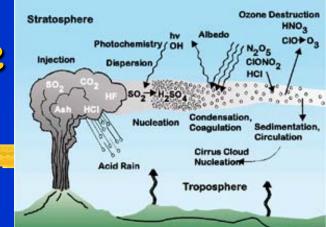
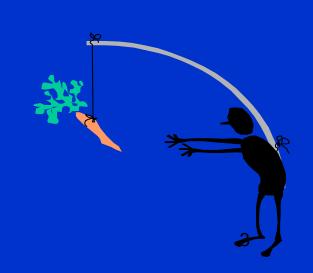

Carbon Policy Where is the Light Good?

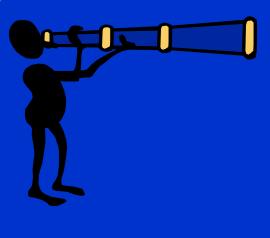
Richard O'Neill, Member
Chief Economic Advisor
Federal Energy Regulation
Commission
richard.oneill@ferc.gov

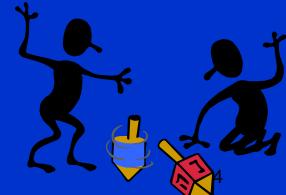

Harvard Electricity Policy Group.


Cap And Trade Experience from SO2 Markets

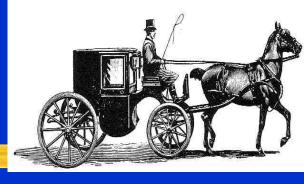
- → Title IV of the 1990 Clean Air Act required reductions in 502 and NOx emissions
 - **☞SO2** program affected 3,456 electric generators
 - NOx program affected 982 coal-fired generators
- ⇒Since 1995, the ARP has:
 - reduced SO2 and NOx emissions
 - rimproved water quality in lakes and streams.
- reduced implementation costs by allowing choose cost-effective compliance choices
- Prices much lower than anyone predicted

carbon policy in the US


- CO₂
- A federal carbon price is not near
- → Is there an effective federal carbon policy without a carbon price?
- ⇒what 'second best' 'two-fors' are achievable?
- → Thinking a century ahead
 - → Not Katrina
 - **options** approach
- → The incentives matter
 - *subsidize investment: weak
 - *subsidize output: stronger
 - *stimulate innovation



Can we pick winners?


- ⇒19th century:
 - remissions problem for large cities
 - **telephony
 - relectricity
- ⇒20th century
 - computer hardware
 - nukes
 - rnatural gas
 - *energy*

A 19th century environmental problem

- the principal emissions problem for large cities
 - * the emissions of transportation engines (horses).
 - *Luckily it was local and observable problem.
- ⇒1894, Times of London's model estimates by 1950
 - revery street would be nine feet deep in horse manure.
- → Innovation available but apparently ignored
 - *1882 Edison's Pearl Street Station
 - *1885 Karl Benz had a practical automobile
- → Was investing in horse manure clean up a good bet?
- Choosing winners is not usually good for innovation.

Late 19th Century paradigm shifts

⇒telephony:

- Telegraph (Morse) v. (Bell)
- rtelephone wins
- rinternet and cell phones

⇒Electricity:

- *DC (Edison) v. AC (Westinghouse)
- **FAC** wins
- smart grid

20th Century paradigm shifts

- Expensive to cheap fossil energy
 - ~ Coal
 - Poil
 - rnatural gas
- Economic regulation
 - command-and-control cost-of-service to
 - incentive based regulation
- - None to
 - *big computers to
 - *smaller and faster computers

New computer hardware paradigm

- →1945, ENIAC (30 tons)
 - 19,000 vacuum tubes, 1,500 relays, and 200 kW
 - **350 flops**, 400 bytes
- ⇒2008 IBM Roadrunner 1 Peta (10¹⁵) FLOPs
- ⇒2009 Cray Jaguar 1.8 Peta FLOPs
- → Iphone more computing capacity the early super computers. 5x10⁶ FLOPs; 16x10⁹ bytes
- \Rightarrow 1 year (3x10⁷sec) becomes less than 1 second
- ⇒ Will Moore's law continue?

