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Abstract 

This paper addresses the existence of market clearing prices and the economic interpretation of 

strong duality for integer programs in the economic analysis of markets with nonconvexities 

(indivisibilities). Electric power markets in which nonconvexities arise from the operating 

characteristics of generators motivate our analysis; however, the results presented here are 

general and can be applied to other markets in which nonconvexities are important.  We show 

that the optimal solution to a linear program that solves the mixed integer program has dual 

variables that: (1) have the traditional economic interpretation as prices; (2) explicitly price 

integral activities; and (3) clear the market in the presence of nonconvexities.  We then show 

how this methodology can be used to interpret the solutions to nonconvex problems such as the 

problem discussed by Scarf (1994).  

I. Introduction 

 Scarf (1990, 1994) describes most markets in today's advanced economies as having 

considerable indivisibilities (nonconvexities). For example, firms must make discrete decisions 

on whether to invest in a new project or when to start-up a production process. It has been widely 

believed that in the presence of nonconvexities in the cost function, it is not possible to guarantee 

the existence of linear prices that will allow the market to clear, unless the solution to the relaxed 

convex problem just happens to produce an integral solution (e.g. assignment problems).  

Unfortunately, the modeling of nonconvexities such as discrete choices and economies of 

scale have largely been avoided due to the intractability of such problems.1  In the face of 

nonconvexities, linear commodity prices in general will result in either a situation of excess 

supply or excess demand, and the market will not clear.2   
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As a consequence, it has been more convenient and tractable to employ linear or convex 

nonlinear optimization models to represent profit maximization problems for producers and 

utility maximization problems for consumers.  Such optimization problems assume desirable 

properties such as the continuity and concavity of the objective function to be maximized, and 

the convexity of the feasible region defined by the constraint set.3  An equilibrium in such a 

market yields a linear commodity price (or vector of linear prices) and quantity (or vector of 

quantities) such that all economic agents maximize their objectives and the market clears (the 

quantity supplied equals the quantity demanded for each commodity priced).  Conceptually, a 

linear price vector arises out of the application of the Separating Hyperplane Theorem.4   Such 

simplifying assumptions about the objective function and constraint sets allow economists to 

prove the existence of market clearing prices using fixed-point arguments.  Computationally, if 

the market equilibrium problem is solved by Samuelson’s (1952) principle, the equilibrium 

prices for such markets are simply the dual variables (shadow prices or LaGrange multipliers) for 

the market clearing constraints of the goods.  

 Such modeling assumptions have allowed economists to construct useful models of 

economic behavior and to conduct insightful simulation experiments with these increasingly 

complex models.  But since the work of Gomory and Baumol (1960), analogous dual variable 

interpretations for mixed-integer programs have eluded economists and mathematicians.   As an 

example, Geoffrion and Nauss (1977) state “(integer programming) models have no shadow 

prices or dual variables with an interpretation comparable to that in linear programming.”  The 

economic literature continues to reflect this belief.  Current market models are largely unable to 

deal with the significant nonconvexities that actually exist.  For example, whether or not to 

invest in a new capital project or whether or not to start-up a production operation are discrete 
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decisions. Many production processes have economies of scale, a property contrary to the 

linearity/convexity assumption.  The nonexistence of market clearing prices can be a real 

problem, and some degree of centralized coordination may be required in some markets to reach 

the welfare maximizing solution. 

 An important market where nonconvexities are significant and are a concern in 

constructing prices is the short-term (day- to week-ahead) electric power market.  

Nonconvexities include start-up and shut-down costs along with minimum output requirements 

(which state that if a plant is running, it must produce at least a certain amount).  The lumpiness 

of the costs in these markets can have a large influence on operating schedules and ultimately 

investment.  It is widely recognized that the presence of nonconvexities implies that there will be 

no linear commodity prices that will support an equilibrium (e.g., Johnson et al., 1997, Madrigal 

and Quintana, 2000; Hobbs, Rothkopf et al., 2001).  This lack of prices leads to a potential 

mismatch of supply and demand that is of concern to the engineers responsible for maintaining 

system balance and stability, to the economists and market designers who are interested in 

promoting market efficiency, and to the market participants themselves who are worried about 

how steps taken to balance supply and demand might affect their outputs and revenues.  

In this paper, we present a method for constructing a set of linear prices that will support 

a Walrasian competitive equilibrium in markets with nonconvexities that is based on mixed 

integer programming (MIP).  Prices are derived from solving a MIP and an associated linear 

program and have a corresponding analogy to non-linear (multi-part) prices.  These prices will 

support equilibrium allocations in a decentralized auction-based market. That is, if a Walrasian 

auctioneer announced to market participants the prices we derive, the objective maximizing 

allocations chosen by agents at those prices would clear the market.5 
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The role of non-linear pricing in markets with non-convexities has been recognized and 

well researched (See Wilson 1993). However, the market environments in which non-linear 

prices have been examined have not been considered perfectly competitive. For example, 

monopoly utility services often are subject to non-linear pricing in the form of a demand or 

access charge plus a variable linear charge for the service. Additionally, non-linear prices can be 

employed to enable firms to capture rents through price discrimination or to strategically 

compete for certain segments of the market. Any equilibrium notions used in these markets are 

game-theoretic in nature. In contrast, the prices we propose, while being analogous to non-linear 

prices, can be employed in a competitive environment where market agents are price takers and 

therefore do not have any market power and do not compete strategically.  

Our method for calculating equilibrium prices is straightforward.  First, we solve a MIP 

to find the optimal allocation.  Next, we remove the integrality constraints and insert equality 

constraints (cuts) that force the integer variables to assume their optimal values in the resulting 

linear program (LP).  We then solve the LP to find the associated dual prices on the market 

clearing conditions and added equality constraints.  These dual (or shadow) prices then can be 

used as prices to support a competitive equilibrium.   

 The paper proceeds as follows.  Section II reviews the relevant literature.  Then in 

Section III, we define a linear program that solves mixed-integer programs and discuss why 

linear prices on the output commodity are not sufficient for a competitive equilibrium in the face 

of non-convexities.  In Section IV, we discuss the example used by Scarf (1994), and we show 

how the market clearing prices can be computed for his model.  In Section V, we provide a 

general formulation of the market clearing model and a general proof that demonstrates that we 

can always find prices that will clear a market with indivisibilities, so long as we can find the 
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optimal solution to the MIP that describes the market.  Section VI concludes and discusses some 

applications and extensions. 

