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Abstract

There is a general agreement since Allaz-Vila’s seminal contribution that forward contracts mitigate market power on the spot

market. This result is widely quoted and elaborated in studies of restructured power markets where it is generally believed that

generators tend to exploit the special characteristics of this industry in order to extract higher prices. Allaz-Vila established their

result under the assumption that the production capacities of the players are infinite. This assumption might have applied to the

power industry in the early days of restructuring but it no longer holds in today environment of tightening capacity. We show that the

Allaz-Vila result no longer holds when capacities are endogenous and constraining generation. Specifically the future market can

enhance or mitigate market power when capacities are endogenous and demand is unknown at the time of investment. This result

complements Part 1 where the authors show that forward markets do not mitigate market power when capacities are endogenous

and demand is known at the time of investment. It also complements other work by Grimm and Zoettl who show that forward

markets systematically enhance market power in some symmetric capacity-constrained markets.



1 Introduction

Among the many difficulties encountered in the restructuring of electricity systems, market power

and resource adequacy emerge as particularly difficult to handle. The possible exercise of market

power and how to mitigate it has retained considerable attention since the California crisis. Many

see it as the central cause of the slow progress of electricity restructuring in Europe.1 Resource

adequacy is related to investments levels which have not materialized as initially expected. Both

issues are related: insufficient capacity enhances market power and facilitates its exercise. Both

issues were treated relatively easily in the past: utilities were regulated at average cost and could

generally2 add capacity costs to their rate bases. Excess investment was even recognized by the

literature as a way to increase profits (Averch and Johnson effect (1962)). In restructured markets

these problems are much more difficult. While many argue that utilities exercise of market power,

this remains difficult to prove.

This paper analyzes a model that combines capacity expansion and a futures market, albeit

in an extremely stylized way. The reasoning behind a futures market increasing production is in

two parts: generators that have sold part of their supplies forward have less incentive to increase

price on the spot market; moreover, a prisoner’s dilemma effect identified by Allaz (1992) and Allaz

and Vila (1993) induces generators to enter the forward market, thereby reducing market power.

Their argument was developed without considering the effects of capacity limits. With capacities,

companies indeed have an additional instrument that has the potential to mitigate the Allaz-Vila

effect. In short the question is whether the forward market can still mitigate market power when

capacities are endogenous. Conversely, the forward market, because of the Allaz-Vila effect, could

induce companies to react by reducing investments as a way of managing spot and forward markets.

We looked at that problem under the simplifying assumption of a single deterministic demand

function in Part 1 (Murphy and Smeers, 2007) and came to the following conclusion. The Allaz-

Vila effect completely disappears when capacities are endogenous, thereby eliminating the potential

of the forward market to reduce market power. Except for possibly destroying the existence of a

pure strategy equilibrium, the introduction of a forward market is completely transparent: it

does not change the capacity invested and there is no impact on the market power exercised
1Difficulties in the restructuring of electricity markets can be attributed to inadequate market architecture (market

design) or structure (concentration, inadequate capacities). The question of market architecture has never been

tackled seriously in Europe outside of the UK and the Nordic countries.
2That is, before the prudence reviews that developed in the US. There was no similar development in Europe.
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on the spot market. This result has another interesting interpretation. The three-stage game

(investment, forward market, spot market) has the same pure strategy equilibrium as a two-stage

game (investment, spot market) which is itself equivalent to a single stage game in investment and

sales. This result is very much akin to celebrated result established by Kreps and Scheinckman

(1983) for a two-stage game (Cournot/Bertrand).

The main result of this paper is less positive: we remove the assumption of a single deterministic

demand function and assume that the demand function is unknown at the time of the investment

(as it effectively is). We then establish the following two results:

i) the Allaz-Vila result that the forward market mitigates market power no longer holds. In fact

the effect of the forward market is ambiguous. It can enhance or mitigate market power and

one cannot know which occurs until the model parameters are known;

ii) the equivalence between the multistage and single stage games no longer holds. The solution of

the three-stage game (with the forward markets) is different from the solution to the two-stage

game (without forward markets).

Our results are developed for the general case without a load curve. Nevertheless, the practical

side of these results is the suggestion that we know very little about the behavior of long-term

restructured electricity markets when there is market power. For a literature review, see part I.

This paper belongs to a relatively restricted stream of the literature. Elaborating on existing

economic concepts, e.g. Gabszewicz and Poddar (1997), Murphy and Smeers (2005) analyze ca-

pacity expansion in restructured electricity systems subject to market power. Grimm and Zoettl

(2006) further investigate the subject and show that forward markets always have a detrimental

effect on investments in some symmetric games as does Adilov (2005).

