Dynamic Pricing

June 2, 2016 Harvard's Electricity Policy Group

Discussion Topics

- Microgrid Architecture
- Utility Microgrids: Building a Foundation for Price Response
- The Role of Dynamic Pricing
- Dynamic Pricing Optimization & Customer Investment

- Through LEED, USGBC created a common language, standard, and framework for advancing knowledge, technology and innovation in sustainable buildings
- Now USGBC aims to repeat LEED's success for the energy delivery system leveraging PEER

Performance Excellence in Electricity Renewal [™]

MICROGRID ARCHITECTURE

Microgrid Architecture

Utility Microgrid Mapping

Substation	Performance			
Outage Metrics	City	Utility		
Frequency	2.6	1.2		
Duration, min	1,700	160		
Utilization	45%	55%		
% of Capacity	93%	NA		

Shifting the Focus to Performance

Capabilities

- Islanding
- Protected infrastructure
- Renewable generation
- Demand reduction
- District energy
- Load shifting
- Auto-restoration
- Grid services

Performance Outcomes

Capital waste / costs 50% Interruptions 100% Energy waste 50% Peak demand 25% **Emissions** 50% Resiliency 100%

PEER Performance Scorecard Examples

Performance Criteria	Performance
Outage Duration (SAIDI) & Frequency (SAIFI)	240 min / 1.3
Price Response & Grid Service (DR, storage, gen)	10%
Load Duration Curve (Utilization)	45%
% of Capacity	93%
Reliability & Resiliency Capability	
Islanding Capability	5%
Substation Alternate Supply	0%
Distribution Auto Restoration	40%
Distribution Redundancy	40%
Distribution Master Controller	0%
Energy Efficiency and Environmental Index	75%
Energy Efficiency, MMBtu / MWh	9
CO2 Intensity, Ib. / MWh	1,100
Water Intensity, gal / MWh	300
Renewable generation	5%

UTILITY MICROGRIDS: Building a Foundation for Price Response

Utility Microgrids Building a Reliable and Resilient Distribution System

Radial

Self Healing, Load Shifting, &

Two-Way Power Flow

Utility Microgrids Resiliency: Critical and Essential Service

Critical and Essential Service	Circuits	Address	Resiliency Capability
Local Hospital			
Police Station/Coms			
Storm Water Pumping Station A			
Storm Water Pumping Station B			
Convalescent Center			
Senior Home			
High School (Shelter)			

Utility Microgrids Master Controller

http://www.energynautics.com/downloads/publikationen/Paper Energynautics Overview Danish Cell Project.pdf 13

Leverage Utility Microgrids

Establish new service / revenue riders

- Master Controller
- City Grid Investment
 - City direct investment
 - Rider LGC
- New Development
- Smart Grid Investment
- District Energy

NATE MODULAR SURFACES

THE ROLE OF DYNAMIC PRICING

Dynamic Pricing Goals and Impacts

TABLE 1: Efficacy of Various Rate Structures in Achieving Select Outcomes

	EVENT-BASED RATES				MAR	(ET-BASED	RATES			
DESIRED OUTCOME	Flat Price	DR Payment	CPP	Direct Load Control	Rebate for Reduction	TOU Pricing	Tiered Pricing	Real- Time	Day- Ahead	Increasing Block
Conservation	low	low	low	low	low	high	high	med	med	med
Consumer cost reduction	low	low	low	low	low	low	med	high	med	low
CO ₂ reduction	low	low	low	low	low	med	high	med	med	low
Permanent demand reduction	low	low	low	low	low	med	high	med	med	low
Temporary demand reduction	low	high	high	high	med	low	low	low	low	low
Load shifting (e.g. PHEV)	low	low	low	low	low	high	high	high	high	low
Price responsiveness	low	med	low	low	med	med	high	high	high	low

Source: Galvin Electricity Initiative

Utility Operational Effectiveness: Customer Capability

Utility Microgrids Working with and Leveraging Customers

Utility Microgrids Working with and Leveraging Customers

Rate structures can influence load curves for customers

Net Impact:

Overall Utility Load Curve is Flattened

Investment in Expansion is Avoided

Less Reliance on Expensive Peaking Units and Elastic Markets DYNAMIC PRICING OPTIMIZATION & CUSTOMER INVESTMENT

Using TOU to Manage Customer Action

[|] PPI PROPRIETARY INFORMATION

Flat Rate

	Baseline	BULK AREA
Peak demand / CHP size, kW	2,000 / 600	GRID OPERATOR
Total Consumption, kWh/year	10,000,000	
On-Peak (9am to 6pm, M-F)	\$80	АМІ
Off-peak	\$80	
Generator Annual Output, %	52%	(*)-METER (*) (*)
Generator Operations Cost, \$/MWh	\$60	
Capital Cost for 1,000 kW CHP, \$	\$1,200,000	
Annual Electric Savings, \$/year	\$105,000	Simple Payback: 11 years