II. Related Literature  

 The economics and management science literature has occasionally addressed the 

problem of finding dual price interpretations to integer programs and MIPs.  The classic work in 

this area is Gomory and Baumol (1960).  In order to find the solution to the MIP, Gomory and 

Baumol add additional constraints or cutting planes (to the LP relaxation of the MIP), which in 

their case they define as linear combinations of existing constraints, until the solution to the 

augmented LP results in an integer solution. With this methodology, they obtain shadow prices 

that are non-negative, impute zero profits, and infer zero prices for activities not used to capacity. 

 However, the shadow prices obtained by Gomory and Baumol have some peculiar 

properties.  The prices themselves are integer valued and can vary with the choice of additional 

constraints.  Gomory and Baumol refer to the additional constraints needed to solve the problem 

as “artificial”, and they refer to the shadow prices on the additional constraints as “artificial 

capacity prices” or as the “opportunity costs of the indivisibilities.”  Moreover, they observe that 

constraints in the non-integer solution that have positive prices may have zero prices in the 

integer solution.  For example, a warehouse may have a capacity of, say, 3.4 units, but the units 

only come in integer values.  In this case, the capacity constraint may be binding (by making 4 

units infeasible), but there is still positive slack.  In an economic sense, there should be a positive 

price associated with this constraint. 

 In an attempt to deal with these peculiarities, Gomory and Baumol attempt to impute the 

prices from the “artificial” constraints back into the original constraints to get prices.  These 

recomputed prices have the property that they will yield zero profit and any good with a zero 
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price is truly a free good in an economic sense.  Unfortunately, the recomputed prices may not 

price at zero all free goods. 

 The Gomory and Baumol prices also have some welfare implications.  First, competitive 

output combinations arising from these prices will be efficient.  However, Gomory and Baumol 

go on to state: 

"Unlike the ordinary linear programming case, however, not every efficient 

output can be achieved by simple centralized pricing decisions or by competitive 

market pricing processes.  Moreover, it is possible in the integer programming 

case that there exists no hyperplane which separates the feasible lattice points 

from those which are preferred to or indifferent with the optimal lattice point.  In 

other words, there may exist no set of prices which simultaneously makes the 

optimal point, Q, the most profitable among those that can be produced and the 

cheapest among those that consumers consider to be at least as good as Q.  That 

is, at any set of prices either producers will try to make, or consumers will 

demand, some other output combination" (p. 537).  

It is important to note here that Gomory and Baumol are searching for linear, uniform 

commodity prices.  They do note that there are decentralized discriminatory prices that would 

lead to an efficient allocation, but they do not pursue this line of inquiry further. 

 Additional relevant research stems from Shapley and Shubik (1972) and their discussion 

of assignment markets.  They point out that linear commodity prices that support an equilibrium 

are available in a market with indivisibilities when the market can be modeled as a two-sided 

assignment game.  When this is done, the dual variables of the resulting assignment problem can 

be used to create prices that clear the market.  While Shapley and Shubik lay the groundwork for 
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deriving prices in markets with indivisibilities, their approach is successful only when the linear 

programming relaxation coincidently solves the integer programming representation of the 

market, as is the case with the assignment problem.  While this is approach addresses many 

markets with indivisibilities, it does not address the general case where the indivisibilities arise 

from such things as startup costs and economies of scale. 

Later authors have addressed variations on the assignment game (Leonard, 1983; 

Bikhchandani and Mamer, 1997; Bikhchandani and Ostroy, 2001a; and Bikhchandani and 

Ostroy, 2001b).  The central issue in these papers is that equilibrium supporting prices can be 

obtained when the underlying market is represented as an assignment problem.  In these cases, 

there are a set of prices (dual variables) for the commodities that fall in the core of an assignment 

game, and there may be, and generally are, many pricing vectors that support an equilibrium.  All 

of the researchers stop short of the next step, addressed in this paper, the problem of deriving a 

set of prices that will support a Walrasian competitive equilibrium in a general nonconvex 

market (i.e. one where the LP relaxation fails to coincidently solve the MIP).  In particular, 

Bikhchandani and Ostroy 2001b extend results for package bidding beyond the assignment 

model, but not to general MIPs.   

 Scarf (1990, 1994) describes the simplex algorithm for solving LPs as being analogous to 

the economic institution of competitive markets, specifically a Walrasian auction. The 

similarities are that in a Walrasian auction, the auctioneer calls out prices until markets clear and 

there are zero profits, while the simplex algorithm attempts candidate solutions until no activity 

or slack variable can be introduced into the solution basis that improves the solution.  Scarf then 

goes on to note that once increasing returns to scale or indivisibilities are introduced, it is 
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difficult to draw any similar analogies between integer programming algorithms and firms or 

markets with such indivisibilities. Moreover, Scarf (1990) makes the following observations: 

“And, perhaps even more significant for economic theory, none of these 

algorithms seemed capable of being interpreted - by even the most sympathetic 

student - in meaningful economic terms. ... This test (for convex programs) for 

optimality is not available for integer programs; there simply need not be a set of 

prices that yields a zero profit for the activities in use at the optimal solution. ... Is 

its profitability at the equilibrium prices a necessary and sufficient condition for a 

Pareto improvement - for the possibility that everyone can be made better off 

using this new activity?  The answer, unfortunately, is no! ... The market test fails 

because the firm, whose technology is based on an activity-analysis model with 

integral activity levels, cannot be decentralized without losing the advantages of 

increasing returns to scale” (p. 381-382). 

 In an attempt to link integer-programming algorithms to economic institutions Scarf 

(1990) draws the analogy of the internal structure of a large firm to an integer-programming 

algorithm.  Scarf looks at an integer-programming algorithm that breaks the large integer 

program down into a decision tree in which smaller sub-problems can be solved in polynomial 

time. Scarf likens the branches of this tree to divisions of a large firm, and the nodes as managers 

making decisions for each of the branches below it.  However, Scarf (1990) offers no method for 

computing prices that will help clear the market in the presence of indivisibilities, and that will 

provide a pricing test for Pareto improvements. 

