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Abstract

Deregulating wholesale electricity markets has the potential to increase the long-run e±ciency
of the industry but poses the risk that ¯rms may exercise market power. This paper analyzes
the pricing behavior of electricity generating ¯rms in the restructured California market from
its inception in April 1998 until its collapse in late 2000. The wholesale market was organized
by a uniform price multiunit auction that was repeated daily. Oligopoly theory provides several
static and dynamic pricing models that may capture behavior in this market. I use detailed
¯rm-level data to test for both the unilateral exercise of market power and tacit collusion.
Direct measures of price-cost margins suggest that, to di®ering extents, all large merchant
generating ¯rms exercised market power from 1998-2000. Over the three years, conduct varied
moderately with a general strengthening of competition during summer 1999 and a weakening
of competition during most of 2000. In 1998-99, I estimate conduct to be consistent with a
Cournot static pricing game. Results are less clear for 2000. Although behavior was distinctly
less competitive, the dramatic rise in prices was more driven by changes in costs and demand
than by changes in ¯rm conduct.
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1 Introduction

Electricity markets are being restructured in many jurisdictions in the United States and across the

world. Traditional rate-of-return regulation is being replaced with private investment decisions and

the competitive procurement of electric power. Restructuring (often referred to as deregulation)

o®ers the promise of more e±cient decisions on the quantity and technology of investment in new

electric generation capacity. However, deregulated markets also risk that ¯rms bidding to supply

power will have the ability to exercise a substantial degree of market power. California restructured

its market by divesting a substantial portion of its generating assets from regulated utilities to

private ¯rms. These ¯rms bid into a daily auction to supply power. The market operated from

April 1998 until it collapsed in late 2000 under the pressure of skyrocketing wholesale prices.

The market has characteristics that oligopoly theory suggests would favor either unilateral

market power or collusion. Because demand is relatively inelastic, ¯rms in this concentrated market

have individual incentives to withhold capacity to drive up the price. In hours when demand is

near industry capacity, individual ¯rms are \pivotal" and will be able to ask and receive a high

price for power. Even in hours when no individual ¯rm is pivotal, ¯rms face fairly inelastic residual

demand and are able to raise price above marginal cost. In addition, the market has characteristics

that may facilitate dynamic collusion. The bidding game is repeated daily between a ¯xed set of

players that have substantial information about each other's behavior. The relative transparency

of the market and the short-run barriers to entry contribute to a competitive environment that is

potentially susceptible to collusion.

This paper uses detailed ¯rm-level data on demand, costs, and output to analyze the pricing

behavior of electricity generating ¯rms in California from 1998-2000. I analyze whether ¯rms

exercised market power and whether that behavior was more consistent with unilateral market

power or tacit collusion. In addition, I measure the change in behavior over time to estimate whether

the skyrocketing prices in 2000 resulted from increases in factor input costs, higher demand, or less

competitive behavior.

Previous work has identi¯ed non-price-taking behavior of ¯rms in deregulated electricity mar-
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kets. Direct measures of price-cost margins in the UK and the California markets ¯nd prices higher

than those associated with Bertrand pricing but lower than levels associated with joint pro¯t max-

imization. Wolfram [1999] measures price-cost margins in the England and Wales market and

¯nds prices to be signi¯cantly higher than marginal costs but not as high as would be predicted

by standard oligopoly models. Borenstein et al. [2000] simulate a perfectly competitive market

from 1998-2000 in California and ¯nd actual prices to be higher than the perfectly competitive

prices. Joskow and Kahn [2001a,b] extensively analyze several data sources on California electric-

ity generation during summer 2000 and ¯nd evidence of the strategic withholding of capacity by

some generating ¯rms. This paper focuses on identifying the pricing behavior that underlies the

observed evidence of market power.1

I empirically test whether observed behavior in the California electricity market is more con-

sistent with static/unilateral market power or dynamic/multilateral market power. I use detailed

¯rm-level hourly production and cost data from the restructured electricity market in California to

distinguish between alternative explanations for positive price-cost margins. I ¯nd strong evidence

that ¯rms do not produce competitively, but rather exercise market power throughout 1998-2000.

I ¯nd evidence of static market power for much of 1998-99, and mixed evidence for 2000. In 2000,

¯rms were distinctly less competitive but I do not ¯nd evidence of e±cient tacit collusion.

In Section 2, I describe the structure of the California electricity market. Section 3 reviews the

theoretical models of static and dynamic pricing and describes how the existing empirical literature

attempts to distinguish between competing models. I specify a general behavioral model that

incorporates static and dynamic market power models as special cases. In Section 4, I describe my

data. Section 5 measures price-cost margins and ¯nds evidence consistent with large generation

owners withholding output to raise the market price. In Section 6, I estimate the behavioral

model using a panel of ¯rm-level data from April 1998-November 2000. Parameter estimates imply

that the pricing conduct of electricity generators is approximately Cournot for 1998-99 and less

competitive than Cournot in 2000. I conclude in Section 7 by discussing general implications for
1Other empirical papers that address competition in deregulated electricity markets includeWolfram [1998], Wolak

[2000], and Wolak [2001].
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electricity deregulation elsewhere.

2 How The California Electricity Market Worked

Under deregulation, electricity still moves from the generator to the socket the same as it always

has. But the ownership of the existing infrastructure has changed. The electricity industry consists

of three components: generators that produce electricity, a high voltage transmission system that

transports the electricity from the generator to the area of consumption, and a distribution network

that delivers electricity to end-users. Generated energy is a homogenous product in the sense that

electricity injected into the grid by one ¯rm is identical to energy injected by another ¯rm.2

The electricity industry has undergone many structural changes over the past decade. Prior to

recent developments, the industry had been considered a natural monopoly that required govern-

ment regulation of price, entry, and investment decisions. Vertically integrated ¯rms were obligated

to provide energy services at regulated prices and were allowed to earn speci¯ed rates of return

on investments deemed prudent by the regulator. Recently, policymakers in some jurisdictions

have broken o® the generation side of the industry from the transmission and distribution sectors,

and allowed deregulated ¯rms to compete to supply electrical energy to the network. Competitive

generation of various forms has been introduced in many regions of the world including England

and Wales, Norway, New Zealand, Australia, Alberta, California, Texas, and the Northeast United

States.

This restructuring has the potential to increase the long-run e±ciency of the electricity industry

but also poses several risks. Privately owned generation provides strong incentives for more e±cient

operation of capital assets as well as improvements in labor productivity. In addition, market prices

may o®er better signals for the e±cient quantity and technology of new investment than the policies

of regulators. However, vertical separation of the generation sector may forego complementarities

existing between the generation and transmission sectors that a centralized system could otherwise
2The only form of di®erentiation is spatial when the transmission system is congested or transport over long

distances leads to losses through the dissipation of heat.
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exploit. Finally, deregulated ¯rms owning the generation assets may possess signi¯cant horizontal

market power that can lead to ine±cient production and high prices. This paper focuses on the

¯nal issue and analyzes the horizontal market power in one of these restructured electricity markets.

Prior to April 1, 1998 the electricity generation industry in California was operated by the three

major investor owned utilities: Paci¯c Gas & Electric in Northern California, Southern California

Edison in south central California, and San Diego Gas & Electric in the southernmost part of the

state. These vertically integrated utilities were responsible for generating electricity and supplying

customers in their service territories. Each was regulated by traditional rate-of-return regulation.

In California, the industry was restructured in 1998 with the intent of separating the generation

component of the industry from the transmission and distribution segments. The three original

utilities divested many of their powerplants to private ¯rms that bid daily for the right to supply

electricity to the market. California established several institutions to organize the trading and

dispatch of electricity generation. Electricity was traded through a centralized pool for markets

that cleared one-day ahead of delivery and in real-time. These institutions managed the electricity

market from the beginning of deregulation in April 1998 until the market collapsed in late 2000.

During the second half of 2000, large increases in input prices and possibly increased market power

caused wholesale electricity prices to skyrocket. The utilities were required to purchase power at

high wholesale prices but to sell to end-users at substantially lower prices. Eventually, the utilities

lost their creditworthiness and the state government was required to step in and purchase power.

This paper analyzes the competitiveness of the California market from its inception until the market

began to collapse in late 2000.

From 1998-2000, ¯rms owning power plants bid to supply electricity into either a day-ahead

or a real-time market. The three original utilities that were still responsible for serving their

customers were required to purchase their electricity from a speci¯c day-ahead trading exchange

(the Power Exchange).3 As a result, the Power Exchange's day-ahead market had the largest

volume of electricity trades in the market during my sample period. I use the price in this market
3For much of my sample period, utilities were not allowed to hedge by contracting to buy power more than a

day-ahead. However, beginning in June 1999, utilities did begin to purchase up to 10% of their power with forward
contracts.
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as my benchmark price.

The day before electricity was scheduled to be produced, ¯rms that produced electricity and

utility distribution companies that \consumed" electricity bid hourly supply and demand into the

Power Exchange (PX). The bid schedules were strictly monotonic piece-wise linear functions. The

PX intersected the aggregate supply and demand schedules for each hour to arrive at an hourly

market clearing price. This price represents the bid of the last megawatt of electricity that was

called upon in the market and it is this price at which all trades were settled. On the day that

electricity was scheduled to be produced, an hourly real-time market was conducted by the operator

of the electricity grid (the Independent System Operator) to ensure that supply and demand exactly

match. Just as with the day-ahead market, the real-time market was a uniform price auction. The

state was divided into either two or three transmission zones during my sample, and the prices would

vary between the zones if the transmission of electricity reached the capacity of the transmission

line.

The design of the restructured market attempted to reduce the extent to which ¯rms could

exercise market power. The Independent System Operator (ISO) chose a wholesale price cap

that attempted to balance competing goals of encouraging e±cient entry and preventing prices

from rising signi¯cantly over marginal costs (which vary between approximately $20 and $40 per

megawatt-hour during 1998-99 and approximately $25 to $500 during 2000). Prices for electrical

energy were capped at $250/MWh from the opening of the market in April 1998 through September

1999. The cap was raised to $750/MWh in October 1999, but then lowered to $500 in July 2000

and to $250 in August 2000.4

In addition, some areas of the state have large demand and limited transmission capacity that

puts them at risk for local market power. For example, San Francisco has large demand but has

a limited number of transmission lines into the city because it sits on the end of a peninsula. The

local generation capacity is very expensive and owned by two ¯rms. If they were paid the price

that clears the total California market, the ¯rms may ¯nd it uneconomical to produce in many
4Although the Power Exchange had a higher price cap than the ISO, we expect the cap in the last market to set

the e®ective cap because demand should never bid higher into the PX than the cap in the ISO.
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hours and the lights would go out. However, if San Francisco were separated o® into a separate

market with its own market clearing price, the two ¯rms would face limited import competition

and could signi¯cantly raise prices. Recognizing the potential for local monopoly power in certain

areas, the ISO signed outside contracts to purchase energy from these Reliability Must-Run (RMR)

units when their bids were not accepted in the energy market.