TOU Rate

	Baseline	Dynamic Pricing
Peak demand / CHP size, kW	2,000 / 600	2,000 / 600
Total Consumption, kWh/year	10,000,000	10,000,000
On-Peak (9am to 6pm, M-F)	\$80	\$210
Off-peak	\$80	\$55
Generator Annual Output, %	52%	16%
Generator Operations Cost, \$/MWh	\$60	\$60
Capital Cost for 1,000 kW CHP, \$	\$1,200,000	\$1,200,000
Annual Electric Savings, \$/year	\$105,000	\$230,000
GRID OPERATOR		
Dynamic Pricing Contract	Simple	Payback: 5 ye a

Customer Price Response Case Study Boston MA

Medical Campus Microgrid 6 Million Square Feet 70 Buildings

User	M sq-ft
Outpatient	2.6
Inpatient	2.4
Office	1.0

Peak Demand: 15.5 MW

Annual: 75,000 MWh

Thermal: 190,000 MMBtu/yr

Case Study Rates Scenarios & Assumptions (2015 prices)

Description	CASE 1 NSTAR	CASE 2 NGRID
Demand Charge - Summer, \$/kW-mo	23	4
Demand Charge – Winter, \$/kW-mo	18	4
Standby Charge, \$/kW-mo	8.6	0
T&D Charge On-Peak, \$/MWh	10	46
T&D Charge Off-Peak, \$/MWh		38

Description	CASE 1	CASE 2
Power Supply Cost, \$/MWh	75 / RTP	69 / RTP
Natural Gas Fuel Cost, \$/MMBtu	7.5	7.5
ISO Capacity Charge, \$/kW-yr	40.8	40.8

Customer Annual Load Duration Curve

Customer Baseline Annual Energy Costs

Description	Sample Project 1 (\$/MWh)	Sample Project 2 (\$/MWh)
Thermal Energy	21	21
Electric Energy	131	126
Power Supply	75	69
Demand/Standby Charge	40	8
Capacity Charge	8	8
T&D	8	41
Power Factor		
Power Quality Damage		
Power Outage Costs		
Baseline Cost	152	147

Microgrid Islanding & Price Response Capability

RTP Price Duration Curve NE ISO Boston 2014

Microgrid Operating Strategies Case 1 Real-Time Procurement 2014

Microgrid Operating Strategies Case 1 Demand Charge Reduction Demand Charge Savings NSTAR =\$12 / MWhNGRID = \$4 /MWh 18,000 Total Load 16,000 Demand (KW) RTP Rate 14,000 RTP+DC 12,000 10,000 8,000 6,000 Grid 47% Supplied 4,000 48% 2,000 **Off-peak** 0 Hourly 8760 (Sorted Highest to Lowest)

Microgrid Capital and Operating Costs

	Capital	Generation	O&M Cost	SEI (MMBtu/MWh)	
Description	Cost (\$000±30%)	Fixed (\$/kW-yr)	Variable (\$/MWh)	Min	Max
3 MW Turbine & HRSG	6,300	0	8	6	12
5 MW Cogeneration	10,500	0	12	7	9
6 MW Reciprocating Engine	9,500	0	12		10
500 kW DR for Conservation	500				
1 MW DR for Load Curtailment	1,000				
Master Controller	800	\$150,000 in additional operating costs			g costs
Gross Project Cost*	29,680				

Microgrid Annual Savings and Payback

Description	NSTAR	NGRID
Baseline Cost	152	147
Thermal Energy*	6	6
Power Supply*	37	32
Demand/Standby Charge*	12	4
Capacity Charge*	5	5
Electric Distribution*	3	15
Ancillary Service	1	1
Energy Storage	1	1
Demand Response	3	2
Microgrid Operations	(2)	(2)
Savings	66	64
% Savings	43%	44%
Simple Payback	6.0	6.2
* Includes generation fuel and O&M costs		

Utility Revenue Losses

Description	NSTAR	NGRID
Baseline Utility Revenue/Losses	48 / 26	49 / 25
Demand/Standby Charge*	40 / 22	8 / 8
Electric Distribution*	8 / 4	41 / 17
% Lost Revenue	54%	51%
Utility Cost in \$/kW-yr	\$125	\$115

 After five years, apply standby charge to recoup losses while offering ancillary service payments for demand response / peak load management.

Utility Dynamic Rate Optimization

- Continue to utilize standby charge to limit overall DER investment
- Utilize targeted dynamic rates and standby waiver (e.g. five years) to attract investment
 - Essential / critical service
 - Substations nearing capacity limits or for solar PV / PEV
 - Targeted ancillary service payments for demand response / peak load management
 - Transition to dynamic distribution rates, demand based rates, and dynamic demand charges

Utility Microgrid Outcomes and Benefits

- Utilize self-healing distribution to enable two-way power flow and load shifting
- Leverage utility master controller and customer DER to increase utilization, defer capital costs, and provide for real-time load management and movement
- Targeted dynamic pricing to encourage investment in DER to create a price responsive or elastic distribution system that:
 - Lowers wholesale prices
 - Protects essential / critical service

QUESTION AND ANSWER