Mixed Integer Programming The State of the Art

Robert E. Bixby

Gu-sobi
Optimization

A Definition

A mixed-integer program (MIP) is an optimization problem of the form

$$
\begin{aligned}
& \text { Minimize } c c \\
& \text { Subject to } \quad A x=b \\
& l \leq x \leq u \\
& \text { some or all } x_{j} \text { integer }
\end{aligned}
$$

Unit-Commitment Models

Electrical Power Industry, ERPI GS-6401, June 1989: Mixed-integer programming (MIP) is a powerful modeling tool, "They are, however, theoretically complicated and computationally cumbersome"

> In Other Words: MIP is an interesting modeling "toy", but it just doesn't work in practice.

This perception began to change in 1999.

From the Rutger's DIMACS Meeting 1999: California 7-Day Model

UNITCAL_7 : 48939 constraints, 25755 variables (2856 binary)

Reported Results 1999 - machine unknown
2 Day model: 8 hours, no progress
7 Day model: 1 hour to solve initial LP
Desktop PC -- ran full 7-day model
CPLEX 6.5 (1999): 22 minutes, optimal TODAY (2015): 15 seconds, optimal

Computational History: 1950-1998

- 1954 Dantzig, Fulkerson, S. Johnson: 42 city TSP
- Solved to optimality using LP and cutting planes
- 1957 Gomory
- Cutting plane algorithms
- 1960 Land, Doig; 1965

Dakin

- B\&B
- 1964-68 LP/90/94
- First commercial application
- IBM 360 computer
- 1974 MPSX/370
- 1976 Sciconic
- LP-based B\&B
- MIP became commercially viable
- 1975-1998 Good B\&B remained the state-of-the-art in commercial codes, in spite of
- Edmonds, polyhedral combinatorics
- 1973 Padberg, cutting planes
- 1973 Chvátal, revisited Gomory
- 1974 Balas, disjunctive programming
- 1983 Crowder, Johnson, Padberg: PIPX, pure 0/1 MIP
- 1987 Van Roy and Wolsey: MPSARX, mixed 0/1 MIP
- TSP, Grötschel, Padberg, ...

1998 ... A New Generation of MIP Codes

- Linear programming
- Stable, robust dual simplex
- Variable/node selection
- Influenced by traveling salesman problem
- Primal heuristics
- 12 different tried at root
- Retried based upon success
- Node presolve
- Fast, incremental bound strengthening (very similar to Constraint Programming)
- Presolve - numerous small ideas
- Probing in constraints:

$$
\begin{aligned}
& \sum x_{j} \leq\left(\sum u_{j}\right) y, y=0 / 1 \\
& \rightarrow x_{j} \leq u_{j} y(\text { for all } j)
\end{aligned}
$$

- Cutting planes
- Gomory, mixed-integer rounding (MIR), knapsack covers, flow covers, cliques, GUB covers, implied bounds, zero-half cuts, path cuts

MIP Speedups

Some Test Results

- Test set: 1852 real-world MIPs
- Full library
- 2791 MIPs
- Removed:
- 559 "Easy" MIPs
- 348 "Duplicates"
- 22 "Hard" LPs (0.8\%)
- Parameter settings
- Pure defaults
- 30000 second time limit
- Versions Run
- CPLEX 1.2 (1991) -- CPLEX 11.0 (2007)

CPLEX Version Performance Improvements (1991-2008)

\square V-V Speedup

Progress: 2009 - Present

Gurobi MIP Library

(3550 models)

MIP Speedup 2009-Present

- Starting point
- Gurobi 1.0 \& CPLEX 11.0 ~equivalent on 4-core machine
- Gurobi Version-to-version improvements
-Gurobi 1.0 -> 2.0: 2.4X
-Gurobi $2.0->$ 3.0: 2.2X (5.1X)
- Gurobi $3.0->4.0$: $1.3 X(6.6 \mathrm{X})$
- Gurobi 4.0 -> 5.0: 2.0X (12.8X)
- Gurobi $5.0->6.0$: 2.2X (27.6X)
-Gurobi 6.0 -> (6.5): 1.7X (46.0X)
- Machine-independent IMPROVEMENT since 1991
- Over 1.3 million X -- 1.8X/year

Suppose you were given the following choices:

- Option 1: Solve a MIP with today's solution technology on a machine from 1991
- Option 2: Solve a MIP with 1991 solution technology on a machine from today

Which option should you choose?

- Answer: Option 1 would be faster by a factor of approximately 300.

Thank you