As part of the restructuring process, the three original utilities were required to divest their

power plants that generate electricity using fossil fuels. Southern California Edison divested the

vast majority of its units within a month and a half of the market opening to four di®erent ¯rms:

AES-Williams, Dynegy, Reliant, and Thermo Ecotek. Paci¯c Gas & Electric divested its low cost

units to Duke in July 1998 and most of the remaining units to Southern Energy in April 1999.5

San Diego Gas & Electric divested its units to Dynegy and Duke in April and May 1999. By the

end of the divestiture process, the thermal (fossil-fueled) generation market consisted of roughly

¯ve equal-sized ¯rms and two small fringe ¯rms (see Table 1) that together own roughly 54% of the

electricity generation capacity in California. The remaining in-state capacity is two nuclear plants

jointly owned by the utilities, a large number of hydroelectric units owned primarily by PG&E,

and a variety of small independent plants paid under separate contracts. In addition, electricity

is imported from neighboring states in virtually all hours. This paper analyzes the production

behavior of the ¯ve large thermal ¯rms.

Entry into the California generation market is di±cult and time-consuming. Strict environmen-

tal siting requirements and local communities a²icted with \Not In My Backyard (NIMBY)" have

often stretched out the siting process to more than ¯ve years. In addition, power plants involve

substantial ¯xed costs and require several years to construct. Financing the capital costs can be

di±cult if ¯rms plan to sell power only to a daily trading pool rather than sign long-term ¯xed

price contracts. Given these barriers to entry, collusion would not be threatened by entry in the

short-run and incumbents only would consider the e®ect of entry a number of years down the road.
5PG&E reached an agreement by which it would retain ownership of two old plants until they could be retired.
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3 Distinguishing Between Static and Dynamic Market Power

3.1 Review of the Theory

Oligopoly theory provides several static and dynamic pricing models that may capture aspects of

pricing behavior in the California electricity market. In static models, ¯rms choose single period

quantities or prices to maximize pro¯ts without explicit consideration of the e®ect of behavior in

one period on the competitive environment in other periods. In quantity-setting games, ¯rms can

sustain prices above marginal costs in equilibrium. Also, positive price-cost margins are sustainable

in price-setting games where ¯rms face capacity constraints. Finally, if they can choose supply

functions, ¯rms in general can sustain prices anywhere between Cournot and Bertrand levels.6

Models of dynamic interaction show that ¯rms in an industry with entry barriers can sustain

prices higher than one-shot equilibrium levels. Firms that engage in e±cient tacit collusion choose

production to maximize joint pro¯ts subject to the constraint that no ¯rm has an incentive to

deviate in order to earn higher one-time pro¯ts at the risk of starting a \price war". If demand

shocks are not observed ex post, Green and Porter [1984] show ¯rms can sustain prices above

Cournot levels during periods of high demand but may revert to static equilibrium prices following

negative demand shocks. However, if demand and prices are observed ex post, ¯rms always can

sustain the collusive regime but the level of collusion will depend upon current and expected future

demand (Rotemberg and Saloner [1986], Haltiwanger and Harrington [1991]) and whether ¯rms

face capacity constraints (Brock and Scheinkman [1985]). For example, if current demand is high,

the incentives to cut price and earn deviation pro¯ts are high, so price must be lowered to check

that incentive. Similarly, if demand is expected to rise in the near future, the future collusive

pro¯ts may be higher and ¯rms have less incentive to deviate and start a price war. As a result,

for a given level of demand, a higher level of collusion can be sustained when demand is rising than

when demand is falling. Brock and Scheinkman show that these results in general will di®er when

¯rms face capacity constraints because those capacity constraints will a®ect both the deviation and

punishment pro¯ts.
6See Klemperer and Meyer [1989].
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The California electricity market of 1998-2000 did not precisely correspond to any of these

models but it did resemble several. A purely price-setting static model is not appropriate because

capacity constraints prevented any single ¯rm from undercutting and supplying the entire market.

As a result, one might expect to observe market power during periods of high demand. Because

storage or inventory is extremely costly, ¯rms essentially must produce a quantity exactly equal to

demand at every moment in time. When demand reaches levels near the industry's capacity, if one

¯rm were to withhold capacity to try to drive up the price, other ¯rms would not be able to replace

all of the withdrawn supply. Hence, ¯rms in this relatively concentrated industry are able to raise

price and earn more revenue on all inframarginal output. This strategy is powerful because demand

is very inelastic and customers in California do not face prices that vary with the real-time price

of energy.7 One can view the strategic decision of the ¯rm as to commit power plants to produce

a certain amount of power a day-ahead and then true up in the real-time market. Therefore, I

estimate models of games in which ¯rms choose quantities.8

Modeling the static game as a one-shot quantity-setting game is complicated by the fact that

there were several sequential markets in California during the period I analyze. Firms sold power

to both the day-ahead and real-time markets as well as a limited number of forward contracts.9

Sequential markets may lead to less market power than a single one-shot market. Power that is sold

forward is not considered a part of the ¯rm's inframarginal output when choosing the quantity sold

in a real-time market. This will tend to mitigate the exercise of market power in a manner similar

to the durable goods monopoly problem. Allaz and Vila [1993] show that if they can commit

to observable forward market positions, ¯rms will have an incentive to trade both forward and

in real-time a total quantity greater than the one-shot quantity. However, a one-shot model is a

reasonable ¯rst-order approximation to the California market. One can think of the day-ahead and
7Retail electricity rates were frozen for the vast majority of customers during the period I analyze. For those

customers not under the rate freeze, the prices are not the hourly wholesale price but rather the average price over
some extended period of time.

8Amodel incorporating capacity constraints in which ¯rms choose supply functions (of which Cournot competition
is a special case) closely resembles how ¯rms bid into the market. Because econometrically identifying supply function
equilibria is not tractable with my data, I estimate models of games in which ¯rms choose quantities.

9Data are not publicly available on the forward contract positions of any of the electricity generators. Industry
analysts claim the volume of such contracts grew in 2000 and that contracts often took the form of contracts for
di®erences.
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real-time markets as a single energy market in which ¯rms bid to supply a given quantity of power

in the day-ahead market and then make small plant-by-plant adjustments in the real-time market.

Finally, applying this model to the market is inaccurate to the extent that some of the observed

output may be contracted forward. However, industry analysts suggest forward contracting was

relatively small until 2000.

The competitive environment in California contains properties of both the Green/Porter and

Rotemberg/Saloner dynamic pricing models. The major di®erences between the Green/Porter and

the Rotemberg/Saloner (and extensions) models stem from what ¯rms are able to observe about

their competitors' behavior. Firms in the Rotemberg/Saloner model observe the prices charged by

all other ¯rms as well as demand shocks. Green and Porter ¯rms know only some signal correlated

with behavior such as prices or their own realized shares.

Firms in the California market have some intermediate level of information. A ¯rm could

partially observe the hourly production behavior of its rivals through several mechanisms. The

website of the western U.S. transmission grid coordinator posted real-time generation data for all

plants greater than 250 MW until October 2000.10 Also, the ISO released with a one-day lag each

plant's generation that was sold into the real-time market. Several electronic trading exchanges

provided electricity traders with the means to observe a record of recent bilateral trades. Other

observable signals correlated with rival behavior include the market price and the forecast and

actual realization of demand. Therefore, for many but not all of the shocks to residual demand,

the ¯ve new generation owners could distinguish whether the shocks resulted from changes in rival

behavior or other factors.

3.2 Review of the Empirical Literature

The literature contains a variety of empirical studies that make inferences about ¯rm behavior and

the pricing model that prevails in a particular industry. The challenge to the econometrician is to

use some combination of detailed data on the industry and reliable structural assumptions. For
10These data covered approximately 93% of thermal capacity.
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industries with relatively rich data, studies have exploited comparative static relationships implied

by the various pricing models. Borenstein and Shepard [1996] analyze a panel of price-cost margins

in the retail gasoline market and ¯nd that current margins are rising in expected future demand

and falling in expected future costs. This evidence suggests some form of dynamic pricing behavior

and is consistent with tacit collusion as in the Haltiwanger and Harrington model. Wolfram [1998]

analyzes bids into the England and Wales daily electricity auction and ¯nds that bid markups are

higher for generating units owned by a ¯rm likely to have more inframarginal output that will

receive the higher price if the unit sets the market price. This is evidence that ¯rms are engaging

in some form of static pricing where they take into account the e®ect of one production unit on the

price earned by other units in production. Finally, Wolak and Patrick [1997] analyze bid functions

by the two largest generating ¯rms in the England and Wales market. They ¯nd evidence that the

generators set bid prices close to marginal cost but strategically declared capacity unavailable on

a short-term basis to raise the system price.

Studies in the New Empirical Industrial Organization (NEIO) literature have estimated ¯rm

conduct by parameterizing the ¯rm's static ¯rst-order condition (MR=MC) to allow for price-

taking, Cournot competition, and monopoly pricing.11 Porter [1983] studies the Joint Executive

Committee railroad cartel and ¯nds evidence of switches between cooperative and noncooperative

pricing behavior. Ellison [1994] extends the Porter analysis and ¯nds no evidence that pricing

regimes are associated with Rotemberg/Saloner collusion adjustments but does provide evidence

that secret price cuts a®ect pricing.

Unfortunately, explicitly estimating ¯rm conduct has proven to be unsuccessful. A recent paper

by Corts [1999] shows that traditional approaches to estimating conduct from the parameterized

static ¯rst-order condition can lead to inconsistent estimates of the conduct parameter. He demon-

strates that this approach can severely mis-measure the conduct parameter if the true underlying

process is not identical on the margin to a conjectural variations game. Corts demonstrates that

if ¯rms are engaged in e±cient collusion, the traditionally estimated conduct parameter typically

will underestimate market power.12 The root of the problem is that if ¯rms are colluding, the
11See the survey articles Bresnahan [1997] and Bresnahan [1989].
12Comparisions of direct measures of the conduct parameter versus the NEIO estimates have found NEIO methods
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econometrician is estimating the wrong model; (s)he should be estimating the dynamic ¯rst-order

condition rather than the static ¯rst-order condition. The ¯rst-order condition of a set of tacitly

colluding ¯rms is to maximize joint pro¯ts subject to the incentive compatibility constraint that

no ¯rm has an incentive to deviate. As I show below, this dynamic ¯rst-order condition has an

additional term that is non-zero if ¯rms are engaging in a level of collusion less than perfect price

collusion (i.e. the joint monopoly outcome). If ¯rms are engaging in imperfect collusion, the static

¯rst-order condition is mis-speci¯ed and we obtain inconsistent estimates of ¯rm conduct. As a re-

sult, the best one can expect to achieve by estimating the parameterized static ¯rst-order condition

is to test non-nested hypotheses of perfect competition, Cournot, and perfect collusion (see Gasmi

et al. [1992] and Nevo [2001]). The existing empirical literature does not to my knowledge suggest

methods to estimate conduct when one possible conduct is imperfect collusion. Below I derive a

general model that incorporates static market power and imperfect collusion as special cases, and

I exploit the panel structure of my data to estimate a measure of conduct consistent under static

and dynamic pricing.