 More recently, Williams (1996) discusses the mathematics of duality and its potential 

economic interpretations. Williams observes the same problems encountered by Gomory and 
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Baumol in that there are often binding constraints in integer programs that have positive slack. 

Williams laments that this problem leads to mathematical difficulties, particularly a violation of 

complementarity conditions. Moreover, Williams contends that the dual prices found by Gomory 

and Baumol do not provide a proof of optimality (equality of primal and dual objective 

functions). Williams then proposes a dual as a more complex extension of Gomory and Baumol. 

Computation of the dual relies heavily on advanced integer optimization techniques, and in 

general it is difficult to associate any dual variables with a particular resource.  Finally, the dual 

proposed by Williams, while providing a proof of optimality, still does not satisfy 

complementarity conditions.6 

The approach described here models markets with indivisibilities first as a MIP and then 

as a linear program that is created from the optimal solution to the MIP.  In terms of the 

assignment markets literature and traditional microeconomic theory, we are expanding the set of 

commodities in the market (and therefore commodities to be priced) by at most one extra good 

for each indivisibility.  In this vein, the market can be thought of as a pseudo-assignment game 

for the indivisibilities combined with a continuous game for the commodities.  In the vernacular 

of game theory, the general non-convex market is a game that has an empty core in the initial 

commodity space.  By expanding the game to include the indivisibilities as additional 

commodities, the game is converted to one in a higher dimensional space where there is a 

nonempty core. As a result, this expanded game can always be solved to produce a set of linear 

prices for indivisibilities and commodities that supports a competitive equilibrium and clears the 

market.   

 

 



 11 

III.   Prices in the LP that Solve the MIP  
 
 A mixed integer problem with m continuous variables and n integer variables (Rm x Zn) 

that has a feasible and bounded optimal solution can be converted to a linear program with at 

most m+n continuous variables (Rm+n) and at most n additional linear constraints (Gomory and 

Baumol, 1960). These statements can be proved by observing that an additional constraint can be 

defined for each integer variable setting the variable equal to its optimal value, which produces a 

LP that solves the MIP.7  Thus, n can be thought of as the maximum number of additional 

degrees of freedom needed to price the output or the maximum additional dimensions needed for 

the space where the separating hyperplane or linear support function exists.  In Rm, the support 

function is nonconvex and poorly behaved (Gould 1971).  In Rm+n, there is always a separating 

hyperplane.  

 The next challenge is to find an economic interpretation of the linear prices in Rm+n. For 

convex problems there is a commodity vector for which there is a corresponding price vector.   

In the fixed charges example of Gomory and Baumol (1960, pp. 538-540), they assume that the 

additional dimensions are artificial and not meaningful. However, we believe the additional 

dimensions required for integer problems can be usefully viewed as additional commodities. One 

can think of the sub-optimality associated with integral activities and linear prices as a 

misspecification of the commodity space. If start-ups, or any other integral activity, are necessary 

for production, the auctioneer can consider these activities as separate commodities 

complementary to the output commodity production activities that can therefore be priced as 

well. 
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IV. Scarf’s Example 

 As an example of a market with non-convexities that lacks a market-clearing price for the 

commodity, consider the problem put forth by Scarf (1994).  He postulates two types of plants, 

each with significant fixed costs and relatively small marginal costs (Table 1).  The objective of 

the problem (auctioneer) is to minimize the total cost of satisfying a fixed level of demand. The 

corresponding decentralized market problem would be for each plant of each type to maximize 

profits subject to internal constraints and satisfy market feasibility.  

 Suppose that we were to attempt to satisfy a fixed demand of 61 units.  The optimal 

solution to this problem would be to build 3 Smokestack plants and 2 High Tech plants with each 

running at full capacity except for the last Smokestack plant that only produces 15 units.  What 

prices would support a competitive equilibrium in the decentralized market problem?  In the 

context of linear prices, candidate prices might include the marginal production costs of each 

type of plant and the average costs at full capacity of each type of plant.  Yet if price equaled 

either of the marginal costs (2 or 3), neither type of technology would want to produce. Each 

type would incur losses, so it is profit maximizing at those prices to neither build nor produce.  

But on the other hand, if the price equaled the average cost of the Smokestack technology at 

capacity (6.3125), then two Smokestack type plants would be making zero profits, and the third 

Smokestack plant would be operating at a loss.  At this price, the High Tech types would be 

making positive profits, and an infinite number of this type would want to enter the market.  

Therefore 6.3125 cannot be an equilibrium price since there would be excess supply at this price.  

The only other serious candidate price is the average cost of the High Tech type at capacity 

(6.2857).  At this price the High Tech types would make zero profit if they operate at full 

capacity, but the Smokestack types would still incur losses. Therefore, no Smokestack types 
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would wish to enter; further, if enough High Tech types enter to meet the demand of 61, the last 

unit would not be operating at capacity, and would be incurring losses.  Thus, a price of 6.2857 

cannot be an equilibrium either. 

Table 1.   Production Characteristics: Smokestack versus High Tech (from Scarf, 1994) 
    

 
Characteristic 

Smokestack  
(Type 1 Plant) 

High Tech  
(Type 2 Plant) 

Capacity 16 7 
Construction Cost 53 30 
Marginal Cost 3 2 
Average Cost at Capacity 6.3125 6.2857 
Total Cost at Capacity 101 44 

 
 

 Now, consider the construction (start-up) for each type as a separate commodity so that 

there are now three commodities that must be priced: the final output, construction of the 

Smokestack type, and construction of the High Tech type.  Let a price of 3, the marginal cost of 

the higher cost type, be the candidate price for the final output. Let a price of 53, the construction 

cost of the Smokestack type, be the candidate price for building the Smokestack type. Finally, let 

a price of 23 be the candidate price for building High Tech types.  A price of 3 on the final 

output makes sense, in the example above, since the third Smokestack unit can produce one more 

unit at a marginal cost of 3 before being at capacity.  At the candidate prices, all Smokestack 

units would receive a price of 3 for the final output that they can produce at a marginal cost of 3.  

