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Appendix A: Supplemental Information for Utility Stock Options Analysis 

Methodology for CAPM Analysis: 
This analysis estimates a firm’s cost of equity capital using the seminal CAPM first developed by Sharpe (1964)a and 
the multifactor models that were formulated later by Fama and French (1995) and Carhart (1997)b (the “Fama-French 
plus Momentum multifactor model”) to incorporate effects related to firm size, relative valuation and momentum.c The 
CAPM can be estimated empirically via the following regression model that regresses the returns of a company’s 
stock (Ri,t) in excess of the risk-free rate (Rf,t) for a particular set of days (t) on the “excess” returns of the overall U.S. 
stock market’s returns (Rm,t – Rf,t). The regression line produced by the model is called the security characteristic line 
(SCL), which measures the performance of a security against that of the market portfolio over a period of time. The 
SCL is plotted on a graph where the y-axis is the excess return of the security over the risk-free rate and the x-
access is the excess return of the overall market. 

𝑆𝑆𝑆𝑆𝑆𝑆 → 𝑅𝑅𝑖𝑖,𝑡𝑡 − 𝑅𝑅𝑓𝑓,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖(𝑅𝑅𝑚𝑚,𝑡𝑡 − 𝑅𝑅𝑓𝑓,𝑡𝑡) + 𝜀𝜀𝑖𝑖,𝑡𝑡 

In the above model, the key components to estimate by regression are the two parameters αi and βI, which are 
commonly referred to as “alpha” and “beta.”d The slope of the SCL is the security’s beta and the intercept is its alpha. 
As noted earlier, beta represents the relative riskiness of a firm’s stock returns to the overall stock market, and in 
CAPM theory represents the firm’s “systematic” risk, which cannot be diversified away via the holding of a large 
portfolio of securities. Beta is a pure number and the overall market’s beta is set to 1. Thus, for most U.S. stocks the 
beta is positive and ranges between 0.5 and 2.0. 

In contrast to beta, the regression estimate of alpha should be zero on average because, according to the CAPM, a 
firm should not generate a stock return that is significantly different from the return that it is “required” to earn (i.e., the 
return the firm should earn based on its beta, the market risk premium, and the risk-free rate). So, firms that possess 
a positive alpha are providing what economists call a “free lunch” to investors because these firms’ stock returns are 
above what they are required to earn while firms with negative alphas are delivering returns below what they should 
earn.e 

In summary, firms that possess a positive alpha are providing stock returns above what they are required to earn 
while firms with negative alphas are delivering returns below what they should earn. 

In equilibrium, all firms should have a zero alpha because investors will drive up the prices of positive alpha stocks 
(thus lowering their returns) and push down the prices of negative alpha stock (and increasing their returns). 
Consequently, if some firms have consistently positive alphas over a long period of time, one may conclude that the 

                                                           
a William F. Sharpe (1964) Capital asset prices: a theory of market equilibrium under conditions of risk,” Journal of Finance 19, 425-442. 
b Eugene F. Fama and Kenneth R. French (1995) “Size and Book-to-Market Factors in Earnings and Returns,” Journal of Finance 50, pp. 131-

155; and Mark M. Carhart (1997) “On Persistence in Mutual Fund Performance,” Journal of Finance 52, 57-82. 
c To streamline the discussion, PJM focuses on the “simple” CAPM approach, but, where relevant, PJM also describes the results of the Fama-

French plus Momentum multi-factor model. As reported below, the results from the more complicated model serve as a robustness check 
and confirm the simple CAPM results in all material respects. 

d The variable, ει,t, is an error term, also referred to as a residual, and, by construction, is zero on average within a regression model. 
e A negative alpha means that a stock is generating returns less than what investors require. In contrast to a positive alpha’s “free lunch,” a 

negative alpha is essentially an “overly expensive lunch” from the investors’ standpoint. 
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market is not efficiently pricing these stocks in order to move alpha to zero in due time. This conclusion also holds 
true for stocks with consistently negative alphas. 

To test the above model, PJM ran CAPM regressions on daily return data for each firm in the sample for every year 
from 2000 to 2015. This approach allows firms to enter and exit the analysis to mitigate potential survivorship bias 
and thus enables one to average the alphas and betas for both merchant and regulated firms for each year. In 
addition, it allows the measures of alpha and beta to vary each year as financial markets and economic conditions 
fluctuate greatly over the 16-year period. PJM estimated 351 sets of alphas and betas for 2000-2015 and then 
averaged them for the two groups during each year to create 16 annual estimates of alphas and betas for merchant 
and regulated firms, as shown in the CAPM Results section below. PJM then compared the average values of alpha 
and beta across these two types of firms for each year in order to examine whether certain firms were riskier than 
others and whether there were any significantly positive or negative alphas. 

The results were the alphas and betas of the CAPM (and for the multifactor Fama-French plus Momentum model as 
a robustness check) for each of the nine publicly traded merchant firms and 22 regulated firms. Table 1 below 
provides a complete list of the 31 firms. 

Table 1. List of companies used to estimate the CAPM risk measures: 

Merchant Firms 

Company Name Ticker 
AES Corporation AES 
Calpine Corp. CPN 
Dynegy Inc. DYN 
GenOn Energy Holdings Inc. GEN 
Mirant Corporation MIR 
NRG Energy, Inc. NRG 
Reliant Resources Inc. RRI 
Southern Energy (precursor to MIR) SOE 
Talen Energy Corp TLN 
 

Regulated Firms 

Company Name Ticker 
Ameren Corp AEE 
Cleco Corp New CNL 
Edison International EDE 
Great Plains Energy Inc. GXP 
Idacorp Inc. IDA 
Kansas City Power & Light KLT 
Alliant Energy Corp LNT 
Madison Gas & Electric Co MDSN 
M G E Energy Inc. MGEE 
Minnesota Power Inc. MPL 
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Nextera Energy Inc. NEE 
Northern States Power Co MN NSP 
NV Energy Inc. NVE 
O G E Energy Corp OGE 
Otter Tail Power Co OTTR 
Public Service Co NM PNM 
Pinnacle West Capital Corp PNW 
Portland General Electric Co POR 
Scana Corp SCG 
Southern Co SO 
Western Resources Inc. WR 
X C E L Energy Inc. XEL 

Data Sources: 
For January 2000 through December 2015, PJM used CRSP daily return data for the underlying merchant and 
regulated stocks as well as market-wide measures such as the CRSP Value-Weighted Total Return Index’s return 
and other factors such as one-month Treasury-bill rates, as well as Fama-French and Carhart factors related to firm 
size, relative market valuation and momentum. 

Bloomberg’s option page (OMON) and other functions were used to retrieve the option-related implied and historical 
volatilities based on currently traded options on the merchant and regulated firms, as of March 29, 2016. 