2 The model

The models analyzed in this paper are constructed as follows. We assume two generating companies

are in competition, each specializing in one particular technology. Alternatively, both generators

can specialize in the same technology. Following much of the economic literature, we assume that

there is no existing generation system. Each company invests in new capacity and competes on the

spot market given its capacity. We thus represent a merchant system. The two models considered

in the paper differ in that one has a forward market and the other does not.
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In the model with a forward market, the equilibrium in the spot market is found given the

capacities and forward positions. The forward-market equilibrium is found given the capacities and

taking into account the ensuing spot equilibrium. The players make capacity decisions knowing

their impact on the forward and spot equilibria. The model without a forward market has a

spot-market equilibrium that is a function of the capacities and the capacity equilibrium is found

knowing the effect of the capacity decisions on the spot market.

In contrast to Part 1 we assume that future demand is uncertain. In reality demand is not

known at the time of investment. We model the uncertain demand by assuming an inverted

demand function of the form

p = ξ − q (1)

where p and q respectively denote the price and quantity

ξ is a random intercept with density f(ξ) defined over (L,U)

The economic characteristics of the technologies are summarized in the pairs

ki, νi i = 1, 2 (2)

where ki and νi are respectively the investment and operating costs of technology i measured in ⊂=
or $/Mwh (see Stoft, 2002 for a discussion of these units).

For the sake of technical simplicity, we assume that the competing companies behave like

Cournot players in each of the markets (spot, forward and capacity): they exert market power by

setting quantities (energy delivered, forward positions, capacities invested). This is only a working

assumption and we make no claim or even suggest that it corresponds to the behavior of a particular

company. These quantity variables are denoted

xi, yi, zi(ξ) i = 1, 2 (3)

where xi is the capacity invested by firm i

yi is the futures position of firm i

zi(ξ) is the energy delivered by firm i when the demand realization is ξ

Given this background we describe the three markets as follows.

2.1 The spot market

Let xi and yi be respectively the capacity and forward positions of agent i when it enters the spot

market. We assume that the demand function (1) (that is, the parameter ξ) is revealed after the
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investments are made and forward positions are taken. For each realization of ξ, the two companies

compete as Cournot players on the spot market. Rewriting zi(ξ) as zi for the sake of convenience,

this implies that each company i takes the production z−i of the other as given and solves

max
zi

(ξ − zi − z−i)(zi − yi)− νizi (4)

s.t. 0 ≤ zi (ωi) (5)

0 ≤ xi − zi (λi) (6)

This formulation expresses that, after selecting a forward position yi at an already established

forward price, the incentive of the generator to manipulate the market by restricting its generation

zi is limited to the residual market zi − yi. Let ωi and λi be the dual variables of the constraints

zi ≥ 0 and xi − zi ≥ 0 respectively. Solving the problems of both generators simultaneously, we

obtain the equilibrium conditions of the Cournot spot market.

0 ≤ ξ − 2zi − z−i − νi + yi − λi + ωi ⊥ zi ≥ 0, i = 1, 2

0 ≤ xi − zi ⊥ λi ≥ 0, 0 ≤ zi ⊥ ωi ≥ 0, i = 1, 2.
(7)

The equilibrium on the spot market is a parametric complementarity problem. Last we note that

the profit accruing to the firm from its operations on the spot market is

(ξ − zi − z−i − νi)(zi − yi) (8)

where the zi and z−i satisfy condition (7).

2.2 The forward market

Let yi be the position taken by agent i on the forward market. We invoke the usual no arbitrage

assumption of finance theory which implies that yi is sold at a price that is the expectation in some

risk neutral probability of the spot price. This implies that we reinterpret the distribution f(ξ) of

the parameter ξ as a risk neutral probability that develops from the trading of the forwards. The

forward price is thus ∫ U

L
(ξ − zi − z−i)f(ξ)dξ. (9)

When taking the position yi given the position y−i of player −i, the profit of player i on both the

spot and forward markets is then

yi
∫ U
L (ξ − zi − z−i)f(ξ)dξ +

∫ U
L (ξ − zi − z−i)(zi − yi)f(ξ)dξ

=
∫ U
L (ξ − zi − z−i)zif(ξ)dξ.

(10)
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While this profit does not invoke yi explicitly it does so implicitly to the extent that the zi and z−i

are parameterized by yi and y−i. The Cournot problem on the forward market is then defined as

follows. Given y−i, generator i solves

max
yi

∫ U

L
(ξ − zi − z−i)zif(ξ)dξ (11)

where zi and z−i are the solution of (7).