Each Smokestack unit then receives a price of 53 for construction, leaving each Smokestack unit 

with zero profits.  The High Tech units each receive a price of 3 for the final output that they can 

produce at a marginal cost of 2, leaving each High Tech unit with a margin of 1 per unit of 

output.  At the candidate construction price of 23, each High Tech unit is left with precisely zero 

profit.  Note that the construction price that High Tech units receive is not equal to its actual 

construction costs.  If the market were to naively pay them actual construction costs, the High 



 14 

Tech units would be making positive profits that would lead to entry of an infinite number of 

High Tech units and excess supply.  

 Thus, if start-up decisions in that example are viewed as commodities, competitive 

equilibrium supporting prices can be constructed.  It turns out that these prices are the dual 

variables for a linear program augmented by two cuts that define the number of Smokestack and 

High Tech units as equaling 3 and 2, respectively.  In the remainder of this section, we analyze 

Scarf’s problem further and then present the original mixed integer programming formulation 

along with the augmented LP that solves it.  

 Table 2.  Cost Minimizing Choices of Plants and Output Levels (from Scarf 1994) 
  

 
Demand 

Type 1 Plants  
 (Smokestack)  

Type 2 Plants 
(High Tech) 

Output of 
Type 1  

Output of 
Type 2  

 
Total Cost 

55 3 1 48 7 347 
56 0 8 0 56 352 
57 1 6 15 42 362 
58 1 6 16 42 365 
59 2 4 31 28 375 
60 2 4 32 28 378 
61 3 2 47 14 388 
62 3 2 48 14 391 
63 0 9 0 63 396 
64 4 0 64 0 404 
65 1 7 16 49 409 
66 2 5 31 35 419 
67 2 5 32 35 422 
68 3 3 47 21 432 
69 3 3 48 21 435 
70 0 10 0 70 440 

          
 Table 2 presents the least-cost solutions for demands ranging from 55 to 70 units in the 

example presented by Scarf (1994).  We calculated market-clearing prices for these problems 

using the following procedure: 

1. Formulate the problem as a mixed integer program and solve. 
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2. Find a LP that solves the MIP by adding cuts that set the integer variables to their optimal 

values. 

3. Use the dual variables and primal quantities from the linear program to form an efficient 

contract. 

A MIP formulation of the Scarf problem to find the cost minimizing set of units and outputs is: 

Minimize:  (53 ) ( )z q z qi ii j jj1 1 2 23 30 2+ + +∑ ∑      (4.1)  

subject to:               q q Qii jj1 2∑ ∑+ =       (4.2) 

                    − + ≤16 01 1z qi i   ∀ i     (4.3) 

            − + ≤7 02 2z qj j   ∀ j     (4.4) 

              q q1 2 0, ≥   ∀ i j,     (4.5) 

             z zi j1 2 0 1, { , }∈  ∀ i j, ,    (4.6) 

where: 

z1i and z2j  represent the decision to start up plant i (i = 1,2,…, I) of I available Smokestack 

plants and plant j (j=1,2,…,J) of J High Tech plants, respectively,8 and  

q1i and q2j  are the quantities of output for Smokestack plant i and High Tech plant j, 

respectively. 

A linear program that solves the above MIP can be created by replacing the integer constraint 

(4.6) with the two sets of constraints: 

               z zi i1 1= *   ∀ i     (4.7) 

                         z zj j2 2= *   ∀ j     (4.8) 

where  z i1
*  and z j2

*  are the optimal values from the MIP.   The dual variables for constraints (4.2), 

(4.3), (4.4), (4.7), and (4.8) in the LP are denoted by the symbols y, y1i, y2j, w1i, and w2j, 
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respectively, and they represent, in order, the single commodity price for each output unit 

produced, the capacity price for the ith Smokestack plant, the capacity price for jth High Tech 

plant, the start-up (construction) price for the ith Smokestack plant, and the start-up 

(construction) price for the jth High Tech plant. 

Table 3 summarizes the values of the dual variables from solving the LP for each of the 

demand instances in Table 2.  As we show in the next section, the dual variables for the market 

constraint (4.2) and integer variable constraints (4.7) and (4.8) collectively can be used by a 

market operator (auctioneer) to define a set of prices that clear the market and are efficient. 

Each Smokestack plant is paid w1i*z1i* for starting up and y*q1i* in exchange for producing 

q1i*, and each High Tech plant is paid w2j*z2j* for starting up and y*q2j* in exchange for 

producing q2j*.9 Negative prices are payments to the auctioneer by a plant as part of choosing to 

produce).10  These prices yield nonnegative profits for each plant.  No plant prefers to change its 

output and start-up decision  at the prices that have been announced.  Under these prices, those 

producing and those not producing are both economically satisfied with their chosen production 

allocation, in the sense that under the announced prices, no other levels of output would 

increase profit.  Finally, the solution is efficient (in this case, least cost).   

Table 3:   Dual Prices for Scarf's Problem 
     

  Plant 1 (Smokestack) Plant 2 (High Tech) 
Dual Price 

Set 
Commodity 

Price (y) 
Start-up 
Price(w1i) 

Capacity 
Price(y1i) 

Start-up 
Price(w2j) 

Capacity 
Price(y2j) 

Set Ia 3 53 0 23 -1 
Set II b 6.3125 0 -3.3125 -.1875 -4.3125 
Set III b 6.2857 .429 -3.2857 0 -4.2857 
a.    Applies to all integer demand levels of Q from 55 to 70 
b. There are alternative dual solutions for demands of 55,56,58,60,62,63,64,65,67,69,70, 

when all units started, of either type, are operating at full capacity. 
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 In the examples, the commodity price (y*) is either the variable cost of unit 1 (the 

highest unit marginal operating cost), the average cost of unit 1 at full output, or the average 

cost of unit 2 at full output (Table 3).   The prices may not be unique, depending on the level of 

demand, as indicated in Table 3.  These result from degeneracy in the primal LP, stemming 

from the coincidence that demand exactly equals the sum of the capacities of the units in the 

solution.  However, each set of prices yields the same revenue and output result.  Each also has 

an economic interpretation.  There are three sets of prices corresponding to the dual variables in 

Table 3.  A example using dual price set I would be: 

1. For Smokestack units: produce q1i*; get paid $3/unit of produced (the highest marginal cost 

of a running unit); and get paid $53 to start.  