Forecasting Nukes

- → The Atomic Energy Act of 1954 (P.L. 83-703) allowed private development of commercial nuclear power
- Lewis L. Strauss: "Our children will enjoy in their homes electrical energy too cheap to meter."
 - Chairman, Atomic Energy Commission before National Association of Science Writers, NYT, Sept. 17, 1954
- →Fifty utilities built custom nuclear plants under cost-of-service regulation. The result

HISTORICAL U.S. CONSTRUCTION COST EXPERIENCE

Construction Estimated		Actual	%
Started	Overnight Cost	Overnight Cost	<u>OVER</u>
1966-67	\$ 560/kWe	\$1,170/kWe	209%
1968-69	\$ 679	\$2,000	294%
1970-71	\$ 760	\$2,650	348%
1972-73	\$1,117	\$3,555	318%
1974-75	\$1,156	\$4,410	381%
1976-77	\$1,493	\$4,008	269%

Source: U.S. EIA

too cheap to too expensive

forecasting natural gas

- ⇒Early 20th century: negative price
- →20th century predictions: running out almost all have been proved wrong
- ⇒1978 Natural Gas Policy Act provided incentives for increased production
- →In 1980, the average price forecast for 1995 was high by a factor of 5
- Underestimated the role of innovation:
 - 4-D seismic Directional drilling Hydraulic fracturing

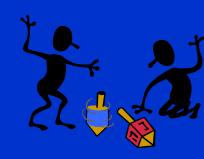
'unconventional' natural gas resources in US

- ⇒2009 proved reserves increased by 11%
 - Thighest level since 1971 s
 - *shale gas plays account for 90%
- → It's not resource depletion; It's technology

source	resource (tcf)		years supply	
	min	max	min	max
tight natural gas	309	1,800	15	90
shale gas	742	7,500	37	375
coalbed methane	163	1,000	8	50
geopressurized zones	1,000	49,000	50	2,450
methane hydrates	0	73,000	0	3,650
total	2,214	132,300	111	6,615

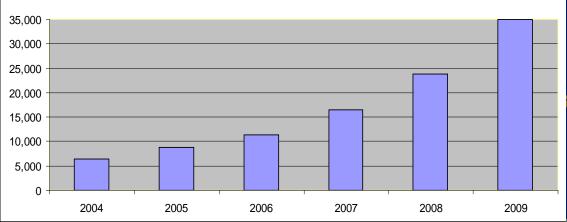

Forecasting: do we need more humility?

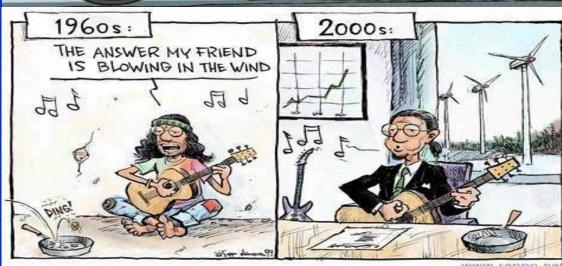
- Complex computer models
 - garbage in garbage out
 - understanding of the oracles (models)
- the longer the horizon, the greater the uncertainty
- ⇒nukes too cheap to meter
- ⇒baked it in mineral depletion


Consensus Energy Policy in the US

- → Decrease
 - Foil imports
 - pollution
- →Increase jobs and innovation in
 - rnatural gas production (bridge fuel)
 - wind and solar
 - *Energy efficiency and demand side participation
- ⇒'Smarter' grids and appliances
- Cleaner more competitive markets
- ⇒Better regulation

"smarter" grid and variable energy resources


- → Variable energy resources
 - Fuel is free but doesn't travel well; mostly capital costs
 - Stochastic weather-driven output
- Fossil energy resources
 - Fuel is not free but does travel; per MWh capital costs are smaller
 - Stochastic mechanical: 0-1
- a smarter grid becomes more important with increased
 - renewable energy, batteries, and
 - demand side market participation
 - Corrective switching
- smarter markets need to be re-examined
 - Ancillary service markets
 - Capacity markets


Batteries and Wind

- ⇒Generally wind is strongest offpeak
- Prices can be as low as minus \$30/MWh
- □ Ideal for battery charging
- → Need smart grid with smart pricing

Wind Capacity (MW)

Independent System Operator market design

- Evolved using
 - traditions
 - economic theory,
 - power system operations heuristics and
 - operational experience.
- Operates markets with
 - simplifying assumptions
 - convex approximations
- often due to the inability to solve the more detailed design.
- ⇒ Savings of > \$500 million/year