3.3 Model of Firm Behavior Under Static and Dynamic Pricing

I derive a general ¯rst-order condition that I can estimate to make inferences about ¯rm conduct.

The model allows me to consistently estimate conduct parameters in settings where the ¯rms may

be engaged in static pricing or imperfect tacit collusion. I model the ¯rms' strategic decisionmaking

as a simple quantity-setting game. As I describe above, I believe modeling quantity as the choice

variable is a good ¯rst-order approximation to production in this industry.

3.3.1 The Optimization Problem Under the Static Game

The key di®erence between static and dynamic pricing is that ¯rms in the industry are solving

di®erent optimization problems. In the static model, ¯rms are choosing to supply electricity as a

function of contemporary supply and demand conditions without any intertemporal considerations
to understate market power (see Genesove and Mullin [1998] and Wolfram [1999]).
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of the e®ect of current behavior on future competitive conditions of the market. Assume that in a

static optimization setting, N ¯rms play a quantity game in which they choose to supply a given

(perfectly inelastic) quantity subject to a capacity constraint.13 Price is determined such that

supply equals demand. Denote P(¢) as inverse demand, ci as marginal cost, qi as individual ¯rm

quantity, and ki as ¯rm capacity. In period t, ¯rm i chooses quantity of output to maximize pro¯t

subject to a capacity constraint:

maxqit[P(qit + q¡it) ¡ ci(qit)] ¢ qit s:t: qit · kit

This problem yields a ¯rst-order condition at the optimal quantity q¤it of:

P(q¤it + q¡it) ¡ ci(q¤it)+ µit ¢ P 0
t ¢ q¤it ¡¸¤it = 0 (1)

where µit ´ dQ¤t
dqit = 1 +

P
j 6=i
@qjt
@qit is the ¯rm's belief about the e®ect of increasing its output on total

industry output.14 The parameter µit = f0; 1; Ng corresponds to perfect competition, Cournot,

and monopoly pricing (under symmetry), respectively. There are a limited set of values that µ may

take to be either a Nash equilibrium or a consistent conjecture. Nevertheless, µ as a continuous

variable is a meaningful index of the general (anti-)competitiveness of the market. Solving for the

conduct parameter, one ¯nds:

µit =
Pt(¢) ¡ cit(¢) ¡¸¤it

¡P 0
tq¤it

(2)

The conduct parameter is increasing in the observed di®erence between price and marginal cost

adjusted for the sensitivity of price to an expansion of output (P 0
t ). I interpret ¸¤it as the shadow

value of additional capacity when a ¯rm is fully utilizing its capacity.
13I assume that the ¯rms are taking industry structure as given and not choosing output to strategically in°uence

entry into the market. Limit pricing seems unlikely in this market because information on individual ¯rm costs is
publicly available.

14This assumes c(¢) is constant for small changes in q so that there is no c0qi term. I believe this is reasonable given
the assumptions about unit level marginal costs I will describe in section 4.



14

3.3.2 The Optimization Problem Under the Dynamic Game

Next I model the ¯rm optimization problem when the industry is engaged in e±cient tacit collu-

sion.15 The ¯rms in the industry choose a joint quantity Q¤
t to maximize joint pro¯ts subject to

the constraint that no ¯rm has an incentive to deviate from the collusive quantity. Deviation from

the collusive quantity is punished by permanent reversion to the one-shot Cournot equilibrium.16

Assume that demand and cost shocks are observed ex post so that deviating from the collusive

regime can be distinguished from shocks to the environment. Assume that ¯rms are symmetric

and that sharing rules specify that each ¯rm produces 1
N of the total output.17 Due to symmetry,

maximizing individual ¯rm pro¯t is equivalent to maximizing joint pro¯t.

Denoting the individual ¯rm pro¯ts ¼i(¢), the optimization problem is to maximize joint pro¯ts

subject to the constraint that no ¯rm has an incentive to deviate from the collusive regime:

maxQt
NP
i=1

¼i(QN )

s:t: ¼bri (Qt) +
1P
s=t+1

±s¡tEt[¼
p
is] · ¼i(QtN ) +

1P
s=t+1

±s¡tEt[¼¤is]

where ¼bri (Qt) is ¯rm i's best (deviation) response to the joint collusive quantity Qt, Et[¼pis] are

expectations of future period s noncollusive \punishment" pro¯ts, and Et[¼¤is] are current expec-

tations of future period s collusive pro¯ts.18 A ¯rm will choose not to deviate if current and

continuation collusive pro¯ts exceed the pro¯ts of deviating in the current period and earning non-

collusive (Cournot) pro¯ts forever afterwards. We can rewrite the optimization problem as:

maxQt;¹t L ´
NP
i=1

¼i(QN) + ¹t

"
¼i(QtN ) +

1P
s=t+1

±s¡tEt[¼¤is] ¡ ¼bri (Qt) ¡
1P
s=t+1

±s¡tEt[¼
p
is]

#

15This model assumes ¯rms collude to achieve the maximum joint pro¯ts that are sustainable. Clearly, other
collusive outcomes are equilibria as well by the \folk theorem".

16This can be generalized to other punishment strategies (such as ¯nite-period Nash reversion) without a®ecting
my estimation results below. My estimation requires only that the level of the incentive compatibility constraint be
equal across ¯rms in a given time period.

17Although ¯rms in the California market do not have identical cost structures, Table 1 shows symmetry among
the ¯ve largest ¯rms is a somewhat reasonable characterization.

18I do not include a capacity constraint because I assume that the capacity constraint of the group of collusive ¯rms
is never hit. In my data, there is no period in which all ¯rms produce at capacity. However, capacity constraints will
a®ect the best-response pro¯ts of all the ¯rms.
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The ¯rst-order condition becomes:

(1 +
¹¤t
N

) ¢
·
P (Q¤

t ) ¡ ci(
Q¤
t

N
) +P 0

tQ¤
t

¸
¡ ¹¤t

d¼br

dQ t
= 0 (3)

When the incentive compatibility constraint is not binding (¹¤t = 0), this equation is simply the

static joint pro¯t maximization problem of a monopolist. This would correspond to perfect collu-

sion. However, when the constraint is binding, joint (MR ¡ MC) must be lowered (Q raised) so

the incentive compatibility constraint is not violated.

3.3.3 A General (Static and Dynamic) First-Order Condition

I analyze a ¯rm-level model which incorporates as special cases the static and dynamic ¯rst-order

conditions. The dynamic ¯rst-order condition (3) can be rewritten to show the condition that each

¯rm in a collusive regime is satisfying when choosing the collusive level of output:

P (Q¤
t ) ¡ ci(q¤it) + N ¢ P 0

t ¢ q¤it ¡
¹¤t

1 + ¹¤t
N

d¼br

dQ t
= 0 (4)

This equation can be generalized to incorporate the ¯rm-level ¯rst-order conditions for both static

(1) and dynamic market power (4):

P(q¤it + q¡it)¡ ci(q¤it) ¡ ¸¤it = ¡µitP 0
tqit+

¹¤t
1 + ¹¤t

N

d¼br

dQ t
(5)

H1: No Market Power: µit = 0, ¹¤t = 0, ¸it ¸ 0

H2: Static Market Power: µit = 1, ¹¤t = 0, ¸it ¸ 0

H3: Dynamic Market Power: µit = N, ¹¤t ¸ 0

We can view (5) as a general model capturing various explanations for price above marginal cost.

First, observed margins may represent scarcity rents for new production capacity in a perfectly com-

petitive environment (¸¤it > 0). Second, margins may also result from ¯rms unilaterally withholding

current capacity to raise the price and earn higher revenue on their own current inframarginal units.
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Finally, ¯rms may be jointly withholding capacity to raise the price on joint inframarginal units,

with this regime kept together by adjusting quantity so that no ¯rm has an incentive to deviate

from joint pro¯t maximization.19

Equation (5) has potentially important implications for market power studies of industries in

which imperfect collusion is possible. Even if marginal cost is observed, estimating the static ¯rst-

order condition can yield biased estimates of the conduct parameter (equation (2)) if the exercise of

market power has a dynamic component. From equation (5) we can see that market power studies

that estimate the static ¯rst-order condition (which excludes the IC constraint term) will obtain

biased estimates of conduct if the IC constraint is ever binding (¹¤ > 0) and the best-response

pro¯ts are non-linear in q (d¼brdQ t is correlated with qit). This is another interpretation of Corts

[1999] and illustrates how one can mischaracterize market power by estimating conduct parameters

for industries with any form of dynamic interaction short of perfect collusion (¹¤ = 0).

4 Data

I estimate models using very detailed ¯rm-level data for power plants in California from April

1998 until the market's meltdown in November 2000. Restructured electricity markets are subject

to data reporting requirements that provide the empirical researcher with rich data on demand,

cost structure, and output. Hourly output data are available from EPA's Continuous Emissions

Monitoring System (CEMS). CEMS contains hourly output data for all fossil-fueled generation

units in the California market except several small capacity generation units.

I can reliably calculate marginal cost because the production technology is fairly homogenous,

and data are available on the technological capacity of each ¯rm. To generate electricity in Cali-

fornia, fossil fuel (primarily natural gas) is burned to generate steam or a hot stream of gas that

turns a turbine and is converted into electricity. Data are available on the average conversion fac-
19Studies in the empirical literature have addressed whether markups change over the business cycle. In collusion

models such as Rotemberg/Saloner, ¯rms never change their conduct over the business cycle { they are always
colluding. Rather, ¯rms change their pricing to keep collusion sustainable. My dynamic ¯rst-order condition would
capture such behavior by estimating a µ that is constant over time with \incentive compatibility" adjustments re°ected
in the IC term.
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tors between the heat content of the fuel and the electricity output of each generating unit (Kahn

et al. [1997]). Using data on the fuel input cost for each generator, I calculate the marginal fuel

costs.20 Several plants in southern California were required to purchase environmental permits for

each pound of nitrogen oxides (NOx) emitted.21 The hourly marginal permit cost is calculated

as the monthly quantity-weighted average price of permit trades multiplied by the unit's emission

rate in the hour from the CEMS data.22 Adding on an estimate of variable operating and mainte-

nance costs from Borenstein et al. [2000], I estimate a marginal cost for each unit.23 I assume this

marginal cost measure to be constant up to the capacity of the generator.24;25

Generators occasionally experience both scheduled and unscheduled downtime for maintenance.

Some analysts have suggested that ¯rms exercise market power by shutting down generating units,

particularly in 2000. I observe shutdowns but cannot distinguish between true outages and with-

holding an entire unit to raise the price. In measuring market power, I assume that any plant not

operating is unavailable. This could bias downwards my measure of market power if ¯rms shutdown
20All of the units for which I have data burn natural gas as their primary fuel. I use the daily spot price of

natural gas (Natural Gas Intelligence [1998-2000]) for the PG&E Citygate and California-Arizona border hubs plus
the distribution cost charged to those units by the natural gas utility (Southern California Gas Company [1998-2000]
and Paci c̄ Gas & Electric Company [1998-2000]). Although some ¯rms may have contracted for natural gas at a
di®erent price, the spot price is the proper measure of the opportunity cost of fuel.