Equilibrium problems (here equilibrium in the y) subject to equilibrium constraints (EPEC), here

relation (7), belong to the class of Generalized Nash Games (Rosen (1965), Harker (1991)) and

suffer from several problems. Specifically, they may or may not have pure strategy equilibria.

When pure strategy equilibria exist, they might or might not be unique. When there are multiple

equilibria, these solutions can form either a single continuous set or discontinuous sets (Ehrenmann

(2004)).

Problem (11) can be converted into a usual Nash equilibrium, albeit without much benefit.

Indeed, the solution of the spot equilibrium conditions (7) is unique implying that there exists a

unique pair of (nondifferentiable) functions

zi(yi, y−i; ξ) and z−i(yi, y−i; ξ) (12)

that solves (7). Replacing (12) in (11) we obtain the reformulation of (11)

g(xi, x−i)

= maxyi

∫ U

L
[ξ − zi(yi, y−i; ξ)− z−i(yi, y−i; ξ)− νi]zi(yi, y−i; ξ)f(ξ)dξ

(13)

which is a standard Nash equilibrium and no longer an EPEC. Note that this problem is un-

constrained in yi as generators can take long or short positions in the futures market and that

speculators can take the opposite position. The convexity/concavity properties of the second-stage

(here spot market) problem of an EPEC are usually lost when moving to the first-stage (here

the forward market) of the EPEC. This happens here and we cannot ascertain that it has a pure

strategy solution.

2.3 The capacity market

The profit function of generator i in the forward market depends on the installed capacities xi,

i = 1, 2. The Cournot model on the capacity market is obtained by defining the net profit (after

accounting for capital charges) of company i

pi(xi, x−i) = g(xi, x−i)− kixi (14)
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with both players simultaneously solving

max
xi≥0

pi(xi, x−i). (15)

This is the problem that we are ultimately interested in and for which we want to analyze the

impact of a forward market.

3 Formulae for the equilibrium solutions at each stage

The equilibrium model with a forward market (15) is mathematically quite complex and beyond the

scope of what is generally handled using mathematical programming techniques: it is a three-stage

game, a problem more complex than an EPEC. Our first objective is to provide sufficient analysis

to explore the claim that the forward market always mitigates market power. A second objective is

to investigate the practice that consists of replacing the complex (and currently intractable) three-

stage model by the easier (but still complex) two-stage model. These limited objectives justify that

we introduce some further simplifying assumptions in the treatment of the spot market as we need

them.

3.1 The spot market

As shown in Section 2, the modeling of the spot market drives the rest of the formulation. An

equilibrium of the spot market always exists, and under our assumptions it is also unique. This

equilibrium can be characterized by specifying the constraints that are binding. The following cases

can occur:

(i) 0 < zi(ξ) < xi i = 1, 2 (16.1)

(ii) 0 < zi(ξ) < xi 0 < z−i(ξ) = x−i (16.2)

(iii) 0 < zi(ξ) = xi i = 1, 2 (16.3)

(iv) 0 = zi(ξ) ≤ xi 0 < z−i(ξ) = xi (16.4)

(v) 0 = zi(ξ) ≤ xi i = 1, 2. (16.5)

For our objective it is sufficient to consider only equilibria for which zi > 0, i = 1, 2. This implies

that we simplify the complementarity relations (7) into

ξ − 2zi − z−i − νi + yi + λi = 0 i = 1, 2 (17.1)
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0 ≤ xi − zi ⊥ λi ≥ 0 i = 1, 2 (17.2)

and limit ourselves to the first three cases in (16). The set of binding inequalities (16.1), (16.2)

and (16.3) depends on the value of ξ. Define αi(x, y) and α−i(x, y) to be the smallest values of ξ

such that
z−i(ξ) = x−i and zi(ξ) < xi for ξ = α−i(x, y)

z−i(ξ) = x−i and zi(ξ) = xi for ξ = αi(x, y).
(18)

The definition implies

α−i(x, y) < αi(x, y). (19)

The definitions (18) apply in the model without forward markets by setting y = 0. Note that one

cannot assess ex ante whether i = 1 or 2 in (19) solely from the data.

3.1.1 The spot market with forward positions

We successively consider the first three cases in relations (16).