2. For High Tech units: produce q2i*; get paid $3/unit of production; and get paid $23 to start. 

 In this example, it turns out that all units producing are offered a prices that pay exactly 

their costs.  The start-up price is the difference between total cost and the commodity revenues.  

But in general, profits (scarcity rents) can be positive if, for instance, some firms possess 

uniquely low cost technologies and there are a limited number of plants of a specific 

technology.11  In Scarf’s example there are an infinite number of potential entrants with costs 

identical to firms in the solution.  So for these entrants to be satisfied and for there to be a 

competitive equilibrium, no firms in the solution can be earning positive rents. 

 The linear prices we derive can be viewed as being analogous to multi-part prices for 

output commodities alone, except the prices we propose explicitly treat the non-convexity as a 

commodity and price it as such.  Moreover, the linear prices we derive, are similar to a solution 

to a cooperative bargaining problem (Luce and Raiffa 1957) and to optimal multi-part pricing 

for natural monopolies such as demand and commodity charges in regulatory contracts (Brown 
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and Sibley 1986).  For example, a start-up price can be viewed as being similar to a demand or 

customer charge in natural-monopoly utility pricing.    In contrast, in the presence of demand 

with non-zero elasticity, the best one-part prices are Ramsey (1927) prices and are "second best" 

when compared with efficient multi-part prices (see ibid. and Sharkey (1982)) or, as we show 

below, the linear prices we derive when we explicitly take integral activities as commodities.    

It then should come as no surprise that more degrees of freedom for pricing allows for greater 

efficiency in a market with no transaction costs.  For MIPs, the pricing degrees of freedom 

needed are bounded by the sum of the number of explicit constraints and the number of integer 

variables.12    

Demand as well as supply can have significant non-convexities.  For example, the 

electricity consumption of an aluminum smelter or a cyclotron may be an all-or-nothing choice.  

If the buyers’ problems can also be modeled as MIPs, equilibrium prices that are optimal can be 

devised for both buyers and sellers.  In the next section, we present our general results for all 

markets that can be represented by mixed integer programs.  

V.  General Formulation and Proofs 

 In this section, we present a result concerning the equivalence of a MIP and an LP 

augmented with certain defined cutting planes.  We then define a contract that an auctioneer 

might offer that is efficient and that has prices that support a market clearing equilibrium.  

Although these results are phrased as if they apply only to formal auction markets, they are also 

applicable to other markets. 

 Consider an auction market that can be represented by a Primal Mixed Integer Program 

(PIP).  The formulation below assumes that the auctioneer is buying and/or selling a set of goods, 
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and has an objective of maximizing the value to bidders. The auctioneer is simply a computer 

code that finds a solution to the problem:13 

PIP Maximize: vPIP   =  c x d zk k k kkk
+ ∑∑  

 Subject to: A x A z bk k k kkk 1 2 0+ ≤∑∑      

       B x B z bk k k k k1 2+ ≤    ∀ k     

                 xk ≥ 0    ∀ k  

           zk
n k∈ { , } ( )0 1   ∀ k , 

where 

xk, zk  are commodities or  column vectors of commodities for participant (k ∈ K) in the 

market,  

ck, dk  are the values (benefits or costs) (scalars or vectors) associated with the activities of 

participant  k  (ckxk + dkzk is the benefit or cost accruing to participant k), 

Ak1, Ak2,  are matrices whose coefficients reflect production or demand characteristics of bidders 

such that the constraint A x A z bk k k kkk 1 2 0+ ≤∑∑  represents the market clearing 

constraint, 

Bk1,Bk2  are matrices whose coefficients reflect restrictions on the individual bidders operations 

(e.g. production of a particular plant is limited to the capacity of that plant), 

bk  represents the right hand sides of internal constraints of market participant k (scalars or 

column vectors),   

b0  represents output commodities  to be auctioned by the auctioneer (a scalar or column 

vector) whose elements are different from zero in a one-sided auction and equal to zero 

if a two sided auction.  
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Lower case characters represent scalars or vectors; upper case characters represent matrices; all 

multiplication is of compatible dimensions.  

 A Primal Linear Program that solves PIP is:  

PLIP(z*) Maximize: vPLIP   =  c x d zk k k kkk
+ ∑∑  

  subject to:   A x A z bk k k kkk 1 2 0+ ≤∑∑  

         B x B z bk k k k k1 2+ ≤    ∀ k  

             z zk k= *    ∀ k  

             xk ≥ 0    ∀ k , 

where zk* represents the values of the zk variables in an optimal solution to PIP.  In general, PLIP 

contains more constraints than PIP; these are needed for the LP to solve the MIP and to yield 

strong duality.   The dual of PLIP(z*) is: 

DLIP(z*) Minimize: vDLIP   =  y b y b w zk k k kkk0 0 + + ∑∑ *  

  subject to:           y A y B ck k k k0 1 1+ ≥    ∀ k  

      y A y B w dk k k k k0 2 2+ + ≥    ∀ k  

          y0 0≥   

                  yk ≥ 0,    ∀ k   

          wk   unrestricted  ∀ k , 

where y0 ,  yk , wk are the dual variables, either scalars or appropriately dimensioned row vectors. 

Theorem 1:   vPIP* = vPLIP* = vDLIP*,  where * indicates the optimal solution value for the 

respective problems. 
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Proof:       vPIP* = vPLIP* because PLIP is PIP with the additional constraints that the integer 

variables are constrained to their optimal values (which then allows the integrality condition zk ∈ 

Zk of PIP to be dropped as redundant).  vPLIP* = vDLIP* by strong duality of linear programs.   