Options-Related Results: 
The below analysis of utility stock options confirms the beta results as described in the main body of the paper. 

In addition to the CAPM-related findings, we can examine the total risk, or volatility, of a firm’s stock returns using 
standard deviation as an alternative risk metric. With respect to the options data, the implied and historical volatilities 
based on March 29, 2016, options for merchant firms range from 2.8 and 3.9 times larger than the volatilities of 
regulated firms’ options. Thus, merchant firms have historically experienced higher stock return volatility and options 
investors are expecting this volatility to continue into the future, as evidenced by the high implied volatilities reported 
below. This confirms the earlier beta analysis which showed that merchant firms are perceived as much riskier than 
regulated firms. See Table 2 below for details. 
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Table 2. List of Stock Options used to Estimate the Standard Deviations of Annual Returnsf 

Source: Bloomberg OMON page accessed March 29, 2016. 

Based on the above results and analysis, we can conclude that investors view merchant firms as much riskier than 
regulated firms, with betas that are 37-65 percent higher and standard deviations that are nearly three-to-four times 
greater. Thus, one would expect merchant firms to earn a much higher level of return than the firms that are more 
tightly regulated. However, the opposite seems to be true as the consistently positive alphas for regulated firms 
indicates these companies are earning returns higher than what they should be expected to earn given their much 
lower level of risk. 

                                                           
f The first column of each row refers to the specific stock option used in the analysis. For example, in the first row of data, it refers to a call 

option on Calpine stock (CPN) with a strike (or exercise) price of $14 per share with an expiration date of June 17, 2016. 

Call Option's                          
Maturity & Strike Ticker

Expiration 
Date

Open 
Interest

Implied 
Volatility % 
(Mid Price)

Historical 
Volatility % 
last 30 Days

Historical 
Volatility % 
last 60 Days

Historical 
Volatility % 
last 90 Days

CPN US 06/17/16 C14 CPN 6/17/2016 346           42.92 38.8 55.13 52.29
DYN US 06/17/16 C12.5 DYN 6/17/2016 574           71.93 76.83 91.03 90.62
NRG US 06/17/16 C12 NRG 6/17/2016 1,318        59.13 64.05 71.44 81.04
TLN US 07/15/16 C7.5 TLN 7/15/2016 540           63.16 79.28 74.76 71.97
AES US 05/20/16 C11 AES 5/20/2016 5,708        31.45 33.17 39.48 36.3

Merchant Firm's Average 1,697       53.72 58.43 66.37 66.44
Merchant Firm's Median 574           59.13 64.05 71.44 71.97

MGEE US 05/20/16 C50 MGEE 5/20/2016 41             24.22 27.02 24.89 22.97
XEL US 06/17/16 C40 XEL 6/17/2016 907           19.76 13.5 15.24 16.23
AEE US 06/17/16 C50 AEE 6/17/2016 666           17.45 17.45 18.2 19.15
GXP US 06/17/16 C30 GXP 6/17/2016 313           22.35 13.74 18.11 18.29
POR US 06/17/16 C40 POR 6/17/2016 106           20.43 18.76 20.77 21.48
LNT US 07/15/16 C72.5 LNT 7/15/2016 10             17.49 13.94 16.36 19.17
CNL US 06/17/16 C55 CNL 6/17/2016 614           1.98 51.77 36.45 30.23
IDA US 05/20/16 C75 IDA 5/20/2016 67             20.28 15.23 16.92 17.28
NEE US 06/17/16 C115 NEE 6/17/2016 2,296        17.43 16.34 17.15 18.45
OGE US 06/17/16 C30 OGE 6/17/2016 115           19.5 28.36 28.31 25.69
OTTR US 07/15/16 C30 OTTR 7/15/2016 135           20.44 16.73 25.71 23.81
PNM US 05/20/16 C35 PNM 5/20/2016 15             22.41 18.51 19.46 18.69
SCG US 05/20/16 C70 SCG 5/20/2016 707           17.39 13.94 16.13 18.08
SO US 05/20/16 C50 SO 5/20/2016 4,588        15.89 14.34 15.65 15.41
WR US 05/20/16 C50 WR 5/20/2016 122           31.55 28.23 25.53 24.01

Regulated Firm's Average 713           19.24 20.52 20.99 20.60
Regulated Firm's Median 135           19.76 16.73 18.20 19.15

Ratio of Avg. Merchant / Avg. Regulated  (x) 2.8 2.8 3.2 3.2
Ratio of Median Merchant / Median Regulated  (x) 3.0 3.8 3.9 3.8
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Appendix B: Empirical Analysis of Coal Unit Upgrades and Retirements under MATS 

Background 
On December 16, 2011, the Environmental Protection Agency issued the final Mercury and Air Toxics Standards 
(MATS) rule. The final rule requires coal- and oil-fired electric generating units with a capacity of 25 megawatts or 
greater to meet limits on emissions of mercury, acid gases and nonmetallic hazardous air pollutants1,2. Compliance 
with the standards was required by April 2015. However, the rule ensured that generators needed to maintain grid 
reliability could obtain a one-year compliance extension from state environmental permitting agencies. 

To meet emissions standards, power plants can use a range of pollution control technologies, such as wet and dry 
scrubbers, dry sorbent injections systems, activated carbon injection systems, fabric filters and electrostatic 
precipitators. The capital cost of upgrades is typically significant, on the order of tens of millions of dollars. On the 
other hand, failure to comply with the standards results in civil penalties of $35,000 per violation per day under the 
Clean Air Act, additional state penalties and exposure to civil liability. Generators needed to decide whether to invest 
in pollution control technologies, switch fuels or retire. 

Retirement decisions are based on the relative economics and regulatory environment of the electricity markets. A 
unit may retire if higher coal prices, lower wholesale electricity prices (often tied to natural gas prices) or reduced 
utilization make investment in equipment such as scrubbers uneconomical. 

The purpose of the present study was not to estimate the impact of MATS regulation on coal generation overall but to 
analyze how units respond in the face of rising costs in different regulatory environments. 

Natural Experiment 
Because the MATS rule is a federal mandate, all coal units that meet the rule’s criteria are required to comply. The 
units are required to comply by a hard deadline, rather than over a period of years, which creates a measureable 
timeframe for decisions on investment or retirement. MATS differs from other recent environmental policies in that 
compliance requires more capital investment instead of increased expenses or reduced operations. Moreover, 
because MATS was issued four years after the implementation of PJM’s Reliability Pricing Model Capacity Market, it 
provides a natural experiment to examine how investment and capital allocation decisions differ between regulated 
and competitive market paradigms with respect to investment or retirement decisions. 