21In addition several plants faced annual emission limits that were binding for six units in 2000 (Harvey and Hogan
[2001]). However, this will not alter my results because I observe capacity withholding by other una®ected units
owned by the same ¯rms in each hour.

22I use the weighted average of trade prices rather than the highest trade price because large outliers in trade prices
make it di±cult to believe that the highest price is a good measure of the marginal cost of a permit. Permit costs
were negligible until mid-2000 because total emissions were less than the number of allocated permits. The cost of a
permit rose above $1/lb (approximately $1-2/MWh) in January 2000, so I include permit costs beginning in 2000.

23Marginal costs also include the opportunity costs of exporting power to other higher price markets. The potential
to export power out-of-state is unlikely to cause me to mis-measure the marginal (opportunity) cost. In-state ¯rms
will sell out-of-state if the out-of-state price is greater than the marginal revenue of sales into California. I cannot
measure out-of-state prices, however California is virtually never a net exporter during my sample. Finally, my
measure of marginal cost is complicated by the cost of starting up a unit. A unit that is not operating will incur
a start up cost that is typically approximated by three hours of fuel burn. To avoid the endogeneity of shut down
decisions and costs, I restrict my analysis to plants that are already operating.

24The EPA data contain measures of the manufacturer rated (nameplate) capacity of each unit. Analysts familiar
with the industry claim that ¯rms typically do not view their capacity to be as large as the EPA nameplate capacity.
Therefore, I somewhat arbitrarily de¯ne capacity to be 90% of the EPA capacity. In the static model, the results are
not sensitive to de¯ning capacity as 80%, 90%, and 95% of EPA capacity. One potential problem with this de¯nition
is that I cannot observe the very occasional partial outages that temporarily reduce the operating capacity of a unit.
If a ¯rm su®ers a partial outage and produces up to its temporary capacity, I consider that ¯rm to have excess
capacity.

25Klein [1998] analyzes heat rates (inverse of fuel e±ciency) and estimates marginal cost functions for many of
the units in California. For the vast majority of units, the marginal cost is nearly constant from one-quarter to full
capacity. Therefore, my assumption of constant marginal cost up to capacity appears very reasonable for units that
are producing more than minimal levels of output.
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plants to exercise market power. However, an ISO analysis of con¯dential bid data suggests that

this bias may not be too severe in 2000. The She®rin [2001] analysis of bid data suggests that

all but one ¯rm primarily exercised market power by bidding in available capacity at high prices

rather than entirely shutting down available plants.

I need to make several assumptions about a ¯rm's behavior in order to determine the ¯rm's

marginal cost in a given hour. If, on a given hour, I look across all of a ¯rm's generating units,

I am likely to see the ¯rm operating a lower marginal cost unit at less than full capacity while

also operating another higher marginal cost unit. One explanation is that the ¯rm expects that

the higher cost unit will be operating in the coming hours (perhaps when total demand is higher)

and it needs to keep the higher cost facility operating. Under this scenario it is unclear whether I

should take as the measure of the ¯rm's marginal cost the lower or higher cost unit that still has

available capacity. If I use the lower number, I would be ignoring the fact that the ¯rm is solving

a more complicated dynamic optimization problem and that the true measure of marginal cost

should include the shadow values of the operating constraints. If I take the higher number, I may

ignore the fact that the higher cost unit is running because it was called under outside contracts for

Reliability Must Run (RMR).26 Because I believe the former bias to be potentially more severe, I

de¯ne the ¯rm's marginal cost to be the marginal cost of the most expensive unit that is operating

and has excess capacity:

MCit ´ maxjfMCijtg where j indexes ¯rm i's units operating in hour t

with excess capacity

I can determine if units have excess capacity by comparing observed output from the EPA data to

my measure of the unit's capacity.27 One problem with this measure of ¯rm-level marginal cost
26However, given that they turn on the RMR units to meet RMR contracts, competitive ¯rms should still increase

production in these units if marginal cost is lower than price. In practice, the RMR units are not always higher cost
units and when they are, the costs are at most a few dollars higher than other units.

27I measure market power by observing whether ¯rms withheld capacity of a unit with marginal cost less than
the price. In theory, if a unit is not operating some capacity, the ¯rm placed a bid for that capacity higher than
the market clearing price. This may not hold precisely due to several operating procedures of the grid operator.
Occasionally ¯rms are instructed by the ISO to reduce output to avoid intra-zonal transmission congestion. Also, the
ISO has the discretion to skip over lower priced units that are more °exible in favor of higher priced units in case
increases in power are needed on short notice.
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is that there are several small powerplants for which I do not have quantity data.28 Most of the

missing units are small high cost units that only operate when demand is very high. Because I have

no data on these high cost units, I tend to bias downwards the marginal cost of the ¯rms owning

these units when the units are operating. This bias is likely to be most severe for Dynegy.

The price earned for the observed output by the ¯rm in a given hour is not always known by

the econometrician because transactions can be settled through the day-ahead market (the Power

Exchange) or the real-time energy market (the ISO).29 I use the Power Exchange day-ahead energy

price for the zone of the state in which the ¯rm generates. This price is most appropriate because

80-90% of all transactions occurred in the PX during my sample and a simple arbitrage argument

suggests that day-ahead and real-time prices should be equal in expectation.30 One ¯rm (Duke)

owns generators in di®erent transmission zones. When transmission constraints are binding, I

separate o® the output attributable to the south generators and call the ¯rm DukeSouth.

The measure of output I use in the empirical analysis is the total generation by each ¯rm's

thermal generating units. This may mismeasure the actual amount of generation sold to the energy

market (and hence inframarginal output) for several reasons. It may understate output for the
28The percentage of each ¯rm's capacity for which EPA has data are: AES 100%, Reliant 99%, Duke 95%, Southern

Energy 87%, and Dynegy 68%. These percentages are lower bounds for the completeness of the data because some
of the missing units were shut down during signi¯cant portions of my sample.

29Generators not only compete in the market to supply electrical energy, but they also compete in \ancillary
services" markets to provide stability and reliability services to the system operator. I do not explicitly model the
ancillary services market, however the opportunity cost of selling into this alternative market will a®ect r̄m behavior
in the energy market. The presence of an ancillary services market only slightly complicates my analysis. For most
of the ancillary services market, ¯rms bid a \standby" payment and a \production" payment. All bids for the
production payments are placed into the real-time market's bid stack. Therefore, an exercise of market power in
these ancillary services markets will manifest itself as market power in the real-time market. For one form of ancillary
services (regulation reserve), units essentially turn over control of some fraction of their unit to the Independent
System Operator. Because the ISO seeks to always have some units with excess capacity standing by, these units are
essentially being paid not to produce. If some of the units that I measure to be withholding capacity are actually
selling this capacity to the ISO as regulation reserve, I may overstate the ¯rm's price-cost margin. I do not have data
on each unit's sales to regulation reserve, however anecdotal evidence suggests that most regulation reserve is sold by
hydroelectric units rather than the fossil-fueled units I am analyzing. Although it is unknown how much regulation
reserve is satis¯ed with thermal generating units, the Joskow and Kahn [2001b] analysis of summer 2000 assumes
that an additional 3% of thermal demand is purchased as reserves. This mismeasurement will be mitigated by the
fact that the quantity of regulation reserve bought during the hour of the day I analyze below (hour 18) is typically
lower than other hours of the day.

30The ISO log of real-time transactions shows that typically less than 10% of the power sold by the ¯ve large ¯rms
was traded in the real-time market. A notable exception was the period beginning in September 2000 when the ¯rms
began to shift between one-quarter and one-half of their sales to the real-time market. During this later period of
my sample, real-time ISO prices were on average higher than the PX price. To the extent that ¯rms earned the ISO
price, I will tend to understate margins late in my sample. See Borenstein et al. [2001] for an analysis of the PX-ISO
arbitrage condition in this market over time.
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¯rms that own small peaker units with no EPA data (e.g. Dynegy). The measure can be too

high if some of the observed output is sold outside of the energy market either forward or under

Reliability Must-Run contracts. I reduce the mismeasurement by focusing on peak hours of the

day when less energy is sold under these RMR agreements. In addition, late in the sample period

¯rms increasingly sold power through an out-of-state third party to avoid the price cap. The price

cap applied only to sales by in-state generators and there was no cap on out-of-market purchases.

In a practice called \megawatt laundering", generators sold power to third parties on the border of

California only to sell the power back to California at prices above the cap. My sample period ends

in November 2000 when the uniform price auction ends and out-of-market purchases became very

large. Therefore, potential mismeasurement of output may a®ect my market power estimates for

Dynegy and for all ¯rms late in the sample period. I discuss the sign of the potential bias below.

5 Motivating Empirical Evidence

The wealth of rich data in the California electricity market allow researchers to test directly for

evidence of market power. Borenstein et al. [2000] ¯nd observed prices to be higher than those

prices simulated by perfectly competitive behavior of the thermal generating ¯rms. The price-cost

margins are higher in periods when overall thermal demand is high. These results are consistent

with the exercise of some form of market power. I formally estimate a model of behavior in the next

section, but I begin by investigating evidence of market power by each of the ¯ve large generating

¯rms. In this section, I consider two measures that suggest ¯rms are exercising market power.

First, I directly measure price-cost margins and ¯nd that ¯rms frequently fail to utilize capacity

when price is above marginal cost. Second, I ¯nd that a given power plant is utilized systematically

less when it is owned by a new generation owner rather than a regulated utility.

5.1 Data Exploration

The observed production behavior of the ¯rms suggests that they are not acting in a perfectly

competitive manner. A price-taking ¯rm will fully utilize capacity with marginal cost less than the
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price. When a competitive ¯rm is producing below capacity, one expects the marginal cost of the

unused capacity to be above the price. Table 2 displays summary statistics of the di®erence between

price and the marginal cost of each ¯rm's highest cost operating unit with unused capacity. I focus

on the hour of the day with the highest average demand (5-6pm or hour 18). I choose this particular

hour so that these results are comparable to my empirical analysis below which is best suited for

this hour.31 Industry analysts have suggested that the reported nameplate capacity overstates the

true capacity of a unit. Therefore, I calculate the price-cost margins using two di®erent assumptions

about the true capacity. De¯ning capacity as either 80% or 90% of the nameplate rating, I ¯nd

that ¯rms very often observe price above marginal cost, yet fail to utilize capacity. DukeSouth,

Duke, and Reliant crank up to capacity in more hours than AES, Southern, and Dynegy. When

they are not producing at capacity, ¯rms vary in their average margins. Southern, Reliant, and

DukeSouth enjoy the highest price-cost margins although this result is driven to some extent by the

time period in which the ¯rms were in the market.32 These margins imply a median Lerner index

of 0.17.33 These results are robust to my de¯nition of capacity. As another check for robustness,

I consider the possibility that I may understate ¯rms' marginal costs. Separately, I calculate that

¯rms have excess capacity yet observe margins above $10 in approximately 37% of ¯rm-hours and

greater than $30 in approximately 22% of ¯rm-hours. It is highly unlikely that marginal costs are

this severely mis-measured so there is strong evidence that ¯rms are not acting as price-takers.