 With the auctioneer’s problem defined and the establishment of Theorem 1, we can now 

define the decentralized market problem so that we can show that the dual variables (shadow 

prices) that constitute the optimal solution to vDLIP*, are prices that support a competitive 

equilibrium. Let P0 be the price of the output commodity, let Pk
z be the price of the commodity 

representing the integral activity for agent k. Then each agent k solves the following problem: 

PIPk Maximize: vPIPk =  (ckxk + dkzk) –P0(Ak1xk+Ak2zk) -Pk
zzk 

 subject to:           Bk1xk   +   Bk2zk  ≤  bk     

                  xk ≥ 0,          

        zk ∈ Zk       

 

With each agent’s problem defined, we can now define a competitive equilibrium for the market. 

Definition 1: A competitive equilibrium for this market is a set of prices {P0
*, Pk

z*} for all k , 

and allocations {xk
*

 , zk
*} for all k such that 

1. At the prices {P0
*, Pk

z*} , the allocations {xk
*

 , zk
*} solve PIPk for all k, and 

2. The market clears: A x A z bk k k kkk 1 2 0+ ≤∑∑ . 

  

1 

Theorem 2:  Let {xk*,zk*’}be the solution to PIP(z*) and PLIP(z*) and let {y0*,  yk*, wk*} be the 

solution to DLIP(z*). If  y0* = P0 and wk* = Pk
z then the prices {y0*, wk*} and allocations 

{xk*,zk*’} for all k is a competitive equilibrium. . 
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Proof:   We use the notation zk*' to distinguish the optimal value of the variable zk from the fixed 

right hand side of the constraint zk =  zk* in PLIP(z*).  The Karesh- Kuhn-Tucker conditions for 

optimality of these problems are14:  

  0 ≤ (y0*Ak1  +  yk*Bk1 -  ck) ⊥ xk* ≥ 0                 ∀ k , 

  0 ≤  (y0*Ak2  +  yk*Bk2 + wk* -  dk) ⊥ zk*  ≥ 0     ∀ k ,  

  0 ≤ y0*⊥ (Σk Ak1xk* + Σk Ak2zk*′  -  b0) ≤ 0 

  0 ≤ yk* ⊥ (Bk1xk* + Bk2zk*′  -  bk) ≤ 0                 ∀ k , 

  wk*(zk*′ - zk* ) = 0                                   ∀ k , 

 Now consider the following problem.  Say that when the auctioneer defines T, each participant k 

is offered prices {y0*, wk*} (term 2 of the contract), but their primal variables are unconstrained 

(term 1 is not enforced).  Then each participant k will solve the following MIP that maximizes its 

benefits minus payment, subject to its internal constraints:   

 PIPk Maximize: vPIPk =  (ckxk + dkzk) –y0*(Ak1xk+Ak2zk) -wk*zk 

 subject to:           Bk1xk   +   Bk2zk  ≤  bk    ∀ k  

                  xk ≥ 0,      ∀ k     

        zk ∈ Zk     ∀ k  . 

Let vPIPk* be the value of the objective of PIP k at {zk*, xk*}.   We can show that vPIPk* = yk*bk as 

follows.  Insert {zk*, xk*} into the objective of PIPk, and then add the term yk*(Bk1xk* + Bk2zk*  -  

bk) to the objective (which is permissible, since by the complementary slackness conditions 

given above, that term equals zero), and then cancel terms: 

 vPIPk*  = (ckxk* + dkzk*) –y0*(Ak1xk*+Ak2zk*) –wk*zk  – yk*(Bk1xk* + Bk2zk* – bk) 

  =  (ck  - y0*Ak1 -yk*Bk1)xk*+ (dk - y0*Ak2 - yk*Bk2zk* - wk*)zk* +yk*bk 

  = yk*bk 
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The third equality follows because the first and second terms in the second equality each equal 

zero by the complementary slackness conditions given earlier.15 

Now, let the optimal solution to PIPk be vPIPk**.  If is vPIPk**  is less than or equal to vPIPk* 

for each k, then the contract T is market clearing for the reasons below: 

  • no participant can obtain a feasible {xk, zk} giving a greater profit in PIPk than {xk*,zk*}, and 

  • as {xk*,zk*} by definition solves PLIP, they also satisfy the market clearing condition 

Σk(Ak1xk+Ak2zk) ≤ b0. 

The last thing that must be shown is that vPIPk** ≤ vPIPk* is indeed true.  To demonstrate this, 

rearrange the terms of vPIPk** to yield the following: 

 vPIPk** =  Maximize [(ck  - y0*Ak1)xk + (dk - y0*Ak2 -  wk*)zk] 

  subject to:          Bk1xk +   Bk2zk  ≤  bk    ∀ k  

                      xk ≥ 0     ∀ k  

      zk ∈ Zk    ∀ k .  

Now let {xk**,zk**} be the optimal solution for PIPk.  As a result, vPIPk ** = [(ck  - y0*Ak1)xk** 

+(dk - y0*Ak2 -  wk*)zk**].  Now add the following nonnegative term to vPIPk**: 

  -yk*(Bk1xk** + Bk2zk**  -  bk). 

This term is nonnegative because yk* ≥ 0 (see the PLIP complementary slackness conditions, 

above) and Bk1xk** +Bk2zk**  ≤  bk (by the definition of PIPk).  As a result: 

vPIPk** ≤ [(ck  - y0*Ak1)xk**+ (dk - y0*Ak2 -  wk*)zk**] - yk*(Bk1xk** + Bk2zk** -bk) 

 = [(ck  - y0*Ak1 -yk*Bk1)xk** + (dk - y0*Ak2 - yk*Bk2 - wk*)zk**] + yk*bk 

 ≤  yk*bk  = vPIPk*. 

The last inequality results from noting that: 
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1. (ck  - y0*Ak1 -yk*Bk1)xk** ≤ 0, because (ck  - y0*Ak1 -yk*Bk1) ≤ 0 (from the definition of DLIP, 

above) and xk** ≥ 0. 

2. (dk - y0*Ak2 - yk*Bk2 - wk*)zk** ≤ 0, because (dk - y0*Ak2 - yk*Bk2 - wk*) ≤ 0 (again from DLIP) 

and zk** ≥ 0. 

Consequently, we have shown that vPIPk**   ≤ vPIPk*; i.e., no participant k can obtain a feasible 

solution giving a greater profit for PIPk than the auctioneer's solution {xk*, zk*}.  