Literature Review 
The last half of the 1990s and the first of the 2000s provided a fortuitous natural experiment in which generation 
facilities operating under both competitive market and cost-recovery paradigms faced identical environmental rules 
for the control of sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions. In each case, generators could choose to 
comply with more expensive, capital-intensive controls or less costly options, such as switching fuels or participating 
in the associated emissions trading markets. 

An array of independent analyses show that regulated utilities made less cost-effective compliance decisions in 
response to the rules, e.g. Bohi and Burtraw (1992), Fullerton, McDermott and Caulkins (1997), Ariumra (2002), 
Sotkiewicz (2003), and Sotkiewicz and Holt (2005). 

Both Ariumra (2002) and Fowlie (2010) specify logistic regression models to estimate the effect of traditional 
regulation. Fowlie finds that generation resources in competitive states were less likely to adopt capital-intensive 
compliance options than regulated facilities or those that are owned/operated by public power 
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Hypothesis 
The natural experiment of MATS allows comparison of capital investment decisions by coal unit owners in regulated 
cost-recovery environments relative to those in competitive markets. The hypothesis is that PJM’s competitive 
markets will drive economically efficient outcomes more often than regulated environments. Put another way: 
justifiable investments in upgrades (e.g., meeting an economic threshold cost) are hypothesized to be more likely in 
PJM and unjustifiable investments less likely in PJM. 

Regression Model for Testing Hypothesis 
The hypothesis is tested with a population-averaged logistic regression in which the decision to announce retirement 
is modeled for coal-fired generation units. The retirement decision is measured by observing actual plant retirements, 
or, in some cases, published announcements of future retirements. A panel data set is used for the estimation period 
of 2011 to 2013 using the following theoretical model: 

Pr(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) =  
1

1 + exp �−  �𝛽𝛽0 + ∑ 𝛽𝛽1𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑡𝑡 +  ∑ 𝛽𝛽3𝑘𝑘𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 +  ∑ 𝛽𝛽4𝑚𝑚𝐺𝐺𝑖𝑖𝑖𝑖𝑀𝑀
𝑚𝑚=1

𝐾𝐾
𝑘𝑘=1

𝐽𝐽
𝑗𝑗=1 ��

 

Where: 

• 𝛽𝛽0 is the intercept 
•  𝛽𝛽1is the estimated independent variable coefficient in which J is the number of included variables 
• 𝑋𝑋𝑖𝑖𝑖𝑖 is the independent variable j for each generator i at time t 
• 𝛽𝛽2 is the estimated coefficient of time 
• t is time 
• 𝛽𝛽3𝑘𝑘is the estimated coefficient of time-dependent covariate k 
• K is the number of time-dependent covariates 
• 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 is the time-dependent covariate k of generator i at time t 
• 𝛽𝛽4𝑚𝑚 is the regression coefficient of time-independent covariate m 
• M is the number of time-independent covariates 
• Gim is the time-independent covariate m of generator i. 

The following independent variables were included in the model and are discussed in depth in the following sections: 

• PJM 
• Age 
• Age*PJM 
• Size 
• Capacity factor 
• Estimated MATS associated upgrade costs (EnvUpgradeCosts) 
• EnvUpgradeCosts*PJM 

Variables and Data Collection 
Retirements 
The decision to retire was analyzed for a total dataset of 703 coal-fired generating units located within the continental 
United States. Data on the year of an actual (or in some cases announced) retirement or fuel switching was gathered 
from several sources, including SNL, EIA and press releases. A fuel switch that precludes coal firing was considered 
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a retirement. Any retirement between 2011 and 2016 was counted as taking place during the relevant MATS period. 
Actual retirements were treated the same as announced retirement for any year within the MATS period. All units 
with a 2016 retirement and some units with a 2015 retirement were announcements rather than ex post facto 
retirement. 

Although the final MATS rule was finalized in December 2011, the outlines of the coming rule were clear by the end 
of 2010g. Therefore, units that retired in the year 2011 (but not before) are considered to have done so in anticipation 
of MATS. Additionally, while MATS required that generators comply by April 2015, it allowed for states to permit 
conditional extensions into 2016 if the plant was considered critical to grid reliability. Reliability extensions accounted 
for 18.8 percent of the retirements, while almost 41 percent of retirements were in 2015. This pattern is consistent 
with findings from the EIA Annual Energy Outlook 2014 in which MATS-associated retirements peak in 2015 but 
persist into 2016.3  

Regulatory Environment 
In some areas with competitive markets for electric energy, entry and exit of generation units does not take place due 
to market signals. Rather, new entry is due to decisions by a regulated utility that will be supported by cost recovery 
from the rate base. For the purposes of capital investment, these areas are effectively regulated monopolies, rather 
than competitive markets. 

In other competitive market areas, price signals do exist for entry and exit in the form of a capacity market similar to 
that in PJM. However, the capacity market price signal can vary in importance. Consider a market area in which most 
new generation is not driven by a capacity price. This may be because new generation units, built by regulated 
utilities, enjoy cost recovery regardless of capacity revenue. In this case, the capacity price may not support new 
entry on its own. Such a market area may not enjoy the characteristics of a competitive market with respect to capital 
investment. These areas, too, are effectively regulated monopolies, rather than competitive markets, for the purposes 
of capital investment. 

For most, if not all, generation investors in PJM, capacity market revenue is a significant part of the decision to invest. 
This applies both to new units and to significant capital upgrades such as those required for MATS compliance. 

Finally, consider a regulated utility that builds generation, subject to cost recovery, in a competitive market with a 
strong capacity price. The capacity price provides a clear signal of the market cost of an additional unit of new 
generation capacity that is hard for regulators and utilities to ignore. In this case, the competitive market price drives 
efficient outcomes in new entry and exit even for regulated utilities that enjoy cost recovery for generation. 

For this study, generation units were partitioned into two groups, PJM and regulated, according to these criteria: 

• Units located within the PJM footprint per the EIA were defined as PJM. This group represents 
approximately one quarter of the sample, 

• Generators located outside of PJM’s footprint and within a regulated state in which investment costs were 
recovered through regulated rates were characterized as regulated. 

Table 3 below shows states for which any part was included in the definition. Some states (e.g., Indiana), appear in 
both categories. Such states are regulated states that are partially in PJM. Units within such states that are in the 

                                                           
g Oct. 22, 2009 EPA signed a consent decree (attached) to propose a Maximum Available Control Technology rule for coal and oil units by 

March 2011, and finalize by Nov. 2011. EPA published an Information Collection Request in Dec 2009 and released the data in Nov 2010. 
An industry brief from M.J. Bradley & Associates dated January 12, 2011 used this information to calculate expected emissions limits from 
the imminent rule. 
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PJM footprint are marked as ‘PJM’ units. Those outside the PJM footprint are marked as “Regulated” if they meet the 
above criteria. 