One cost-based explanation for less than full utilization is that ¯rms may face intertemporal

adjustment constraints such as the rate at which a unit can increase or decrease output. If adjacent

hours are not economical, a price-taking ¯rm may utilize an economical generating unit at less

than full capacity because it cannot ramp to full capacity in hour 18. For the thermal generators

in California, units can typically ramp from zero to full capacity in times varying from one to
31In short, my analysis below estimates a structural model of ¯rm output. This hour has the desirable property

that unobservable intertemporal shadow values are likely to be small in this hour. 6pm (hour 18) is the highest
average demand hour largely because o±ces have not shut down yet many people have gone home and begun to use
lights and appliances.

32Recall that the r̄m \DukeSouth" represents the generating units owned by Duke in the southern part of the
state when transmission capacity constraints are binding. Transmission constraints tend to bind when demand (and
perhaps the potential to exercise market power) are high.

33The margins are not interpreted as measures of pro¯tability because r̄ms incur other on-going costs such as the
cost of starting up a generator. Rather, these positive margins are measures of non-price-taking behavior because the
units I analyze have already incurred the startup costs yet fail to utilize capacity when price is above marginal cost.
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three hours.34 At 6pm (hour 18) on the average day in California, both demand and prices have

been near their peak for several hours and will continue to be high for two to three more hours.

Therefore, units often have su±cient time to ramp up and ramp down to high levels of output if

they are economical in hour 18.35

Next, I explore how these price-cost margins vary over my sample period of April 1998 to

November 2000. I calculate the simple average of each ¯rm's margin in each hour. If it is producing

at capacity, the ¯rm's margin is set to zero. Figure 1 shows that margins are higher during the third

and fourth quarters of each year when total demand for electricity is high in California. Margins

during low demand months (January-May) are actually negative in 1998 and hover around zero in

1999 and most of 2000.36 The bottom panel breaks down margins by ¯rm and demonstrates that

all ¯rms enjoyed positive margins. I emphasize that these margins are not scarcity rents because

these are di®erences between price and marginal cost when ¯rms have excess capacity.

Margins were sustained at consistently high levels during much of the late summer and early fall

2000. To some extent, high prices were mitigated by the price cap. The price cap in the ISO should

e®ectively act as a cap on PX prices because demanders would have no incentive to bid above the

ISO cap. This cap was not binding until the summer of 2000. As the ISO lowered the cap twice in

2000Q3, the cap began to play a signi¯cant role in the ability to exercise market power. Figure 2

shows the frequency with which the price hit the cap. Interestingly, prices and margins both rose

as the price cap was lowered.

Figure 1 makes clear that market power existed in 1998-99 but was much less substantial than

in 2000. In 2000, margins ¯rst spiked in June and then remained consistently high throughout July-

September. These dramatic increases in margins were coincident with several shocks to the cost of

inputs. The top panel of Figure 3 shows the steady rise in natural gas prices throughout 2000 and
34California Energy Commission rate hearing data.
35An earlier version of the paper also analyzed each ¯rm's utilization of economical capacity. For hour 18, ramping

time is not a signi¯cant determinant of utilization. However, ¯rms that are \exogenously larger" withhold more
economical capacity than they would otherwise provide in a perfectly competitive market.

36Industry analysts believe the market observed negative margins in the second quarter of 1998 because many ¯rms
were not selling their power into the (unpro t̄able) energy market but rather were selling power under alternative
pro¯table RMR regulatory side agreements. This became less of an issue over time as the original RMR contracts
were amended.
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the rapid tripling of price in November. NOx permit prices were negligible at the beginning of the

year but steadily rose beginning in July to $40/lb by November so that permit costs alone could

add over $100/MWh to the cost of electricity. The bottom panel shows the consequent e®ect on

the marginal cost for the ¯ve ¯rms. The marginal cost averaged across the ¯ve ¯rms gradually rose

during 2000 and became more volatile during the latter months. This panel also shows the ¯ve-¯rm

average price-cost margin. There is no discernible pattern between cost shocks and changes in the

margins.37

These summary statistics focus on hour 18 (5-6pm) when demand on average is at its peak in

California. I choose this hour to reduce mis-measurement in my structural analysis below. However,

I can assess how representative this hour is of market power across all hours. Table 3 shows the

yearly average ¯rm price-cost margins for di®erent periods of the day. The thermal generating ¯rms

enjoy higher margins during high demand hours of each day but negative margins during o®-peak

hours. One explanation is that during low demand hours, lower cost generation such as nuclear

power satis¯es a large fraction of demand so that the residual demand faced by the thermal ¯rms

is very small or perhaps zero. As a result, thermal gas-¯red units are less likely to be economical or

in a position to set the price. Hour 18 has margins higher than the average peak demand hour so

this paper will focus on periods with relatively high margins. Figure 4 shows the daily pattern of

margins during two high margin months (August 1998 and 2000) and a low margin month (April

1999). In all three months, margins follow a daily cycle between positive margins in high demand

hours and slightly negative margins during the night. Theory suggests ¯rms would not operate with

negative margins, but an explanation for the observed behavior is that ¯rms continue uneconomical

operation during night hours to avoid the cost of shutting down and restarting the unit the next

day. It is important to note than lower margins during o®-peak hours does not necessarily imply

more competitive behavior. Even if conduct were the same during o®-peak hours, one expects to

see lower margins because the residual demand for the ¯ve thermal ¯rms is more elastic.
37Arguably the ¯rm with the highestmarginal cost is most relevant because it may set the price and a®ect all ¯rms'

margins. However, a similar analysis using the highest marginal cost rather than the average marginal cost also fails
to identify a clear pattern.
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5.2 Capacity Utilization and Market Power

My exploration of the data suggests that ¯rms are withholding output that would be economical to

produce if they were price-takers. This would appear to be fairly strong evidence that ¯rms exercise

market power. However, the evidence is even stronger if the withholding of economical capacity

occurs when incentives exist to exercise market power. In this section, I analyze the utilization of

capacity during periods with strong exogenous incentives to withhold capacity.

I compare the utilization rates of power plants owned by the ¯ve new generation owners to the

utilization rates of the same plants when owned by the old utilities. I exploit the fact that after

deregulation began on April 1, 1998, many of the fossil-fueled units were owned by the old utilities

for some period of time before they were divested to the new generation owners. I observe the same

power plant operated by the old utility and by the new generation owner. This quasi-experiment

allows me to observe the same unit's production behavior in a deregulated environment when

owned by a utility and by a merchant generating ¯rm. Theory suggests the new generation owners

have incentives to reduce output below competitive levels in order to raise the price. However,

utility companies have very dampened incentives to in°uence prices. I test whether these di®ering

incentives to suppress output manifest themselves in the data. For generating units that were

divested from the utilities to the unregulated ¯rms, I analyze the capacity utilization rates before

and after divestiture as a function of the pro¯t margins.

I estimate a kernel regression of utilization rates on price-cost margins for the same units pre-

and post- divestiture for hours 18 in which the units are operating. Figure 5 plots the fraction of

a unit's capacity that is utilized for a given pro¯t margin. I also plot a kernel density estimate

of the price-cost margins. Under both forms of ownership, units tend to produce more when the

pro¯t margins are higher. However, for the same margin, units tend to utilize less capacity when

owned by deregulated ¯rms (\post-divestiture"). In fact, focusing on the range of margins that

occurred most frequently, the new generation owners almost uniformly utilized less capacity.38 This
38This assumes the generating units had the same e±ciency rating before and after divestiture. This appears to

be a reasonable assumption because the new generation owners contracted for the utilities' engineers to continue to
maintain the plants for two years after divestiture. Therefore, the only signi¯cant di®erence pre- and post-divestiture
is the agent who was bidding the plants' output.
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is consistent with the ¯ve large deregulated generation owners suppressing output to exercise some

form of market power.

6 Estimation of the Behavioral Model

In this section, I impose more theoretical structure on the data to estimate if ¯rms supply power

in a manner more consistent with static or dynamic market power. The ¯rst-order conditions in

section 3.3 are supply relations for ¯rms operating in di®erent types of competitive environments. I

apply the model of ¯rm behavior to data and identify parameters of the supply relations that allow

me to make inferences about the competitiveness of ¯rms in the California market. First, I estimate

the static ¯rst-order condition and ¯nd the data are fairly consistent with Cournot pricing, however

I ¯nd behavior less competitive than Cournot in 2000. Then, I estimate a form of the general ¯rst-

order condition (equation (5)) and reject the model of optimal tacit collusion in all quarters of my

sample.

6.1 Static Model

First, I estimate the static ¯rst-order condition equation (1) for each ¯rm in the California market:

P (q¤it + q¡it) ¡ ci(q¤it) ¡¸¤it = ¡µitP 0
tqit (6)

This model says that ¯rms exercising market power (µ > 0) will observe higher price-cost margins

(adjusting for scarcity rents on capacity) when they have more inframarginal output or are operating

on price sensitive areas of demand.

Below I detail my approach to modeling the California market and estimating behavior. I model

the supply side as ¯ve large strategic ¯rms and a competitive fringe. Total demand is perfectly

inelastic because few customers pay the hourly price of energy. Therefore, demand for power from

the ¯ve strategic ¯rms is the observed (price inelastic) demand minus the supply by the competitive

fringe. I estimate how the ¯ve ¯rms compete on their residual demand.
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Demand Side. The ¯rst step to estimating the static model is to estimate the demand parameter

P 0
t . This parameter is the amount by which the market price will fall when any of the ¯ve strategic

¯rms choose to produce another unit of output. Total demand is assumed to be perfectly inelastic.

Few customers face the hourly wholesale price of power and even if more had the opportunity

to respond, demand for electricity is very inelastic. The residual demand of the ¯ve strategic

players has some degree of elasticity due to supply elasticity by other fringe suppliers. These other

suppliers include the fringe thermal generators (PG&E, SCE, SDG&E, Thermo Ecotek), nuclear

generation, hydroelectric and geothermal power, small independent producers,39 and imports from

outside of California. I assume that these suppliers do not bid strategically and can be modeled

as a competitive fringe. This assumption appears reasonable. The independent and nuclear units

are paid under various regulatory side agreements so revenues are independent of the price in the

energy market.40 The assumption of price-taking supply of hydroelectric and geothermal power is

slightly more problematic. It is di±cult to directly assess whether hydroelectric power is supplied

competitively because measuring the marginal cost of hydroelectric output involves measuring the

opportunity costs of using the potential energy of a reservoir in some other period.41 However, the

owners of hydroelectric assets in California are the same utilities that are also buyers of power and

have very dulled incentives to in°uence the price. Finally, ¯rms importing power into California are

likely to behave competitively because most are utilities with the primary responsibility of serving

their native demand and then exporting \excess generation".

