

Multi-Period Look Ahead Markets: Price Formation and Dispatch

Richard O'Neill APPA-E

Harvard Electricity Policy Group online June 22, 2020

The views expressed are not necessarily those of the ARPA-E or the Department of Energy

What is ARPA-E?

- The Advanced Research Projects Agency-Energy (ARPA-E) is an agency within the U.S. Department of Energy that:
- Reduces imports, improve efficiency and reduce emissions
- Provides Research and Development funding for high-risk, high-reward, transformational ideas
- Focuses on technologies that could fundamentally change the way we get, use and store energy
- Accelerates energy innovations that will create a more secure, affordable, and sustainable American energy future

Traditional Pricing Practice under Federal Power Act

⇒FPA requires just and reasonable prices

interpreted as efficient (competitive) market pricing

- not lowest price
- but sustainable price (see Hope)
- Not laissez faire

Until 1980s, cost of service regulation sets prices

⇒1980s on, FERC adds

- market-based rates when lacking market power
- auctions with market power mitigation

ISO Real-time Market: Current Practice

Dispatch problem is non-convex and stochastic

- System requires instantaneous balancing.
- Reserves that address contingencies
- Little delivery risk. The risk is price

⇒What is the role of the announced price?

- LMP (alone) has no claim to market clearing
- non-confiscation needs more than the LMP

LMP is the low-cost entry price for the last period.
 ⇒Look-ahead prices and models are not publicly available
 ⇒Operators are a part of the dispatch decision (Non-AI)

Look-ahead (LA) Variations

⇒Separate LA model

- sets reserve constraints in real-time market
- ⇒LA part of the real-time market
- LA prices: not available, advisory or settlement prices
- ⇒Scenarios: how are they determined?
- ⇒market operator
 - looks ahead
 - assisted by scenario generator
- Are ramp rate and N-1 reserves added or reusable?

⇒Fast-occurring, low-probability, N-1 events

- Generator contingencies (monetize primary response)
- Transmission contingencies (thermal and voltage)
- Solution is capital with the AJ effect
- Slow-developing evolving-probability events:
 - Wind and solar (easy solution: curtail)
 - Temperature and humidity
 - More important as renewables increase
- Better weather forecasts with probability distributions
 - t₀ is the time of the real-time market dispatch.
 - As $t \rightarrow t_0$, var(weather, t) $\rightarrow 0$
 - What is a good horizon?

An 'Ideal' Market Sequence

- ⇒week ahead advisory scenario based
 - Potential topology reconfigurations
 - for minimum run time (> 24 hr) gens to schedule
- day-ahead market with
 - Price-responsive demand (with DER)
 - Forecasted renewables
 - ramp rate reserves for renewable uncertainty
 - Average Incremental Cost (AIC) prices for
 - Settlements without make-whole payments
 - avoidable-cost entry signal
 - LMPs as the marginal-cost entry signal
- ⇒ Rolling horizon real-time market
 - price-responsive demand (with DER)
 - Better renewables forecast
 - Ramp rate and contingency reserves
 - Topology reconfiguration (see SPP)

Price-responsive demand (with DER)

What is the future role of price-responsive demand?

- Follow generation (primary supplier of reserves)
- To avoid spikes and consume in valleys
- Reduce prices in the capacity market
- avoid over-reliance on the ORDC
- Participation models for dynamic price-responsive demand and DER (solves principle-agent problem)
 - Industrial processes, buildings (storage), heating and cooling, and data centers
 - How often does google scholar need to be updated?
- price-responsive demand interaction with the ISO
 - Aggregation and communication and/or
 - Response to frequency/voltage changes

LA Design Questions

Efficient dispatch for energy and reserves? yes

What is the role of selfies?

- self-commits, self-schedules and self-dispatch
- Do they help or hurt efficiency/balancing?
- What should the pricing for selfies be? LMPs?

⇒What is the role of prices?

- Entry/exit signals: LMP for marginal entry
- non-confiscatory and transparent settlement: AIC
- AIC for incremental entry (when to calculate)
- Web site map entertainment

LA design questions

⇒How will the model be stochastic?

- Who chooses the scenarios
- Two-stage stochastic model.
- Operator decisions on likely events

Which units will be committable or de-committable?

What is horizon and interval sizes?

⇒Will it include minimum run and down times? yes

Will it have topology optimization? hopefully

How soft are the soft constraints, for example, thermal

Should thermal constraints be dynamic?

Computation and Communication

all current models are computationally constrained

- how much time will be given to solve the LA model?
 ⇒ Probability distributions need judgement and reduction to a manageable number of events (not an easy problem)
 ⇒ more detail usually comes with longer run times.
 - CCCT models: configuration dispatch
 - Pumped storage models
 - topology optimization and corrective switching
 - SPP solved wind curtailment (psst improved market surplus)

⇒Can we aggregate and communicate with price-responsive demand?

Response to frequency signals

There is hope. HIPPO/MISO project has 10x improvement

Prices

- What are LA prices telling market participants
 - Advisory for entry/exit bids and offers in the future?
 - LMPs for low cost entry
 - AIC entry at average incremental cost and for settlement
- Short-term entry-exit signal: LMP is the low-cost entry signal
 - available immediately after dispatch
 - For example, for generators running in neighboring markets
- ⇒ Settlement price: AIC price (says in the optimal neighborhood)
 - Settlement occurs later; not real-time
 - no generator make-whole payments
 - Ramsey-Boiteux pricing for load (more focused than MWP)
- Today's ELMPs are neither fish nor fowl
 - Not entry prices, not transparent (make-whole payments)
 - may not be revenue adequate
- ⇒ What would CHP be if
 - we penalized self-dispatch (as most ISOs do)
 - Not let non-dispatched units set the price

.

.

.