Table 3. States Represented in “PJM” and “Regulated” Coal Unit Populations 

PJM Regulated, non-PJM 

DE TN AL LA NV 

IL VA AR MI OK 

IN WV AZ MN SC 

KY  CO MO SD 

MD  FL MT TN 

MI  GA NC UT 

NC  IA ND WA 

NJ  IN NE WI 

OH  KS NH WY 

PA  KY NM  

 

PJM expanded during the observation period to integrate American Transmission Systems, Inc. and Cleveland Public 
Power (2011) and East Kentucky Power Cooperative (2013). EKPC has three coal-fired power plants with 10 units. 
This compares to approximately 176 coal units studied in all of PJM. EKPC had been a PJM member and market 
participant since 2005, and first studied integration to PJM in 2011. All EKPC units were fully integrated into PJM 
markets and operations for MATS compliance deadlines in both 2015 and 2016. 

All units in the 2015 PJM footprint are considered PJM units for this study. 

There is not an a priori expectation of the outcome of this variable alone. Note the hypothesis is testing in the 
interaction of this variable and the environmental upgrade cost variable, as described below. 

Age 
Age of the unit was calculated as 2015 minus in-service date. In-service dates were collected from the EPA’s Air 
Markets Program database. This database aggregates operational and environmental data for any unit subject to at 
least one regulation under the Clean Air Act and was extracted in December 2015. 

The average age for generators in this analysis was 43 years. Generators that retired tended to be older, with an 
average age of 53, while generators that remained in operation tended to be younger by approximately 14 years. 
Figure 1 below displays retirement by age group. Older groups tend to have a higher percentage of units that retire. 
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 Figure 1. Coal Retirement by Age: United States (2011-2016) 

 

This difference in age between generators that retire versus those that remain in operation may be the result of 
several factors. In general, older units tend to have relatively higher emissions rates, are less efficient, have higher 
operating costs, and a higher frequency of both forced and unforced outages. As a result, as generators increase in 
age, it is expected that the probability of announcing retirement increases. 

Age*PJM 
The interaction of the PJM variable and the age variable shows contrast in the way that PJM units respond to 
increasing age relative to the way that regulated units do. It is expected that PJM is more sensitive to increases in 
age beyond the mean age. This increased relative responsiveness is demonstrated in Figure 2 below in which 
generators located within PJM tend to have higher shares of retirement as the age moves further away from the 
average age of 43 years. 

 Figure 2. Coal Retirement by Age: PJM versus Regulated Areas, (2011-2016) 

 

Size 
Size, measured in MW, was collected from the EIA. Due to economies of scale and other factors, smaller units are 
expected to be more likely to retire. Figure 3 below demonstrates that larger units tend to have a lower percentage of 
retirements. 
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 Figure 3. Coal Retirement by Nameplate Capacity: United States (2011-2016) 

 

Capacity Factor 
Capacity factor data was collected from the EPA’s Air Markets Program database. It is the ratio of a unit’s actual 
output to its maximum possible output over one year. The average capacity factor for generators that retired was 35 
percent. This is low compared to the average 60 percent capacity factor for generators that remained in operation. 

A priori, it is expected that as capacity factor increases, the probability of retirement decreases. This is consistent 
with the data shown in Figure 4 below, which displays the percentage of generators retiring by capacity factor: 

 Figure 4. Coal Retirement by Capacity Factor: United States (2011-2016) 

 

Environmental Upgrade Costs 
The cost of upgrades to comply with MATS is a key indicator in this study, since high upgrade cost is the primary 
driver of retirements during this period. Upgrade costs were modeled as described below. 

Environmental technology cost calculations by Sargent and Lundy, from the EPA Integrated Planning Model, were 
adapted in order to model the capital and operating costs of environmental upgrades required to comply with the 
MATS rule. The necessary operational data on all coal units in the United States were collected from EPA and SNL 
and modeled the upgrade costs for each unit. The environmental upgrade cost model calculates the capital 
investment as well as increased variable and fixed operating costs for the predicted retrofits required to meet MATS. 
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The model chooses among various pollution control technologies depending on the magnitude of historical emissions 
of pollutants like SO2 and NOx. All upgrade costs, including capital expenditures with a 20-year life, are converted 
into a $/MW-day figure for easy comparison. 

PJM used a similar information and cost model framework in its 2011 study of MATS. It would have been the best 
information available to generation owners during the period of time when they were making a decision on how to 
respond to MATS. 

A single environmental upgrade cost was used for each unit. Where possible, the cost was modeled based on 
emissions data from 2011. Units that either retired or upgraded in 2011 were considered to have responded to 
MATS. However, because 2011 represents an incomplete record of pre-MATS emissions, emissions data from 2010 
was used for such units. Units that retired prior to 2011 were excluded from the analysis. Units that upgraded prior to 
2011 were considered to have upgraded for reasons not related to MATS. 

Some units were already compliant with MATS at the beginning of the observation period, and so have a modeled 
cost of zero. For plants that were not already compliant with MATS, an observed non-retirement was taken to imply 
an upgrade and confirmed where possible by observations of actual upgrade investments. 

A priori, it is expected that as environmental upgrade costs rise, the probability of retirement rises. Figure 5 below 
demonstrates such a trend. 

 Figure 5. Coal Retirement by Environmental Upgrade Cost: United States (2011-2016) 

 

Environmental Upgrade Costs*PJM 
To test the hypothesis that PJM units are more sensitive to higher upgrade costs, the interaction of the “PJM” 
variable with the “Environmental Upgrade Cost” variable was modeled. Figure 6 below compares PJM and regulated 
areas with respect to unit retirements at different levels of MATS upgrade costs. Considering that the average 
estimated upgrade cost is approximated $230 per MW-day, it appears that PJM is more responsive to increasing 
costs. This becomes particularly pronounced for units as the cost increases surpass the average. 
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 Figure 6. Coal Retirement by Environmental Upgrade Cost: PJM versus Regulated Areas, (2011-2016) 

 

Variables Tested but Not Included 
The following variables were tested and found to be insignificant during the observation period: 

• Average natural gas prices 
• Unit-specific coal prices 
• Non-fuel operations and maintenance cost 
• Heat rate 

Table 4 displays the all descriptive statistics by year, regulatory environment and retirement announcement status: 
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Table 4. Descriptive Statistics 

 2011  2012 2013 

 Announced Retirement Remained in Operation Announced Retirement Remained in Operation Announced 
Retirement 

Remained in Operation 

 PJM Regulated PJM Regulated PJM Regulated PJM Regulated PJM Regulated PJM Regulated 