 Theorem 2 shows that the dual solution to the constructed linear program, PLIP, can be 

used to form contracts for all bidders.  In this auction, bidders may make or receive payments 

associated with their lumpy decisions.  In contrast, in a traditional uniform price auction, a bidder 

is just paid the commodity (marginal) price (the dual variable on the market clearing constraint) 

for each unit of output and the dual variable on the individual capacity constraint is ignored. 

 Theorem 2 in the context of Scarf’s problem provides other insights.  For instance, there 

are some levels of quantity demanded for which both Smokestack and High Tech plants are 

“inframarginal” in the sense that their marginal costs are less than the commodity price and all 

are operating at capacity (see Table 3).  In the linear program, the resulting scarcity rents appear 

as positive dual variables on binding upper bounds of activities.  And in some of these 

instances, High Tech units have negative start-up payments, indicating that scarcity rents exceed 

start-up costs.  Such negative start-up payments can occur in order to dissuade uneconomic 

entry.  For instance, if any unit of a widely available type is collecting scarcity rents, then an 

infinite number of those units will wish to enter, and the market will not clear.  However, in 

auctions where entry cannot occur instantaneously (e.g., daily power markets), then rents can be 

earned by units under a T contract even when, in the long run, the technology is widely 

available. 
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 Examples of auctions formulated in a manner similar to, and yielding linear prices similar 

to T can be found in the New York Independent System Operator (NYISO) and the 

Pennsylvania-New Jersey-Maryland Interconnection (PJM) electric energy markets.  In these 

markets, the market operator explicitly asks generators to bid costs associated with non-

convexities (start-up and minimum load).  If in them a generating unit is started up in order to 

meet demand and if the revenues from the sale of energy fail to cover the sum of the variable 

costs and the startup costs, then the auctioneer provides a lump sum payment to the generator to 

make up the difference.  On the other hand, if a generating unit’s scarcity rents associated with 

binding internal capacity constraints are greater than start-up costs, then the generating units are 

allowed to keep the rents, effectively ignoring a negative dual price on the start-up constraint.  

Theorem 3: If each participant k submits a bid reflecting its true valuations (ckxk + dkzk) and true 

constraints (Bk1xk + Bk2zk   ≤   bk; xk ≥ 0; zk ∈ Zk), an auction defined as follows maximizes net 

social benefits (Σk [ckxk   + dkzk]) and is market clearing: 

   1. The auctioneer first solves problem PIP, yielding primal solution {xk*,zk*};  

   2. The auctioneer determines prices {y0*,  wk*} by solving problem PLIP(z*); and 

   3. The auctioneer offers contracts T. 

Proof:  By definition, the solution {xk*, zk*} of PIP maximizes net social benefits and satisfies 

the second condition of market clearing (Σk [Ak1xk + Ak2zk] ≤  b0).  The only remaining condition 

is whether the prices from PLIP(z*) support this solution. Theorem 2 demonstrates this for the 

payment schemes in T.  

 Theorem 3 is an extension, to auctions with nonconvexities, of the Fundamental Theorem 

of Welfare Economics, which states that a competitive equilibrium is Pareto Optimal.  
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VI.   Conclusions, Applications, and Extensions 

This paper has addressed a problem that has troubled the economic analysis of markets 

with non-convexities: the existence of market clearing prices. Given the presence of non-

convexities in emerging electricity auctions, this problem is of practical as well as theoretical 

interest. The contracts defined by T provide an answer to Scarf’s (1994) search for a set of prices 

in the presence of non-convexities that yield zero profits for all activities in the optimal solution.  

These results hold for any market that can be represented by a mixed integer program.  

Given recent advances in computational technology and integer programming 

algorithms, finding the prices necessary to define these contracts is practical.  Roughly 

speaking, MIPs today take on average about the same or less time (wall clock) than linear 

programs of a similar size took to solve in the 1960s (Ceria, 2001; Hobbs, Stewart et al., 

2001).16  Therefore, the results presented here are relevant for many practical problems.  In 

particular, applying this approach to electric generating unit commitment auctions could be a 

significant step forward.  As mentioned above, new and evolving electricity auction markets 

like PJM and NYISO have implemented market and pricing mechanisms similar to the one 

discussed in this paper.  

Now that we can find prices that support an equilibrium in markets with non-

convexities, there are many questions that can be examined.  First, Scarf’s (1994) search for 

price based tests for Pareto improving entry can be re-examined.  If any potential activity can 

make a positive profit under the prices and quantities specified in contract T, then it should be 

included in the solution.  Future work should investigate the definition and properties of such 

tests.  However, such tests are unlikely to be both necessary and sufficient for evaluating the 

profitability of such activities in non-convex problems; in general, there may be some activities 
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that fail those tests, yet their inclusion would still increase profit.  A definitive test is to include 

the activity as a decision variable in the MIP and resolve the model.  Fortunately, improved 

capabilities in mixed integer programming make that a more practical approach than it once 

was. 

  Second, much has been made in the electricity industry about the possibilities for 

strategic bidding behavior to manipulate prices (e.g., Borenstein and Bushnell, 1999).  Adding 

another bidding parameter, such as an integral activity like start-up costs, gives generators 

another degree of freedom that they can manipulate strategically.17  An examination of whether a 

greater exercise of market power, and hence higher market power rents, are possible in the 

auction market proposed in this paper versus simple auctions in which non-convexities are 

ignored is required to address the above issue.  In the context of such a study, issues like what 

bid parameters (integral or continuous) should be bid strategically to maximize profit, and what 

kind of activity rules hinder or help such strategic behavior.  Moreover, the auction pricing 

mechanism proposed in this paper could be compared to first-price and Vickrey-Clarke-Groves 

auction mechanisms.18 

Third, the efficiency of the auction pricing mechanism proposed here can be compared 

to the efficiency of simple auctions that ignore non-convexities.  In particular, an efficiency 

comparison of the MIP based auction to a simple commodity price, one-time auction would be 

of interest.  In the context of electricity markets, the above comparison may have interesting 

implications.  While the overall cost impact of non-convex decisions may be small, these costs 

can be a significant portion of total costs to generators serving peak load or reliability functions.  