Case 1. From Part 1, when capacity is not binding

z∗i (y) =
1
3
[ξ − 2(νi − yi) + (ν−i − y−i)]. (20)

The profit in the spot market is

1
3(3ξ − ξ + 2νi − 2yi − ν−i + y−i − ξ + 2ν−i − 2y−i − νi + yi − 3νi)

1
3[ξ − 2(νi − yi) + νi − y−i]

= 1
9(ξ − yi − y−i − 2νi + ν−i)(ξ − 2νi + 2yi + ν−i − y−i)

(21)

and the market clearing price is

p(ξ) =
1
3
[ξ + (νi − yi) + (ν−i − y−i)]. (22)

The profit of player −i is found by interchanging i and −i. This unconstrained case is the one

studied by Allaz (1992) and Allaz and Vila (1993). Appendix A.1.1. derives an adapted version

of that result. Specifically, one shows that the corresponding positions on the forward market in a

fully unconstrained case are given by

yi =
1
5
[E(ξ)− 3νi + 2ν−i], y−i =

1
5
[E(ξ)− 3ν−i + 2νi] (23)

where

E(ξ) =
∫ U

L
ξf(ξ)dξ.
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Case 2. For z−i = x−i and zi < xi, we find zi by solving (17.1) for player i

ξ − 2zi − x−i − νi + yi = 0

or

zi =
ξ − x−i − νi + yi

2
. (24)

The profit for player i is:

1
4
(ξ − x−i − νi − yi)(ξ − x−i − νi + yi) =

1
4
[(ξ − x−i − νi)2 − y2

i ]. (25)

The profit for player −i is:

(ξ − zi − x−i − ν−i)x−i =
(
ξ − ξ − x−i − νi + yi

2 − x−i − ν−i
)
x−i

= 1
2(ξ − x−i − 2ν−i + νi − yi)xi.

(26)

Case 3. For zi = xi, i = 1, 2 the profit is

(ξ − xi − x−i − νi)xi.

Next we find the values of α, defined by (18) and (19), where the profit functions switch from Case

1 to Case 2 and from Case 2 to Case 3. Noting that αi(x, y) > α−i(x, y) is consistent with Case 2,

we can solve for αi(x, y) and α−i(x, y). Since α−i(x, y) is the point where the solution to the spot

market (20) equals capacity, for −i, we have

x−i =
1
3
[ξ − 2(ν−i − y−i) + (νi − yi)]

or

α−i(x, y) = 3x−i + 2(ν−i − y−i)− (ν − yi). (27)

Similarly,

αi(x, y) = 2xi + x−i + νi − yi. (28)

3.2 The forward market

Consider the case where there is a forward market. Using the expressions established in Sec-

tion 3.1.1, we define the profit function of both agents i and −i (recall that i and −i are identified

by the relation α−i(x, y) < αi(x, y) or α−i(x) < αi(x)). Let pi(x, y) and p−i(x, y) be the profit
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functions of generators i and −i respectively,

pi(x, y) = 1
9

∫ α−i(x,y)

L
(ξ − yi − y−i − 2νi + ν−i)

(ξ + 2yi − y−i − 2νi + ν−i)f(ξ)dξ

+ 1
4

∫ αi(x,y)

α−i(x,y)
[(ξ − x−i − νi)2 − y2

i )]f(ξ)dξ

+
∫ U

αi(x,y)
(ξ − xi − x−i − νi)xif(ξ)dξ − kixi

(29)

p−i(x, y) = 1
9

∫ α−i(x,y)

L
(ξ − yi − y−i + νi − 2ν−i)

(ξ − yi + 2y−i + νi − 2ν−i)f(ξ)dξ

+ 1
2

∫ αi(x,y)

α−i(x,y)
(ξ − x−i + νi − 2ν−i − yi)x−if(ξ)dξ

+
∫ U

αi(x,y)
(ξ − xi − x−i − ν−i)x−if(ξ)dξ − k−ix−i.

(30)

The equilibrium on the forward market if it exists is obtained by solving

∂pi(x, y)
∂yi

=
∂p−i(x, y)

∂y−i
= 0. (31)

Existence and uniqueness of the forward equilibrium also require

∂2pi(x, y)
∂y2

i

< 0 and
∂2p−i(x, y)

∂y2
−i

< 0.

Assuming that the equilibrium exists, these relations define forward positions yi(x) and y−i(x) for

both agents i and −i.