Age             
N 76 125 100 392 73 118 98 394 40 94 96 395 

Range 41.00 -
64.00 

 

39.00 - 
62.00 

 

1.00 - 
59.00 

0.00 - 62.00 42.00 - 
65.00 

32.00 - 
63.00 

2.00 - 
58.00 

 

0.00 - 
61.00 

 

42.00 - 
63.00 

 

33.00 - 
64.00 

 

3.00 - 
58.00 

 

1.00 - 
62.00 

 

Mean +/- 
Standard 
Deviation 

55.16 +/- 
4.84 

52.78 +/- 
6.02 

41.66 +/- 
10.22 

37.77 +/- 
12.86 

55.85 +/- 
5.15 

53.13 +/- 
6.44 

42.31 +/- 
10.01 

38.45 +/- 
13.15 

55.18 
+/- 5.85 

53.94 +/- 
6.65 

43.10 +/- 
9.98 

39.42 +/- 
13.04 

Capacity Factor            
N 76 125 100 392 73 118 98 394 40 94 96 395 

Range 0.01 - 
0.90 

 

0.01 - 0.88 

 

0.13 - 
0.93 

0.01 - 0.97 <0.01 - 
0.76 

<0.01 - 
0.85 

0.04 - 
0.88 

 

0.02 - 0.99 

 

0.04 - 
0.85 

 

<0.01 - 
0.81 

 

0.03 - 
0.88 

 

0.01 - 0.99 

 

Mean +/- 
Standard 
Deviation 

0.27 +/- 
0.22 

0.41 +/- 
0.20 

0.56 +/- 
0.21 

0.63 +/- 
0.18 

0.19 +/- 
0.17 

0.30 +/- 
0.24 

0.47 +/- 
0.21 

0.56 +/- 
0.21 

0.26 +/- 
0.19 

0.36 +/- 
0.25 

0.54 +/- 
0.23 

0.59 +/- 
0.22 

Size             

N 76 125 100 392 73 118 98 394 40 94 96 395 

Range 34.50 - 
615.20 

 

27.00 - 
575.00 

 

50.60 - 
1425.60 

37.50 - 
1300 

34.50 - 
615.20 

27.00 - 
575.00 

50.60 - 
1425.60 

 

37.50 - 
1300.00 

 

46.00 - 
615.20 

 

29.30 - 
575.00 

 

50.60 - 
1425.60 

 

37.50 – 
1300 

Mean +/- 
Standard 

174.18 
+/- 

147.83 +/- 
108.02 

552.41 +/- 
328.69 

402.70 +/- 
256.40 

174.76 
+/- 

157.49 +/- 
117.32 

561.53 
+/- 

405.40 +/- 
256.62 

230.40 
+/- 

152.54 +/- 
117.27 

570.61 
+/- 

408.05 +/- 
256.88 
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Deviation 101.70 105.00 325.67 141.17 322.74 

Total Estimated Environmental Upgrade Costs         
N 76 125 100 390 73 115 98 390 40 91 96 391 

Range 44.50 - 
745.40 

 

60.57 - 
765.29 

 

0.00 - 
411.87 

0.00 - 
584.24 

44.50 - 
847.97 

60.57 - 
765.29 

0.00 - 
382.09 

 

0.00 - 
584.24 

 

44.50 - 
847.97 

60.57 - 
753.50 

 

0.00 - 
382.09 

0.00 - 
584.24 

 

Mean +/- 
Standard 
Deviation 

315.57 +/- 
124.34 

377.37 +/- 
143.71 

134.18 +/- 
115.53 

195.15 +/- 
148.13 

331.76 
+/- 

133.51 

372.20 +/- 
144.08 

128.54 
+/- 

109.63 

194.47 +/- 
148.32 

315.36 
+/- 

129.37 

369.65 +/- 
147.40 

130.69 
+/- 

109.73 

194.70 +/- 
147.65 
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Method 
Estimation Technique 
This analysis used a panel dataset collected for the years 2010 to 2013 to estimate the probability of coal-fired units 
announcing retirement. Panel models relate cross-sections over time, thus measuring the impact of differences in 
both time-variant and invariant effects. In allowing for variation across space and time, panel models result in a more 
efficient and robust estimation technique relative to cross-sectional or time series alone. An advantage of this 
increased information is that it lessens problems of multicollinearity4. The primary benefit of panel models, however, 
is that they correct for unobserved heterogeneity and mitigate bias due to omitted variables. 

Each generator has fundamental attributes that are different from one another, such as quality of management, local 
political influences or varying tolerance to risk. If these traits influence behavior, then they are considered omitted 
variables and bias the estimated coefficients. In collecting repeated outcomes for the same set of generators over 
time, the many factors that are related to retirement decisions are effectively held constant within plants. Thus, this 
method implicitly controls for influential, idiosyncratic characteristics.5 

Although the repeated measures approach alleviates within-subject omitted variable bias, it does not come without 
statistical complications. Observations of the dependent variable within generators may no longer be considered 
independent nor may it be reasonable to assume that the errors are independent and identically distributed.6 While 
the error is assumed stochastic across units, within-subject retirement decisions across the estimation period may be 
highly correlated. For instance, generators that opt not to retire in 2012 have a higher probability of not retiring in 
2013. This within-subject dependence is known as correlated outcomes and must be accounted for to obtain proper 
estimates of variability used in statistical inference. 

To correct for within-subject dependence in models of non-Gaussian distributions, Liang and Zeger introduced 
generalized estimating equations (GEEs) in their seminal 1986 paper.7 Known as population-averaged, or marginal 
models, this estimation technique extends traditional linear models through a nonlinear link function. Conclusions 
about the population mean are made by relating the average outcome at each occasion to the included covariates in 
which the expected probability at any given time is a function of the covariates and their average response observed 
at that time.8,9 The resulting estimated coefficients describe differences in the average response of observations for 
which all other covariates are identical.4 For example, interpretation of the regulatory environment coefficient 
compares the predicted odds of retirement for the hypothetical average generator located in PJM to the predicted 
odds for the hypothetical average generator located within a regulated area. 