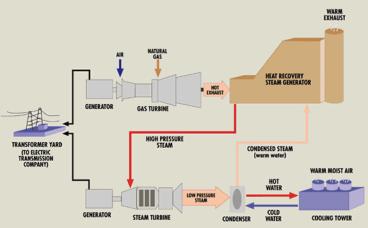
Preventive to Corrective Reliability

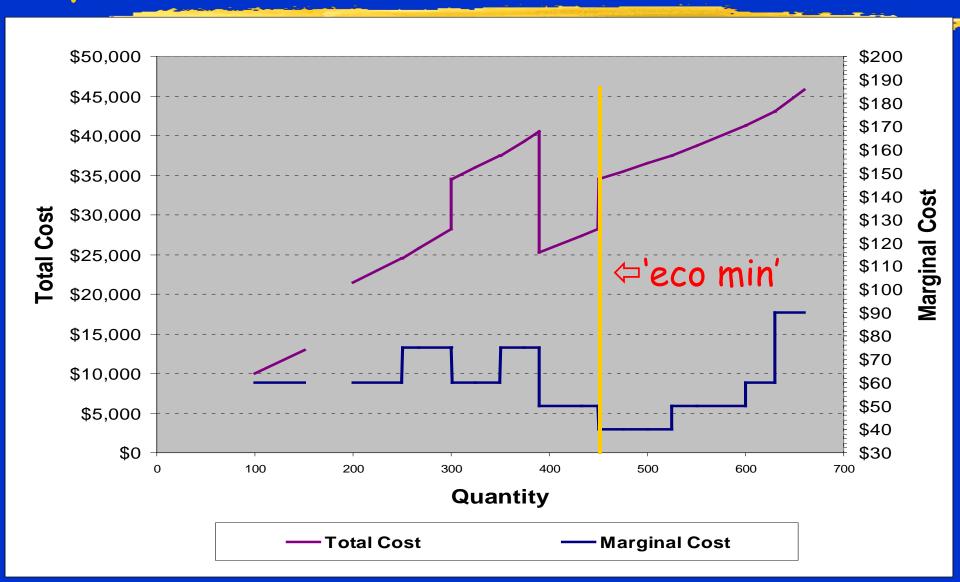
- Preventive (ex ante) absorb any contingency
 - *Currently mostly preventative and capital intensive
 - Corrective solutions take too long to solve
- □ Corrective (ex post)
 - Corrective: Special Protection Systems
 - *faster switching
 - Demand response to generation decline
- Optimize topology and dispatch
 - *Open or close circuit breakers, PARS, FACTS
 - Potential 20% production costs savings

History of transmission investment

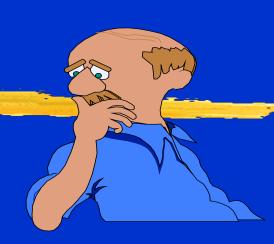
- →Prior to restructuring transmission expansion was
 - recentrally planned, developed, financed, owned and
 - roperated by vertically integrated franchised monopoly
 - The costs were added to the utilities rate base and included in retail power rates.
- open access transmission has led to
 - rincreased competition in power markets
 - Merchant generators
- → More recently
 - merchant transmission projects have appeared.
 - Multi-state planning

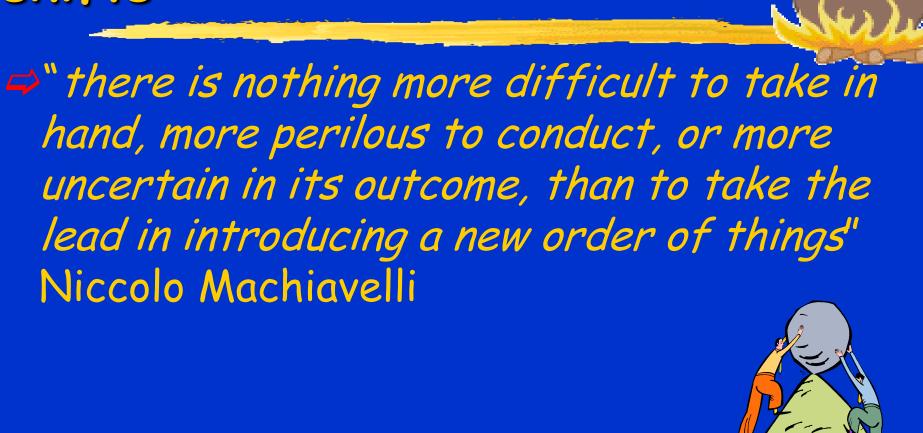
large-scale efficient transmission expansion


- →Improve on existing planning models
 - Balance model complexity v.
 - *computational burden
- → Club good
 - Two part pricing
 - Transmission rights including flowgate
- Retain competitive market incentives
- Transmission planning auctions


Open questions for coal plants

- ⇒ EPA regs for existing plants
- → Future of coal plants
 - 2007 231 new projects
 - 2010 123 had been cancelled
- Carbon Capture and Sequestration:
 - ☞ Does \$30-50/ton make it uneconomic?
- → More nukes?
 - high upfront capital cost
 - Low flexibility
- Combined Cycle Combustion Turbine
 - will the gas price stay low?
 - High flexibility


Total and Marginal Costs for combined cycle combustion turbine CCCT


Strategies

- → Reducing oil imports
 - relectric cars with dynamic charging
 - matural gas vehicles
- Energy efficiency and demand side participation
 - real time pricing matters
 - Thow low does the fruit hang?
- → Separate efficiency and equity issues
- → Risky bets
 - TCCS
 - Bio-engineering

The politics of paradigm shifts