I estimate the (competitive) supply by all fringe suppliers for Hour 18. To the extent that any of

these fringe ¯rms exercise market power, my estimate of the fringe supply function may be biased

because fringe supply would not be merely a function of costs but also a function of the behavior

of the ¯ve strategic ¯rms. Total residual demand of the ¯ve strategic ¯rms (QDstrat) is the total

(perfectly inelastic) market demand net of supply by the competitive fringe:
39For example, some oil re¯neries self-provide electricity and are quali ēd to sell surplus generation to the grid

under the Public Utility Regulatory Policies Act of 1978.
40Although the nuclear generation is partially owned by the utilities owning other generation assets, nuclear units

operate under very strict regulations that preclude operators from adjusting output to in°uence the price earned by
the utilities' thermal generation units.

41See Johnsen et al. [1999] for a paper that uses a di®erence in di®erences approach to measure market power in a
hydro system.
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QDstrat(p) ´ QDtotal ¡ QSfringe(p)

I estimate the supply function of the competitive fringe and use the negative of the slope of fringe

supply as my estimate of the slope of strategic ¯rm demand P 0
t .

Fringe supply is a function of the PX day-ahead electricity price in California as well as cost

conditions (e.g. price of natural gas) and seasonal supply variation (e.g. hydroelectric reservoir

levels or scheduled nuclear outages). I model fringe supply as having a constant price elasticity

so I estimate the model in logs.42 To incorporate input cost variation over time, I include the

price of natural gas as well as month-year and day of week dummy variables to capture reservoir

levels and nuclear outages. Fringe supply includes imports of \excess generation" from neighboring

regions to California. As a determinant of excess generation out of state, I include di®erences in

neighboring state mean daily temperatures from a baseline temperature that one would expect

to necessitate little heating or cooling (65 degrees).43 Because price is endogenous to the fringe

quantity supplied, I instrument price with the day-ahead forecasted demand (which is independent

of price). The model is given by:

lnQSfringe t = ¯0 + ¯1 lnPt + ¯2 lnGasPrSoutht + ¯3 lnGasPrNortht+

¯4 lnDiff65TempNeight +¯5DAY DUMt +¯6MONTHDUMt + vt (7)

¯1 can be used to calculate the slope of fringe supply which equals the opposite of the slope of the

demand faced by the ¯ve strategic ¯rms.

Supply Side. In order to estimate the supply relation (6) by the ¯ve strategic ¯rms, I need

measurements of price, marginal cost, output, and the value of scarcity rents on capacity. The

measures of price and output are discussed in section 4. My measure of marginal costs includes fuel
42A constant elasticity supply function by the fringe can capture the shape many industry analysts envision, and

it also ¯ts the data well. I estimate fringe supply to be relatively °at at prices below $100 but progressively steeper
for higher prices. Some have suggested that the estimated supply relationship should be vertical at high levels of
demand (e.g. when transmission constraints are binding). However, it is important to keep in mind that my fringe
includes not only imports but also hydroelectric and expensive gas peaking units in California.

43Daily temperature data come from the National Climatic Data Center website.
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and operating costs but no production adjustment costs. My model is a simple model of quantity

choice that abstracts from the more complex dynamic programming dispatch problem that the ¯rm

actually is solving. I analyze ¯rm behavior during periods when my simple model and the more

complex model are least likely to di®er. Several conditions could make my measure of marginal

costs di®er from the actual marginal costs. For example, if it has a unit shut down, a ¯rm would

incur startup costs to ¯re up that unit. In order to deal with startup costs, I only analyze the

¯rm behavior by units that are already operating during the particular hour. Also, ¯rms face

constraints on the rate at which they can ramp units and these constraints show up as shadow

values in the ¯rm's dynamic programming problem. I focus on a particular hour of the day when

ramping shadow costs are likely to be low: 6pm (hour 18). On an average day the total demand

nears its peak by 11am and maintains approximately that level until around 9pm. By the time

6pm arrives each day, ¯rms have had ample time to ramp up their units while still having the

necessary time to ramp down by the time demand begins to fall.44 Therefore, I focus on hour 18

and assume any shadow costs of operating constraints to be zero. Accordingly, a price-taking ¯rm

has incentives to fully utilize all of its capacity with marginal cost below the market price.

I cannot measure the scarcity rents on capacity (¸¤it). The shadow value of capacity is zero when

capacity constraints are not binding, however the value is unknown when constraints are binding.45

Firms are producing at capacity in only 4.4% of ¯rm-hours in my dataset. I assume the scarcity

rents to be constant across ¯rms and time and estimate the scarcity rents by including a dummy

variable (CAPBIND) equal to 1 if capacity constraints are binding and equal to zero otherwise.46

The coe±cient on CAPBIND is the (average) shadow value of added capacity.

The static ¯rst order condition (6) is in general overparameterized because it allows each ¯rm

to have a di®erent behavioral parameter each period. Before examining the possibility of hetero-
44Of course, ¯rms have the incentive to ramp up production only if price is above marginal cost during the ramping

hours. On average, prices peak between 2pm and 7pm.
45The proper shadow value is the di®erence between marginal cost and the parameterized marginal revenue (P +
µP 0q) evaluated at the capacity constrained quantity. If ¯rms are price-takers (µ = 0) then the shadow value is
the di®erence between price and marginal cost. However, this overstates the shadow value if ¯rms are not perfectly
competitive. For example, ¯rms may be acting as Cournot competitors (µ = 1) yet still produce up to full capacity
when demand is very high. I face the problem that the unobserved shadow value is a function of the unknown conduct
parameter µ.

46I also estimate the conduct parameter µ using only observations in which the capacity constraints are not binding
(¸¤it = 0), and the results are very similar.
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geneous behavior across ¯rms, I assume all ¯rms are strategically choosing quantity in the same

manner and restrict the conduct parameter to be equal across all ¯rms in the industry. The supply

relation is modeled as:

(P ¡ c)it = ¸ ¢ CAPBINDit ¡ µ ¢ P 0
t ¢ qit + ²it

In order to relate the estimated fringe supply elasticity to the slope of strategic demand, I use the

de¯nition of elasticity ¯1 = Pt
P 0tQ

S
fringet

and plug in for P 0
t :

(P ¡ c)it = ¸ ¢ CAPBINDit +
µ
¯1

Pt ¢ qit
QSfringe t

+ ²it (8)

This supply relation is identi¯ed by shifts in the total California demand. I instrument ¯rm-level

output with the total (perfectly inelastic) forecast of demand.47 I simultaneously estimate the

fringe supply (7) and each ¯rm supply relation (8) via three-stage least squares.

I show estimation results below but ¯rst I illustrate the shape of the supply relation by the

strategic ¯rms. When CAPBIND is zero (96% of the observations), the static model reduces to a

simple bivariate (instrumental variables) regression. Figure 6 plots the price-cost margins against

the ¯tted values of ¡P 0
tqit.48 The slope of this relationship is an estimate of the conduct parameter.

Recall that the static model says that if behavior (µ) is constant, then the margins are linear in

¡P 0
tqit: ¯rms have higher margins when (1) they have more inframarginal quantity and (2) they

are operating on price sensitive areas of demand. In addition, the relationship should go through

the origin because ¯rms with no inframarginal output have no incentive to price above marginal

cost.

Figure 6 suggests that the overall supply relation is relatively consistent with static pricing. The

top panel plots the kernel regression estimate and the data for the complete sample of July 1998-
47I use the day-ahead forecast of demand rather than realized demand because an unexpected demand shock raises

output and hence marginal cost, but does not raise the day-ahead price. Therefore, actual demand would not be a
valid instrument.

48Below I show results of estimating the fringe supply elasticity during two periods of my sample. I obtain very
similar fringe supply elasticity estimates and use an intermediate value in constructing this ¯gure.
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November 2000.49 The relationship has roughly a constant slope up to approximately ¡P 0
tqit = 25

after which the relationship is steeper and non-monotonic. The relationship approximately passes

through the origin as we expect from a static pricing game. This larger conduct parameter for

observations above ¡P 0
tqit = 25 may imply a form of dynamic pricing during high demand hours,

or may simply result from my overestimating the fringe supply elasticity (and hence the demand

elasticity) in these peak hours. I do observe periods when ¯rms are operating with negative margins.

These observations are low demand hours mostly occurring in April and May of each year during

which ¯rms operate only a small fraction of their capacity.

The bottom panel of Figure 6 illustrates the supply relation before and after June 2000 when

the California market experienced dramatically higher prices. The supply relations for pre-June

2000 and post-June 2000 are both approximately rays through the origin, as predicted by the

static pricing model. However, the relationship is almost uniformly steeper for various levels of

inframarginal output in the period after June 2000. Although this evidence does not necessarily

suggest a shift from static to some form of dynamic pricing, it does suggest the market was less

competitive after June 2000.50

Next, I show results from jointly estimating the system of fringe supply (7) and the strategic ¯rm

supply relations (8).51 During hours of 2000 when the price cap is binding, the ¯rst-order condition

underlying the supply relation does not hold with equality because the cap creates a discontinuity

in marginal revenue. This a®ects 7.8% of hour 18 observations in 2000 with the majority occuring

in August. I estimate the conduct parameter by ignoring days when the price hit the cap.52 I

break down the sample into a period during which there were four ¯rms in the market and another

period later in the sample with ¯ve ¯rms.
49I exclude 1998Q2 because negative margins are inconsistent with any reasonable static pricing model. Industry

analysts believe the ¯rms were selling power under alternative regulatory (RMR) agreements rather than actually
selling to a market with price less than marginal cost.

50To con¯rm that this result is not picking up seasonal di®erences in supply relations, I compare June-November
2000 to the same months in 1998 and 1999 and ¯nd very similar results.

51Duke has its units divided into two markets during periods of transmission congestion (approximately 9% of
hours in 1998, 12% in 1999, and 44% in 2000). The capacity in the South is separated into a r̄m named DukeSouth
only during congested hours. Therefore, I exclude DukeSouth to make the system estimable. As a result, I only
partially characterize Duke's behavior during congested hours.

52Under static pricing, the presence of a price cap should not a®ect production behavior when the cap is not
binding. This may not be the case under dynamic pricing.
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Results are shown in Table 4 and are similar for both time periods. Fringe supply is relatively

inelastic in both periods (0.15 and 0.20). Given the relative size of the fringe and strategic players,

this suggests that the strategic ¯rms face a total residual demand elasticity of approximately 1.32

during the 4-¯rm period and 0.79 during the 5-¯rm period. Higher natural gas input prices leads

to less supply by the fringe, and out of state temperatures signi¯cantly a®ect fringe supply in the

second period but not the ¯rst.