Moreover, without this mechanism, generators may receive physically infeasible dispatch 

orders.  
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Finally, our results say nothing about the uniqueness of equilibrium prices.  In fact, as 

can be seen in Scarf’s example in Section IV, there can be multiple equilibria.19  Alternative 

equilibrium prices might lead to different distributions of surplus for market participants under 

contract T.  Given that there is a lot of money at stake in the new electricity markets, where the 

bidding of non-convex costs is already taking place, an examination of the distributional 

consequences of alternative equilibria is of keen interest to these market participants.  
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Endnotes 

1 Standard graduate texts in microeconomics such as Kreps (1990) and Varian (1992) note that assuming 

away nonconvexities is unrealistic, but they proceed with the standard assumptions without addressing 

the issue further. Mathematical references used by economists such as Chiang (1984) and Takayama 

(1985) do not mention integer programming for solving optimization problems with nonconvexities. 

2 As a simple example in which nonconvexities prevent a market from clearing, consider a market in 

which all firms have the same cost and entry is free.  Each firm must incur a fixed cost of one to produce 

any positive amount of a good in the range (0,1]; in that range, marginal cost is zero.  If the market 

demand curve is P = 2 – 0.6Q, then there is no market equilibrium.  For any price less than 1, no firm will 

produce and there will be a shortage.  For any price strictly greater than 1, quantity supplied is infinite, 

and there is a surplus.  Finally, for P =1, quantity demanded is 1.67, but the quantity supplied will be no 

more than 1, because if a second firm enters, it will not earn enough revenue to cover its fixed cost.  

3 As a justification for the assumption of convexity, Arrow and Hahn (1971), Mas-Colell et al. (1995), 

Takayama (1985), and Varian (1992) argue that if agents in an economy were replicated many times, then 

linear prices will support a competitive equilibrium.  Arrow and Hahn use the convex hull of the non-

convex set of constraints to show an “approximate” equilibrium. 

4 For example, see Takayama (1985, pp. 39-49, 103). 

5 For any ties that might occur, the auctioneer would randomly select winners. 
6 Other operations researchers have also attempted to define interpretable and computable duals/shadow 
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prices/price functions for integer programs (Wolsey, 1981).  For instance, Crema (1995) defines a shadow 

price based on the average incremental  contribution of a resource, while Williams (1989) defines a 

marginal value as the directional partial derivative of the optimal objective function value with respect to 

perturbations in the right hand side. 

7 It is worth noting here that simply solving the integer program and inserting the optimal values as 

equality constraints is not what Gomory and Baumol had in mind. They were primarily concerned with 

using cutting planes to find the solution to the integer program. As the reader will see below, we separate 

the issues of finding the optimal solution and identifying cuts whose duals can be interpreted as prices. 

8 The  formulation shown here can take an unnecessarily long time to solve unless modern MIP software 

is used (Hobbs, Stewart, et al., 2001).  An equivalent formulation that would solve more quickly on basic 

MIP solvers defines z1 and z2 as representing the total numbers of units of types 1 and 2, respectively, and 

q1 and q2 as representing their respective outputs. 

9 In general, it is necessary to specify the quantity to be produced in the contract because price signals 

alone as decentralized mechanisms are not always sufficient to clear the market for either convex or 

nonconvex problems.  In convex optimization, only cost functions that are strictly convex at the 

equilibrium will, in general, allow for pure price signals in an auction context.  Otherwise, if a supplier is 

on the flat part of a marginal cost curve, the auctioneer must send quantity signals in addition to price 

signals to obtain a feasible solution that clears the market without excess supply or demand. 

10 In this case, the capacity price is implicitly embedded in the start-up price. For Type 2 units, the 

derivative of the Lagrangean defined under the LP with respect Z2j and setting that equal to zero is 30 – 

7y2j – w2j = 0. 

11 In general, there are a finite number of plants, each with different costs.  In this case, there would be a 

barrier to entry (a substantial time delay at least) for similar technologies.  Under these conditions, many 

of the bidders could expect to see positive profits. 

12 In our experience in solving electric power unit commitment models, the number of non-zero prices 
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associated with start-up and shut-down decisions is one to two orders of magnitude smaller than the 

number of such variables.  However, in general, the number of additional prices could in theory rise to the 

number of integer variables. 

13 These problems may be hard to solve because, with a few special exceptions, they are NP-hard 

problems (see Johnson et al. (1997)). 

14 Note that “0 ≤ f(x) ⊥ x ≥ 0” is shorthand for the following complementarity  condition for a scalar of 

column vector x and a function of the same dimension as x:  

 0 ≤ f(x);  x ≥ 0;  f(x)T x = 0. 
15 Note that since both yk and bk are nonnegative, vPIPk  too is nonnegative, and all bidders must earn 

nonnegative (and perhaps positive) profits under contract T. 

16 With respect to computational times, the theoretical upper bounds on calculations have usually been 

much greater than the actual solution times for applications.  There are several possible explanations for 

this discrepancy.  First, it may be that actual applications seldom encounter pathological problems.  

Second, the difficult to solve problems are shelved.  Third, difficult problems can often be reformulated to 

remove many pathologies. 

17 One intuitive observation can be made about strategic behavior.  In the context of a sellers auction 

where the technologies are widely available and entry is instantaneous (as in the Scarf example in Section 

IV), even if the participants are not constrained to bid costs, a MIP auction solution produces a Nash 

equilibrium in which all generators bid their costs.  The reason is that if anyone bids above its costs it 

would be immediately undercut by an entrant with the same costs.  However, while this may be a good 

point of departure, the reality of market power in markets with integral activities is much different. 

18 See Hobbs et al. (2000) for a start at this. 

19 Admittedly, in simple examples degeneracy of the augmented LP can be a problem, leading to multiple 

dual solutions.  However, in larger more complex problems, it is not entirely clear how big a problem a 
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multiplicity of solutions will be.  Here, for instance, it turns out that the multiple equilibria in Scarf’s 

problem result from the assumed identity of costs of different suppliers.  In reality, costs and bids are 

seldom exactly equal. 