GEEs iteratively solve a system of equations based on quasi-likelihood distributional assumptions. Full distributional 
assumptions are not necessary for this estimation technique. Instead, marginal models only require specification of 
the first two statistical moments. Both the mean and variance are conditioned upon the covariates, in which the 
variance structure is specified through a link function and is dependent upon the population mean. To account for 
within-subject correlation, a working correlation structure which contains a “best guess” of the within-subject 
correlation pattern is specified. The choice of correlation pattern is often unclear a priori. However the four most 
common matrices are as follows: 
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1. Independent: Repeated observations are uncorrelated. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑌𝑌𝑖𝑖𝑖𝑖) =  �   
1   𝑗𝑗 = 𝑘𝑘
0   𝑗𝑗 ≠ 𝑘𝑘        Ex. Ri|ni = 4:  �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� 

2. Unstructured: Correlations within any two responses are unknown and must be estimated. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑌𝑌𝑖𝑖𝑖𝑖) =  �
    1      𝑗𝑗 = 𝑘𝑘  
𝛼𝛼𝑗𝑗𝑗𝑗    𝑗𝑗 ≠ 𝑘𝑘          Ex. Ri|ni = 4:  �

1 ∝12 ∝13 ∝14
∝12 1 ∝23 ∝24
∝13 ∝23 1 ∝12
∝14 ∝24 ∝34 1

� 

 

3. Autoregressive of first order: Equal correlation for given time lag k. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑌𝑌𝑖𝑖𝑖𝑖+1� =  ∝𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 0, … ,𝑛𝑛𝑖𝑖−𝑗𝑗       Ex. Ri|ni = 4:   �
1 ∝ ∝2 ∝3
∝ 1 ∝ ∝2
∝2 ∝ 1 ∝
∝3 ∝2 ∝ 1

� 

 

4. Exchangeable: Correlation between any two responses of the ith individual is the same. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌𝑖𝑖𝑖𝑖 ,𝑌𝑌𝑖𝑖𝑖𝑖) =  �
  1   𝑗𝑗 = 𝑘𝑘
   0   𝑗𝑗 ≠ 𝑘𝑘       Ex. Ri|ni = 4:   �

1 ∝ ∝ ∝
∝ 1 ∝ ∝
∝ ∝ 1 ∝
∝ ∝ ∝ 1

� 

Where Ri[α] is a working correlation matrix with a vector of unknown parameters.10 

The GEE method uses the specified working correlation structure to compute an initial, “naïve” model estimate 
through the specified link function. The residuals and model-based estimated within-subject dependencies,𝛼𝛼�, are 
then used to re-estimate coefficients and empirical standard errors. This procedure is iterated until convergence and 
results in consistent, robust estimates of the regression parameters and their variances.7 

Model Specification 

Link Function 
Marginal models allow for the probability distribution to be a member of various exponential distributions through 
nonlinear link functions. Selection of the appropriate link function is dependent upon type of data and assumed 
distribution of the outcome variable. For this analysis, the outcome was framed as a dichotomous phenomenon: a 
generator either did or did not announce retirement. When modeling for such binary outcomes, it is common practice 
to use a logistic or probit model. The choice between the two is mostly subjective in nature. In practice, results from 
the two models tend to lead to nearly identical conclusions.11 For GEEs, logistic link functions are ubiquitous 
throughout the literature and were therefore selected as the link function for this study. 
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Working Correlation Matrix 
For balanced panels, the choice for the working correlation is flexible because the GEE method is resilient to 
misspecification of working correlation patterns. Because the empirical standard errors reflect sample dependence, 
incorrect guesses of the within-subject dependence leads to little efficiency loss.7 Assuming that the chosen link 
function and included covariates truly describe how the average expected response relates to the explanatory 
variables, GEE model parameter estimators converge in probability to the true parameters.12 

However, the panel in this analysis is unbalanced. Since some generators retired during the estimation period, not all 
units have an equal number of observations. While GEEs allow for unbalanced panel designs, only the independent 
working correlation structure may be used, although standard errors for these panels tend to be larger due to loss of 
efficiency.13,14,15 But such estimators can have surprisingly good efficiency when the actual correlation is weak-to-
moderate.7 A sensitivity in which the sample is restricted to generators that remain in operation during the entire 
estimation period was conducted and is discussed further in the sensitivities section. 

Overdispersion 
Overdispersion occurs when binary data exhibits variances that are larger than assumed under the specified 
distribution. Although the parameter estimates are not affected, this unanticipated additional variance impacts 
hypothesis testing. Since the population standard deviation is greater than expected for overdispersed data, standard 
errors are underestimated and t-statistics become inflated. The risk of Type I error increases as erroneous inferences 
are more likely to occur because insignificant relationships appear significant.16 

To test for overdispersion the following dispersion factor was estimated using the approach recommended by 
McCullagh and Nelder (1989)17: 

𝜎𝜎2� =  
𝜒𝜒2

(𝑁𝑁 −𝐾𝐾)
 

where 𝜒𝜒2 is the Pearson goodness-of-fit statistic divided by the degrees of freedom. A 𝜎𝜎2�  greater than one suggests 
overdispersion. Likewise, a 𝜎𝜎2�  less than one is indicative of underdispersion. The data was tested for overdispersion, 
in which an estimated dispersion factor greater than one was obtained. To correct for additional variation, the 
covariance matrix and log likelihoods were scaled. 

Outliers 
To identify influential outliers the Cook’s distance (Di) statistic was used. Observations with a Di greater or equal to 
4
𝑁𝑁�  were considered potential influential outliers. These observations were ranked in descending order by their 

estimated Di and eliminated on an individual, incremental basis. A new Di was estimated after each elimination cycle, 
and the observations were re-sorted into descending order. This identification and elimination process was repeated 
until the overall fit improved but general conclusions remained unchanged. Eight outlier units were removed as a 
result of this process. 

Variable Selection 
After adjusting for overdispersion, various linear combinations of variables were tested for significance. Following the 
method set forth by Milliken and Johnson (1984), variable selection was determined through an iterative constrained 
optimization process.18 The first linear combination included all considered variables. This combination was then 
constrained to equal zero, and maximum likelihood estimates were computed. Likelihood ratio statistics were then 
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computed for each variable. The variable with the least significant likelihood ratio was eliminated and the process 
was repeated with the new combination. Table 5 below contains each test and the associated p-values. 

Table 5. Variable Selection P-Values 

 

Variable Iteration I Iteration II Iteration III Iteration IV Iteration IV 

PJM <0.0001 <0.0001 0.0005 0.0003 <0.0001 

PJM*Age <0.0001 <0.0001 0.0049 0.0027 0.0004 

Age 0.0396 0.0363 0.0004 0.0015 0.0010 

Size 0.0523 0.0339 <0.0001 <0.0001 <0.0001 

Capacity Factor <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

EnviroCosts <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

PJM*EnviroCosts 0.0526 0.0484 0.0447 0.0354 0.0296 

Fuel Ratio 

    (Coal $MW-hr/Natural Gas $MW-hr) 

0.1298 0.1282 0.1134 0.1127 - 

Heat Rate 0.3872 0.3726 0.3604 - - 

Non-fuel Fix O&M Costs 0.4183 0.4166 - - - 

Non-fuel Variable O&M cost 0.9041 - - - - 
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Estimation Results 
Table 6 below displays the estimated odds ratios. Under this specification, all the included variables are statistically 
significant and the model correctly estimates retirement decisions 84 percent of the time. 