The estimate of the supply relation by the strategic ¯rms suggests the ¯rms are behaving

approximately Cournot. In the ¯rst period from July 1998 to April 1999, the coe±cient on Pt ¢qit
QSfringet

and the estimate of ¯1 imply µ̂ = 1:07 with a standard error of 0.09. In the second period of my

sample from mid-April 1999 to November 2000, the results are similar and I obtain a slightly larger

estimated conduct parameter µ̂ = 1:19 with a standard error of 0.06. I fail to reject Cournot pricing

during the 4-¯rm period and observe pricing statistically higher than Cournot levels in the 5-¯rm

period.53

Next, I estimate how conduct varies over my sample period. Recall from Figure 1 that direct

measures of price-cost margins are highest during the second half of 2000, and also are sustained at

high levels during the summer of 1998 and fall of 1999. Whether periods of high margins correspond

to levels of less competitive conduct will depend on the residual demand elasticity the ¯rms face.

Less competitive behavior may not yield higher margins if residual demand is more elastic. I expect

the residual demand of the ¯ve thermal generators to be more elastic in the low demand winter

and spring months when nuclear and hydroelectric generation satisfy a substantial fraction of total

demand. The ¯rst panel of Table 5 reports conduct parameters in which conduct is restricted to be

equal across ¯rms but is allowed to vary by quarter. I also report estimates of the 5-¯rm residual

demand elasticity evaluated at mean output levels and the average price-cost margins that resulted

from the ¯rms' conduct on that residual demand.

The point estimates suggest that the market was more competitive in 1999 than in either
53Note that the supply relation I estimate has no intercept because the theory suggests the relationship is a ray

through the marginal cost intercept. If I include an intercept, I ¯nd a very small (and statistically zero) intercept
of $0.24 in the 4-¯rm period and a small (yet statistically non-zero) intercept of -$4.64 in the 5-¯rm period. The
corresponding slopes of the supply relation are 1.05 and 1.31, respectively.
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1998 or 2000. During 1998-99, seasonal patterns appear in the estimates of both conduct and

residual demand elasticity. During the highest demand months of July-September, I fail to reject

Cournot pricing in either year. Nevertheless, Cournot behavior leads to high margins because

residual demand is less elastic. Conduct is less competitive in the fourth quarters yet does not yield

substantially higher margins because demand is more elastic than during summer months. Finally,

in the lower demand ¯rst and second quarters of 1999, I ¯nd conduct statistically indistinguishable

from Cournot in quarter 1 and statistically lower than Cournot in quarter 2.

In 2000, I estimate behavior to be distinctly less competitive. The point estimates of the

conduct parameters are substantially higher in 2000Q2-Q4 with the estimates statistically higher

than Cournot from April to September. These estimates formally con¯rm the apparent pivot in the

supply relation after June 2000 as seen in Figure 6. Not only is the market less competitive, but

the relatively inelastic residual demand during this period contributes to the very high price-cost

margins seen in Figure 1. Finally, note that I ¯nd implausible estimates for the low margin ¯rst

quarter of 2000. I ¯nd the competitive fringe to supply more energy when the price is lower which

forces the fringe supply elasticity and the conduct parameter to be negative.

However, various institutional changes in 2000 may bias my conduct parameter estimates. In

late 2000, the utilities began to face ¯nancial crises that could prevent them from paying for

power purchased on the wholesale market. When skyrocketing wholesale prices threatened the

creditworthiness of the utilities, the risk of non-payment may have increased marginal costs of

supplying power beyond the simple production costs. My measure of marginal cost may understate

the true cost of supplying power in late 2000 and bias upwards my conduct estimates. However,

there are several factors which may lead me to understate the true conduct parameter as well.

The most severe concern is that ¯rms forward-contracted some of their production and that I

mis-measure the output sold to the PX/ISO energy market. There is widespread belief that in

2000 several ¯rms forward-contracted substantial fractions of their production. Firms only have an

incentive to raise the price on the amount they produce beyond the contract position because the

price earned on the contracted quantity is already locked-in.54 I assume all observed production
54This is true whether the forward contract is a hedge contract (contract for di®erences) or a forward contract for
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is sold in the PX/ISO energy market. If some of the observed generation is sold forward, ¯rms

were enjoying the same pro¯t margins for smaller quantities sold through the energy market. This

would imply that I understate the conduct parameter µ. A ¯nal potential bias in 2000 is that

some transactions through the PX/ISO market did not occur at the PX/ISO prices. The fall and

winter saw some out-of-market transactions above the price cap (\megawatt laundering"). Overall,

I believe that the bias from ignoring risk premia is dominated by the biases from overstating output

and understating prices. Therefore, my conduct estimates are likely biased downwards in 2000.

In some quarters, the conduct parameter estimates reject all theorized equilibrium values of

games of static pricing and perfect tacit collusion. Although one would ideally hope to reject

all but one theorized behavioral parameter, it is not surprising that I am unable to identify a

equilibrium pricing model for each quarter. In each quarter I estimate some average measure of

conduct. Conduct may vary over a quarter either because ¯rms play di®erent equilibrium outcomes

or because ¯rms are not always in equilibrium as they learn to compete in the newly deregulated

market. Alternatively, onemay view conduct estimates statistically higher than Cournot levels as an

equilibrium of a repeated game (by a folk theorem result). Nevertheless, I can make some inferences

about the overall competitiveness of the market. If I treat the estimate of µ as a continuous measure

of competitiveness, the market displays levels of competition that varied substantially less than the

price-cost margins. Over the ten quarters, conduct varied moderately with a general strengthening

of competition during summer 1999 and a weakening of competition during most of 2000. The

dramatic variations in margins (from Figure 1) were more driven by changes in costs (Figure 3)

and residual demand elasticity than by the conduct of the ¯rms.

Finally, I allow the conduct parameters to vary by ¯rm and estimate each ¯rm's competitiveness

during the ¯rst and second half of my sample. I ¯nd a modest degree of heterogeneity in ¯rm

behavior. During the period with four strategic ¯rms in the market from July 1998-April 1999,

I ¯nd conduct parameters above one for Reliant and Duke and below one for AES, but I cannot

reject Cournot for any of these ¯rms. Dynegy has a particularly large parameter estimate that

decreases but remains high during the ¯ve-¯rm period.55 This high conduct parameter estimate
delivery.

55Given the unusually high conduct estimates for Dynegy, one may be concerned that conduct estimates above are
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may result from my missing data for some of Dynegy's small peaker plants. During the period

from April 1999-November 2000 with ¯ve strategic ¯rms, I reject Cournot pricing for four of the

¯ve ¯rms. For the four ¯rms in the market for the entire sample, conduct is relatively similar with

the exception of Dynegy. When I focus on the period of the price runup in June-November 2000,

¯rms are uniformly less competitive with four of the ¯ve ¯rms exhibiting \super-Cournot" pricing.

Southern and Dynegy (with data caveats) appear to be the least competitive and AES appears to

be most competitive.

6.2 Dynamic Model

Results from the static behavioral model are consistent with static pricing over much of my sample

period. However, estimating conduct using the static ¯rst-order condition can lead to inconsistent

conduct parameter estimates as shown by Corts [1999]. In this section, I estimate the dynamic

¯rst-order condition to check for this potential mis-speci¯cation.

Before formally estimating the model, I provide informal evidence against dynamic pricing.

The shape of the estimated supply relation in Figure 6 fails to suggest collusion. Corts shows that

conduct parameter estimates are not consistent if the true underlying game is not equivalent on the

margin to a conjectural variations game. The supply relation for a conjectural variations game is a

ray through the marginal cost intercept with higher µ parameters corresponding to rotations in the

supply relation. Figure 6 suggests the ¯rms are engaged in a (static) conjectural variations game:

the supply relation appears to be a ray through the origin. If we had observed positive margins

for very small levels of output, we may believe ¯rms are engaged in some other (non-conjectural

variations) game such as dynamic pricing.

The results of the static behavioral model estimate conduct parameters slightly higher than

Cournot levels for several time periods and ¯rms. If the underlying game is dynamic, conduct

parameters from estimating the static model are biased as discussed in section 3.3.3. Therefore,

I estimate the general ¯rst-order condition (equation (5)) to test for dynamic pricing. I do not
substantially driven by Dynegy behavior. I re-estimate the static models above allowing Dynegy to have a di®erent
conduct estimate, and ¯nd that neither the estimates nor the inferences substantially change.
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have data on the e®ect of output on the best-response pro¯ts (d¼brdQ t). However, note that this

term is constant across all ¯rms during a given period. I can condition out this e®ect by including

time ¯xed-e®ects and estimating conduct o® of the between ¯rm variation in margins and output.

Rather than include ¯xed e®ects for every di®erent time period (i.e. every day), I assume that the

\bindingness" of the incentive compatibility constraint is constant for \similar" periods of time.

The level of the incentive compatibility constraint depends upon the size of the capacity of the

¯ve strategic ¯rms relative to residual demand of those ¯rms. Thus the value of the constraint is

largely determined by overall demand for electricity in California. I condition out the IC constraint

term by including ¯xed e®ects for each demand quartile. If pricing follows the dynamic ¯rst-order

condition and ¯rms are symmetric, the conduct parameter µ = N. Table 6 shows the estimated

conduct parameters to be signi¯cantly lower than N (either 4 or 5). I reject tacit collusion for all

quarters.

These results also have implications for the interpretation of the static model. If the ¯rms are

following the static pricing model, the estimators of µ̂ from both the static model (equation(6))

and more general model (equation (5)) are both consistent. Yet the estimates of the conduct

parameter µ reported in Tables 5 and 6 di®er substantially in several of the quarters of my sample.

In particular, during the low margin quarters of 1999Q1-Q2 and 2000Q1, the estimates from the

¯xed e®ects model are closer to zero.56 The demand quartile ¯xed e®ects allow each quartile to

have a di®erent intercept so that I estimate conduct o® the within-quartile variation in margins

and output. This should not a®ect my conduct estimates if the supply relation is linear (P ¡ c is

linear in P̂ 0q in Figure 6). However, if I mis-estimate the slope of residual demand (P̂ 0) in a way

that varies with demand, then the estimates in Table 6 provide consistent estimates of conduct. An

alternative explanation is that demand levels capture much of the variation in observed margins

during the quarters in which the estimates vary.
56The high margin quarter of 1998Q3 also has a small conduct estimate and this is driven Dynegy. When I allow

Dynegy to have separate parameters, the conduct estimate for the other three ¯rms is nearly the same as in the static
model.
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7 Conclusions

Oligopoly theory identi¯es several plausible pricing models that may apply to the California elec-

tricity market. Despite the fact that it is a commodity, electricity has special characteristics such

as non-storability and very inelastic demand which can allow individual ¯rms to withhold output

and raise the price. In addition, the market is cleared through a daily auction between a small

number of players with substantial information about one another. Such repeated interaction would

appear to be an environment ripe for collusion. This paper investigates the pricing behavior in the

California wholesale electricity market from its inception in April 1998 until its collapse in late

2000. I use ¯rm-level production and cost data to test whether ¯rms exercised market power and

make inferences about the underlying pricing behavior. I focus on a particular hour of the day

(hour 18) for which my measure of conduct is likely to yield the most accurate estimates. I directly

measure market power and test if the observed price-cost margins are more consistent with static

or dynamic pricing.

