Mixed-Integer Programming Solution at the CAISO Presented to: Harvard Energy Policy Group December 6, 2007

Mark Rothleder, Principal Market Developer and MRTU Technical Lead

MIP at the CAISO

- As part of its Market Redesign and Technology Upgrade (MRTU), the is implementing Mixed Integer Programming (MIP) Solution
- In 2003 CAISO executed a Proof-of-Concept to ensure solution meets performance and solution requirements
- Planned implementation date of April 1, 2008

MIP at the CAISO

- Large number of transmission constraints
 - Up to 2000 binding constraint for 24 intervals, 150 contingencies
- Nomograms
 - Simultaneous interface vs. interface limits or interface vs.generation output limits
- Ancillary Service and Energy Co-optimization
 - Decision to procure A/S based on resources constraints
- Oynamic ramp rates '
 - Different ramp-rates at different operating levels
- Resource on/off decisions
 - minimum up time, minimum down time, maximum starts/day
- Forbidden Region of Operation
 - Operating regions can be crossed but not maintained inside
- Energy Limitation Constraints
 - Maximum amount of energy or hours of availability
- Pump/Storage Modeling
 - Decision regarding pumping or generation operational mode
- Constrained Output Generator (COG) (Pmin=Pmax) Dispatch and Pricing

Current vs. Planned Approaches

	Current Approach	Planned Approach	Date of Planned	Estimated Annual
			Implementation of MIP	Savings
Real-time market look ahead	LR used for 2 hour look	MIP: 2 hour look ahead for	April 1, 2008	~\$100,000-\$1 million
	ahead commitment and	dispatch. As long as 5		(0.1%-1%1 of 2006 RT
	dispatch	hours for commitment.		Dispatch Costs and RT
				RMR Costs2: \$97
				million)
Residual unit commitment	Procedural based	Run a MIP, Full Network	April 1, 2008	~\$100,000-\$1 million
	operator judgement	Model based on Residual		(based on 0.1% - 1% of
	advised by a MIP based	Unit Commitment after		Total Minimum Load
	UC with no network	Day-Ahead bid market.		Costs for 2006: \$106
		-		million)
day-ahead market	Linear Programing: No	Run a MIP based	April 1, 2008	~\$2.3-\$23 million
	unit commitment, No	SCUC/SCED, Full		(Assumes an estimated
	Energy Optimziation,	Network Model program,		0.1%-1% reduction of
	Allocation of	Energy and A/S co-		\$11.4 billion Energy
	Transmission only using	optimized		and Ancillary Service)
	zonal model			
Capacity market	None	Policy being considered	Policy being considered	No Estimate
Ancillary service market	Linear Programming	Run a MIP based	April 1, 2008	~\$230,000-\$2.3 million
	sequential procured after	SCUC/SCED, Full		(0.1%-1% ¹ of 2006 A/S
		Network Model program		$costs^2$ of \$234 million)
		co-optimized with energy		
planning	Powerflow studies	No immediate plans to	No immediate plans to	No Estimate
		incorporate MIP	incorporate MIP	

Facts about the MIP Solution and Testing Observations

- ~35,000 integer variables
- Up to 2000 Binding Constraints for 24 intervals
- DAM 24 hour simultaneous intervals run ~ 1 hour computing time
 - 2 passes, 1 Market Power Mitigation / Reliability Requirements
 - 1 pass Integrated Forward Market (Energy and A/S)
 - 1 pass Residual Unit Commitment
 - 1 pass = 3-4 SCUC-NA Iterations, 1 scheduling run, 1 pricing run
- RT Unit Commitment up to 18-15 minute intervals ~ 12 minutes computing time
 - 2 passes, 1 Market Power Mitigation / Reliability Requirements
 - 1 pass, Real-Time Unit Commitment and A/S procurement
 - 1 pass = 3-4 SCUC-NA Iterations, 1 scheduling run, 1 pricing run
- RT Dispatch up to 13-5 minute intervals ~ 2.5 minutes
 - 1 pass, Real-Time Dispatch
 - 1 pass = Security Constrained Dispatch1 scheduling run, 1 pricing run,
- MIP Gap ~ 0.2%-0.5% for 24 hour DA runs, Lower MIP Gaps can be achieved if allowed to run longer
- Observed more constraints enforced sometimes results in faster solution within MIP Gap

Future Market Initiatives That May Leverage MIP Capabilities

- Modeling of Combined Cycle Resources
 - Multiple Start-up functions
 - Start-up decisions of different stages of
- Demand Response
 - Curtailment Decisions
 - Shut-down constraints
 - Linkages between different demand
- Increase number of ramp rates '
 - Different ramp-rates at different operating levels
- Enhance Forbidden Region with Hold-Time Constraints
 - Must stay above forbidden region for specified period of time
- Application of Priorities
 - Possible replacement of penalty functions to enforce scheduling priorities (i.e. ETC, RMR, TOR, Self-Schedules....)
- Multi-Day Optimization
 - Improve cross-day unit commitment decision making and avoid unnecessary cycling

Questions/Feedback