Estimated Odds Ratios 
Table 6. Odds Ratios for Coal-fired Power Plants Announcing Retirement 

Parameter Description Odds Ratio Odds Ratio Confidence 
Interval 

Intercept   0.005** 0.002 0.016 
PJM  Located within PJM footprint 0.078** 0.009 0.682 
Age Year - Unit In Service Year 1.052** 1.007 1.098 
Age*PJM Interaction variable 1.097** 1.079 1.115 
Size MW 0.999** 0.998 0.999 
CapFac % 0.057** 0.032 0.103 
EnviroCosts 20 Yr Capital Recovery, $MW-day 1.005** 1.005 1.006 

EnviroCosts*PJM Interaction variable 1.003** 1.001 1.005 
**significant at a 5% level 

  

 

The model estimates that the hypothetical average generator, with average values for all its characteristics, is 12.8 
times less likely to retire when located in PJM, relative to the same average generator located within a regulated 
area. This odds-ratio corresponds with low predicted probabilities of the average generator retiring, regardless of 
regulatory environment. Since the average generator is a hypothetical generator that is of average age, size, capacity 
factor and upgrade costs, it is intuitive that the generator would not be predicted to retire, as they are not at risk.  
Figure 7 below demonstrates that, while the average generator located in PJM is estimated to be less likely to 
announce retirement, relative to their regulated counterparts, neither unit is at risk. 

 Figure 7. Probability 

 

N =2,682 

 

QIC= 450.28 

 
Percent correctly estimated: 84.15% 

 

QICu = 462.68 
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The traits of the hypothetical average generator are as follows: 

Variable Mean 
Size 361 MW 
Age 43 years old 
Capacity Factor 53% 
EnvUpgradeCosts $229/MW-d 

 

As expected, there is a positive relationship between age and the probability of announcing retirement. It is estimated 
that an increase of one year from the average age results in a 5.2 percent increase in the odds of retirement. When 
interacting age with the PJM variable, the model predicted that generators located within PJM's footprint retire older 
units at a faster rate, relative to generators located within regulated, non-PJM states. 

Both size and capacity factor exhibit an inverse relationship with respect to retirement decisions. A one MW increase 
in size is estimated to result to less than a 1 percent decrease in the odds of retirement. When increasing plant size 
by 10 MW, the odds of retirement decreases by 1 percent. Likewise, a 1 percent increase in capacity factor leads to 
an estimated 2.9 percent decrease in the odds of retirement. 

The model estimates that a $1/MW-day increase in environmental upgrade cost results in less than 1 percent 
increase in the odds of retirement. When increased by $10/MW-day, the odds of retirement increases by 5.1 percent. 
When interacting the MATS-associated environmental upgrade costs with PJM, this model estimates that unit 
retirements in the PJM footprint are more sensitive to cost increases relative to their regulated counterparts. That is, 
an increase in upgrade cost beyond the mean drives a higher increase in retirement share in PJM relative to 
regulated areas. 

Figure 8 below compares average predicted probabilities of announcing retirement with respect to upgrade costs for 
PJM versus regulated generators. Each probability charted below is the average of the predicted probabilities for the 
actual units in each bin. 
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 Figure 8. Predicted Probability of Retirement by Environmental Upgrade Cost: PJM vs non-PJM (2011-
2016) 

 

Generators with an estimated probability of 50 percent or more are predicted to retire. In general, the model does not 
expect generators with upgrade costs of less than $300/MW-day to retire. However, units with relatively high upgrade 
costs are predicted to retire, and those high-cost units located in PJM have a still higher probability of retirement. This 
suggests that PJM generation owners are less likely to keep very expensive units in operation, relative to owners in 
regulated environments. The retirement pattern estimated by the model closely follows what was actually observed, 
which is in Figure 9 below: 

 Figure 9. Observed Retirement by Environmental Upgrade Cost: PJM vs. Regulated Areas (2011-2016) 
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Sensitivities 
Balanced Panel 
To assess if the unbalanced panel introduced bias or inefficiency, the sample was restricted to include only units that 
remained in operation throughout the entire estimation period of 2011 to 2013. The model was then re-estimated with 
the restricted sample as otherwise previously specified. 

Regulatory Environment 
The definition of regulated was re-stipulated as a robustness check. In the original model, a generator was 
considered regulated if it was located outside PJM’s footprint and able to recover costs by way of a regulated rate-of-
return through customer rates. This included some generators that were located within an ISO/RTO and is discussed 
in depth in the Regulatory Environment description. To test for robustness in results with respect to the definition of 
regulated, the model was re-estimated excluding generators that are located outside of PJM but within an ISO/RTO. 

Retirement Window 
MATS required that generators come to compliance by April 2015, with conditional extensions into 2016. However, it 
is possible that some retirement announcements scheduled for beyond 2016 could be attributed to MATS. As an 
additional sensitivity, the retirement announcement window was broadened to encompass announcements until the 
end of 2019. 

Estimation and Results 
Table 7 below displays the sensitivity results in the following order: Sensitivity I re-estimates the original model with a 
restricted dataset that includes only generators that remained in operation during the full estimation period. 
Sensitivity II respecifies the original model but extends the retirement window to 2019. Finally, the definition of 
regulated is tested in which Sensitivity III has a retirement window of 2011 to 2016 and Sensitivity IV‘s retirement 
window ends in 2019. 
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Table 7. Odds Ratios for Sensitivity Analysis 

 Sensitivity I Sensitivity II 
 

Sensitivity III 
 

Sensitivity IV 
 

Parameter Description Odds Ratio Confidence 
Interval 

Odds 
Ratio 

Confidence 
Interval 

Odds 
Ratio 

Confidence 
Interval 

Odds 
Ratio 

Confidence 
Interval 

 Intercept   0.001** 0.000 0.004 0.010** 0.004 0.026 0.040** 0.013 0.127 0.019** 0.006 0.058 

PJM  Located within PJM footprint 0.061** 0.004 0.927 0.061** 0.010 0.393 0.215 0.043 1.084 0.063** 0.013 0.303 

Age*PJM Interaction variable 1.114** 1.090 1.138 1.087** 1.071 1.104 1.052** 1.033 1.072 1.071** 1.052 1.091 

Age Year - Unit In Service Year 1.042** 1.016 1.096 1.072** 1.030 1.115 1.045** 1.010 1.080 1.071** 1.036 1.108 
Size MW 1.000 0.999 1.001 0.999 0.998 1.000 0.999** 0.998 0.999 0.999 0.999 1.000 

