITH LINEAR ( )iβ , QUADRATIC ( )2
iγ AND STARTUP ( )iα  COSTS 

i  Nodo ($)iα  ( )MWi /$β ( )2/$ MWiγ )(MWpi  
1 13 24.3891 25.5472 0.0253 12.0 
2 13 117.7551 37.5510 0.0120 20.0 
3 14 217.8952 18.0000 0.0062 100.0 
4 12 24.4110 25.6753 0.0265 12.0 
5 12 81.1364 13.3272 0.0088 76.0 
6 11 24.6382 25.8027 0.0280 12.0 
7 10 24.8882 26.0611 0.0286 12.0 
8 10 218.3350 18.1000 0.0061 100.0 
9 6 24.7605 25.9318 0.0284 12.0 
10 9 310.0021 7.4921 0.0019 400.0 
11 8 81.2980 13.3538 0.0089 76.0 
12 8 81.4641 13.3805 0.0091 76.0 
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13 1 177.0575 10.8616 0.0015 350.0 
14 1 311.9102 7.5031 0.0020 400.0 
15 7 142.7348 10.6940 0.0046 155.0 
16 4 143.5972 10.7583 0.0049 155.0 
17 5 260.1760 23.2000 0.0026 197.0 
18 2 177.0575 10.8616 0.0015 350.0 
19 3 310.0021 7.4921 0.0019 400.0 
20 3 311.9102 7.5031 0.0020 400.0 

 
TABLE XIIIA 

NODAL DEMANDS  ( )MW  

i  Node )(MWpi i  Node )(MWpi

1 1 400 8 8 125 
2 2 250 9 9 250 
3 3 450 10 10 75 
4 4 100 11 11 40 
5 5 75 12 12 100 
6 6 50 13 13 75 
7 7 90 14 14 150 

 
 

 
Figure 6. 14 nodes system for the TCUC problem 

 