I ¯nd direct evidence of market power: units systematically have unused capacity when price

is above marginal cost. To di®ering extents, all ¯ve large new generation owners exercised market

power from 1998-2000. In addition, I compare the same generating units' capacity utilization rates

when owned by the old utilities and the new generation owners and ¯nd evidence that the new

generation owners suppress output.

Price-cost margins varied substantially over time with higher margins during the higher demand

third and fourth quarters of each year. I estimate the extent to which high margins resulted from less

competitive conduct and/or less elastic demand which a®ords ¯rms more opportunity to exercise

market power. During 1998-99, I generally fail to reject Cournot pricing and ¯nd that much of

the variation in margins is driven by changes in the residual demand that the ¯ve ¯rms face. In

addition, I ¯nd that the market was slightly more competitive in 1999 than in 1998.

Conclusions about ¯rm behavior in 2000 are less clear. An important policy question is whether

the rapid increase in prices during the second half of 2000 was more related to increases in input

costs, higher demand, or less competitive behavior by generators. Results suggest behavior was
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distinctly less competitive (Figure 6) but the shift was not as dramatic as prices would suggest.

Other factors contributing to price increases were higher natural gas and emission costs and less

elastic residual demand. Finally, I should emphasize that my estimates of anticompetitive behavior

for 2000 are likely understated to the extent that ¯rms forward contracted some of their output.

Market power is likely to have larger e®ects on prices than on welfare. Because total demand

for electricity is nearly perfectly inelastic, there is unlikely to be a large amount of substitution

away from electricity towards other less e±cient sources of energy. The largest welfare e®ect of

market power is likely to be ine±cient production of electricity. Low cost generation withheld by

the large strategic ¯rms is replaced by higher cost generation by fringe ¯rms.

These ¯ndings bear on a set of issues that arise in designing deregulated electricity markets

in other states and countries. Many jurisdictions are currently in the process of deregulating the

generation sector of the electricity industry, and this paper con¯rms earlier work that market

power is a concern. Policymakers must consider the magnitude and source of market power when

considering market design issues such as divestiture of power plants, trading institutions, and

bidding rules. Prescriptions for mitigating market power can depend upon the underlying pricing

game. If market power is a unilateral/static phenomenon, then increasing the number of players

in the game through further divestiture or new entry can make the market more competitive.

Alternatively, if they are required to forward contract a large fraction of their output, ¯rms will

have less incentive to withhold output to drive up the price in the spot market. However, if there is

evidence that ¯rms begin to engage in some form of dynamic pricing, regulators may wish to focus

on the design and frequency of the auction. Some work has suggested that collusion is less likely

under discriminatory auctions than uniform-price auctions.57 Also, market designers could reduce

the frequency of interaction by auctioning the right to sell electricity every week or month rather

than every day. Finally, an asymmetric divestiture process that divides the industry into a large

and several small ¯rms may make tacit collusion more di±cult to coordinate and sustain.

57See Klemperer [2000] and Fabra [2000].
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Table 1: Post-Divestiture Thermal Market Structure

(54% of Total CA Capacity)

Firm Capacity (MW) Pct Capacity

AES 3921 22%

Reliant 3698 21%

Duke 3343 19%

Southern 3130 18%

Dynegy 2871 16%

PG&E 570 3%

Thermo Ecotek 274 2%
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Table 2: Hour 18 Price-Cost Margins When Firms Not at Capacity

% hours NOT Price-Cost Margin ($/MWh) Median
Firm at capacity Mean Median St Dev Min Max Lerner

Capacity ´ 90% Nameplate

DukeSouth 88 77.42 16.47 133.31 -29.05 695.02 .26
Southern 99 38.34 12.10 81.56 -21.21 1046.57 .27
Reliant 94 32.25 7.91 76.68 -25.41 686.50 .22
Dynegy 100 26.00 3.51 73.42 -31.23 689.49 .10
AES 99 22.20 3.66 93.30 -1514.56 685.44 .11
Duke 88 19.98 4.15 45.73 -20.16 474.59 .13

Capacity ´ 80% Nameplate

DukeSouth 79 69.44 16.76 115.96 -29.05 690.50 .24
Southern 94 37.16 11.93 81.82 -21.21 1048.27 .27
Reliant 94 32.90 8.44 77.26 -25.41 686.50 .23
Dynegy 99 26.25 3.47 73.88 -31.23 689.49 .10
AES 94 19.90 3.28 94.01 -1514.56 687.35 .10
Duke 80 16.94 3.53 38.95 -20.16 392.10 .11

This table represents summary statistics when ¯rms are not operating at capacity and can increase output. The
price-cost margin is the di®erence between price and the marginal cost of the highest marginal cost unit which is
operating and has excess capacity. The manufacturer (or nameplate) rated capacity of a generator may overstate
the actual capacity if the unit degrades over time. To account for possible nameplate degrading, I de¯ne capacity as
both 80% and 90% of nameplate capacity.

Notes:
(1) The large negative margin for AES represents a day in which a unit was operating but in the process of starting
up so that the emission costs were high.
(2) The Lerner index ´ price¡MC

price is presented as a general measure of market power. I use the median rather than
the mean because the Lerner index does not treat negative and positive margins as symmetric. For example, if price
is $10 and marginal cost is $1, the Lerner index is 10¡1

10 = 0:9. However, if price is $1 and marginal cost is $10, the
Lerner index is 1¡10

1 = ¡9. Therefore, the mean of the Lerner index may not be a meaningful measure of average
competitiveness in the presence of negative margins.
(3) The r̄m \DukeSouth" represents the generating units owned by Duke in the southern part of the state when
transmission capacity constraints are binding. Transmissions constraints tend to bind when demand (and perhaps
the potential to exercise market power) are high.
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Table 3: Average Firm Price-Cost Margins by Time of Day ($/MWh)

Year
1998 1999 2000*

Hour 18 15.00 10.88 62.28

Peak (9am-10pm) 9.27 6.91 47.56

O®-Peak (11pm-8am) -7.47 -7.02 -6.01

* January-November 2000.
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Table 4: Estimate of Fringe Supply and Strategic Supply Relations for Hour 18y

4 Firm Market* 5 Firm Market**

Fringe Strategic *** Fringe Strategic ***

Dependent Variable: lnQSfringe t (P ¡ c)it ln QSfringe t (P ¡ c)it

P¢q
Qsfringe

{ 7.183 { 5.883
{ (0.170) { (0.108)

¸ ($/MW) { 25.947 { 59.423
{ (1.490) { (2.526)

Log(Price) 0.149 { 0.203 {
(0.013) { (0.009) {

Log(GasPrSouth) -0.262 { -0.140 {
(0.095) { (0.113) {

Log(GasPrNorth) -0.087 { -0.079 {
(0.060) { (0.122) {

Log(Di®65TempNeigh) 0.012 { -0.025 {
(0.016) { (0.008) {

Constant 9.865 { 9.440 {
(0.051) { (0.055) {

N 268 573
R2 0.70 0.52

µ̂ 1.07 1.19
(0.09) (0.06)

Fringe represents equation (7) and Strategic represents equation (8). Standard errors are in parentheses.

Note: Day and month-year dummies are included in the fringe supply equation but are not reported here.
y I exclude hours (in 2000) when the price cap is hit. 8% of hour 18 observations in 2000 hit the price cap with the majority

occuring in August.

* 7/1/98-4/15/99.

** 4/16/99-11/30/00.

*** Although the system contains a supply relation for each ¯rm, the coe±cients are restricted to be equal in this model.
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Table 5: Static Conduct Parameters by Quarter and Firm for Hour 18y

By Quarter: Conduct Parameter, Avg Margin, and Resid Demand Elasticity

Quarter Estimate Std Error Margin ^́Dstrat
98Q3 1.25 0.19 23.46 -1.30
98Q4 1.77 0.38 8.87 -3.02
99Q1* 1.27 0.31 2.59 -5.09
99Q2* 0.76 0.12 3.28 -1.63
99Q3 0.74 0.14 14.97 -0.49
99Q4 1.49 0.20 15.67 -1.26
00Q1 -1.02 0.46 1.12 +3.76
00Q2 1.91 0.15 37.25 -1.11
00Q3 1.72 0.20 89.76 -0.65
00Q4 1.38 0.27 43.16 -0.89

By Firm and Time Period: Conduct Parameter

4 Firm Market** 5 Firm Market***

Firm Estimate Std Error R2 Estimate Std Error R2

Southern { { { 1.51 0.08 0.84
Reliant 1.12 0.10 0.82 1.20 0.06 0.83
Duke 1.16 0.11 0.87 1.21 0.07 0.85
AES 0.87 0.08 0.80 0.96 0.09 0.35
Dynegy 4.70 0.46 0.75 2.38 0.13 0.80

June-November 2000

Firm Estimate Std Error R2

Southern 1.74 0.14 0.86
Reliant 1.40 0.11 0.85
Duke 1.40 0.12 0.91
AES 1.12 0.17 0.36
Dynegy 2.81 0.24 0.83

y I exclude hours (in 2000) when the price cap is hit. 8% of hour 18 observations in 2000 hit the price cap with the majority

occuring in August.

*Due to a new strategic ¯rm entering April 16, 1999, I extend 99Q1 through April 15 and begin 99Q2 on April 16.

** 7/1/98-4/15/99

***4/16/99-11/30/00
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Table 6: Dynamic Conduct Parameters by Quarter

Quarter Estimate Std Error

98Q3 0.15 0.05
98Q4 1.07 0.25
99Q1* 0.02 0.02
99Q2* 0.11 0.04
99Q3 0.62 0.13
99Q4 0.58 0.11
00Q1 -0.34 0.16
00Q2 2.19 0.18
00Q3 1.92 0.24
00Q4 0.62 0.18

*Due to a new strategic ¯rm entering April 16, 1999,

I extend 99Q1 through April 15 and begin 99Q2 on April 16.
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Figure 1:  Price-Cost Margins in Hour 18 
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Figure 2:  Hour 18 Prices and the Price Cap in 2000 
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Figure 3:  Input Cost Shocks in 2000 
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Figure 4:  Average Firm Price-Cost Margins in All Hours ($/MWh) 
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Figure 5:  Unit Utilization Rates Pre- and Post-Divestiture 

 
 

 
 
 
Kernel regression of utilization rates on profit margins of units operating in hour 18.  Post-
divestiture refers to units when owned by the new generation owners and pre-divestiture refers to 
units when owned by the original utilities.  The estimated relationship for pre-divestiture units is 
less stable because there were very few high margin hours during the period before divestiture. 
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Figure 6:  Static Behavioral Model 
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Kernel regression of price-cost margins on instrumented –P'q for firm-hours when the capacity 
constraint is not binding (lambda=0).  The slope of the relationship is an estimate of the conduct 
parameter under static pricing.  In the top panel, nine outlier observations with large and small 
margins are excluded.   
 