CapFac % 0.071** 0.037 0.135 0.066** 0.038 0.114 0.072** 0.040 0.131 0.154** 0.088 0.268 

EnviroCosts 20 Yr Capital Recovery, $MW-day 1.006** 1.005 1.007 1.005** 1.004 1.006 1.006** 1.005 1.008 1.005** 1.004 1.007 

EnviroCosts*PJM Interaction variable 1.006** 1.002 1.010 1.000 0.998 1.002 0.998 0.996 1.000 0.997** 0.996 0.999 
N = 2,442 QICu= 408.95  N =2,726 QICu= 507.79  N =2,018 QICu= 501.10  N =2,030 QICu= 563.94 

Correctly estimated: 86.49%  Correctly estimated: 82.05%  Correctly estimated: 82.73%  Correctly estimated: 79.75% 

Table 8. Title 

Where the probability that a generator announces retirement is estimated given the following robustness checks: 

Model Change Retirement Window Definition of Regulated 

Sensitivity I Balanced panel 2014 to 2016 Regulated, non-PJM 
Sensitivity II Retirement window 2011 to 2019 Regulated, non-PJM 
Sensitivity III Regulated definition 2011 to 2016 Regulated, non-ISO/RTO 
Sensitivity IV Regulated definition & retirement window 2011 to 2019 Regulated, non-ISO/RTO 

 

 

**significant at a 5% level 
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Sensitivity I: Balanced Panel 
Results from the first sensitivity did not vary greatly from the original model, with the exception that the size variable 
was no longer statistically different from zero. The overall fit slightly improved and the model increased in accuracy 
by just less than two percentage points. Because the results are qualitatively similar and the standard errors and fit 
are generally stable, it is unlikely that the unbalanced panel is causing significant bias of loss of efficiency. 

Sensitivity II: Retirement Window = 2011 to 2019 
Extending the retirement window to end in 2019 produced similar estimated effects as the 2011 to 2016 model. As in 
the original model, the hypothetical average generator located in the PJM footprint is predicted to be less likely to 
retire, relative to the average generator located within a regulated environment. This model estimates that PJM tends 
to be more responsive to increases beyond the average age, relative to their regulated counterparts. Additionally, this 
sensitivity supports the original findings that there is a positive relationship between the probability of announcing 
retirement and both increases in age and MATS associated upgrade costs. Unlike the original model, however, size 
and a difference in the rate at which PJM responds to increased upgrade costs were not found to be statistically 
different from zero. 

Sensitivity III: Regulated = regulated, non-ISO/RTO 
The robustness of results with respect to the definition of regulated was tested in the final two sensitivities, in which 
“regulated” was re-specified to exclude generators located within an ISO/RTO. Sensitivity III mostly supported the 
previous findings. However, under this definition of “regulated,” there was not a statistically significant difference in 
the odds of retirement for the average generator located within PJM, relative to a regulated environment. Likewise, 
this specification did not estimate a statistically significant difference in how responsive PJM is to increasing upgrade 
costs when compared to its regulated counterpart. 

Sensitivity IV: Regulated = regulated, non-ISO/RTO & Retirement Window = 2011 to 2019 
Sensitivity III was re-estimated with the retirement window if 2011 to 2019. Results for this final robustness check 
generally supported the original findings. Similar to Sensitivities I and II, size was found to have a statistically 
insignificant impact on the probability of announcing retirement. Unlike the previous sensitivities, however, the 
interaction of PJM and estimated MATS-associated upgrade costs was found to be negative and statistically 
significant. This finding is counter to the original model. 

Table 9 below summarizes the general findings for all models: 
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Table 9. Results 

Variable Original Model Sensitivity I Sensitivity II Sensitivity III Sensitivity IV 
PJM Less likely Less likely Less likely No statistical difference Less likely 

Age More likely More likely More likely More likely More likely 

Age*PJM PJM is more 
responsive 

PJM is more 
responsive 

PJM is more 
responsive 

PJM is more 
responsive 

PJM is more 
responsive 

Size Less likely No statistical 
impact 

Less likely Less likely No statistical 
impact 

Capacity Factor Less likely Less likely Less likely Less likely Less likely 

EnviroCosts More likely More likely More likely More likely More likely 

EnviroCosts*PJM PJM is more 
responsive 

PJM is more 
responsive 

No statistical 
difference 

No statistical 
difference 

PJM is less 
responsive 

 

Discussion and Conclusion 
In general, these findings are consistent with the hypothesis that coal unit owners in PJM are more likely to make 
economically efficient decisions about retirement than those in regulated regions outside PJM. 

The most direct finding supporting this hypothesis is the significant and positive value for the PJM term interacted 
with the environmental cost term. Holding all else equal in the regression model, the predicted probability of 
retirement of hypothetical units in PJM increases more sharply with increasing environmental costs relative to the 
same units in a regulated regime. That is, PJM units as a whole are more sensitive, and respond more sharply, to 
increases in environmental cost. 

The strength of this finding is moderate. An increase of $10/MW-day from the average environmental upgrade cost of 
$229/MW-day results in an increase in the retirement rate for both PJM and regulated units. The resulting increase in 
the retirement rate of PJM units is 3 percent higher than the increase in the retirement rate of regulated units. 

A seemingly contrary finding is that a hypothetical unit with average traits is predicted by the regression model to be 
12.8 times less likely to retire in PJM than the same hypothetical unit in a regulated regime. This apparent 
contradiction is, in fact, an important finding. Consider that the average unit has a relatively low environmental 
upgrade cost, a relatively high capacity factor, and is unlikely to retire whether modeled in PJM or in regulated: 0.7 
percent in PJM, and 8.7 percent in regulated. The average coal generation unit is economically efficient and 
generally remains in operation, and is significantly more likely to remain in operation in PJM than in regulated areas. 

Three of the sensitivities tested are inconsistent with the hypothesis. These include both sensitivities that set the 
definition of “regulated” to exclude all RTOs, as well as the sensitivity with regulated equal to non-PJM but the 
consideration of MATS retirements extended to 2019. This reflects the moderate strength of the finding, as well as 
fundamental differences between sensitivities. 

As follows, this analysis argues that the primary sensitivity is the most appropriate, and therefore most relevant, 
finding. First, 2016 is the most appropriate deadline for considering a retirement as being driven by MATS (since it is 
the last year that non-compliance is allowed). Second, units located in RTOs for which the generation mix is primarily 
driven by rate recovery, rather than market revenues, are most appropriately categorized as regulated units. Readers 
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that disagree with these premises might instead favor the results of alternate sensitivities. Readers that find merit 
with all sensitivities might consider the moderate strength of the finding and conclude that there is no major difference 
in the investment decisions of coal units between PJM and regulated areas. 
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