3.3 The capacity market

Suppose first that there is a forward market and that its equilibrium exists. The profit function

of the capacity market is obtained after replacing the yi by the equilibrium solution y(x) on the

forward market. This can be stated as

pi(x) = pi[x, y(x)] i = 1, 2. (32)

Consider now the case without a forward market. The objective functions in the capacity game are

obtained by setting yi and y−i to zero in (29) and (30). This leads to

pi(x, 0) =
∫ α−i(x)

0

1
9(ξ − 2νi + ν−i)(ξ − 2νi + ν−i)f(ξ)dξ

+
∫ αi(x)

α−i(x)

1
4(ξ − x−i − νi)2f(ξ)dξ

+
∫ ∞
αi(x)

(ξ − xi − x−i − νi)xif(ξ)dξ − kixi

(33)
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and

p−i(x, 0) =
∫ α−i(x)

0

1
9(ξ − 2ν−i + νi)(ξ − 2ν−i + νi)f(ξ)dξ

+
∫ αi(x)

α−i(x)

1
2(ξ − x−i − 2ν−i + νi)x−if(ξ)dξ

+
∫ ∞
αi(x)

(ξ − xi − x−i − ν−i)x−if(ξ)dξ − k−ix−i

(34)

4 Necessary equilibrium conditions

Multistage games do not necessarily have pure strategy equilibria or may have several of them.

We analyze the necessary conditions that equilibria should satisfy and discuss why they do not

always lead to a pure strategy equilibrium. We assume that the objective functions at each stage

are differentiable.

4.1 The necessary conditions of the equilibrium without a forward market

Setting yi = y−i = 0 in relations (27) and (28) we obtain

α−i(x) = 3x−i + 2ν−i − νi (35)

αi(x) = 2xi + x−i + νi. (36)

The equilibrium conditions are obtained when each agent maximizes its profit by choosing its

capacity level or

∂pi
∂xi

=
∫ U

αi

(ξ − 2xi − x−i − νi)f(ξ)dξ − ki = 0 (37)

∂p−i
∂x−i

=
1
2

∫ αi

α−i
(ξ − 2x−i + νi − 2ν−i)f(ξ)

+
∫ U

αi

(ξ − xi − 2x−i − ν−i)f(ξ)dξ − k−i = 0. (38)

Relation (37) can be rewritten as
∫ U

αi(x)
(ξ − αi)f(ξ) = ki.

It is an equation in αi from which we infer an equivalent relation

αi(x) = 2xi + x−i + νi = αi.

An equilibrium must satisfy this relation with αi < U . The second order condition of (37) is

∂2pi

∂x2
i

=
∫ U

αi

(−2)f(ξ)dξ − (αi − αi)
∂αi
∂xi

= −2
∫ U

αi

f(ξ) < 0. (39)
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Consider now the second order condition ∂2p−i
∂x2
−i

. We have

∂2p−i
∂x2
−i

= 1
2

∫ αi

α−i
(−2)f(ξ)dξ +

∫ U

αi

(−2)f(ξ)dξ

+1
2(αi − 2x−i + νi − 2ν−i)f(αi)

∂αi
∂x−i

−1
2(α−i − 2x−i + νi − 2ν−i)f(α−i)

∂α−i
∂x−i

−(αi − xi − 2x−i − ν−i)f(αi)
∂αi
∂x−i

.

The last three terms can be written after replacement of αi, α−i,
∂αi
∂x−i

and ∂α−i
∂x−i

by their values

f(αi)(xi − x−i
2 + νi − ν−i)− 3

2f(α−i)x−i

− f(αi)(xi − x−i + νi − ν−i)

= x−i
2 (f(αi)− 3f(α−i)).

To sum up, we have
∂2p−i
∂x2
−i

= −
∫ αi

α−i
f(ξ)dξ − 2

∫ U

αi

f(ξ)dξ

−x−i2 (3f(α−i)− f(αi)).
(40)

The sign of this expression is generally undetermined. It is always negative in the special case of a

uniform or exponential distribution of ξ.

4.2 Necessary equilibrium conditions with a forward market

We first consider the equilibrium conditions on the forward market and then turn to the capacity

market.

4.2.1 First order conditions on the forward market

Let x be given. The necessary conditions of the futures market are given as

∂pi
∂yi

=
∂p−i
∂y−i

= 0 (41)

where
∂pi
∂yi

= 1
9

∫ α−i(x,y)

L
(ξ − 4yi − y−i − 2νi + ν−i)f(ξ)dξ)

−yi2
∫ αi(x,y)

α−i(x,y)
f(ξ)dξ

(42)

∂p−i
∂y−i

= −1
9

∫ α−i(x,y)

L
(ξ − yi − 4y−i + νi − 2ν−i)f(ξ)dξ. (43)

11



Let

ψ−i(ξ, x, y) =
1
9
(ξ − yi − 4y−i + νi − 2ν−i) for ξ ∈ [L,α−i(x, y)] (44)

and

ψi(ξ, x, y) =




1
9(ξ − 4yi − y−i − 2νi + ν−i) for ξ ∈ [L,α−i(x, y)]

−yi2 for ξ ∈ [α−i(x, y), αi(x, y)].
(45)

Relation (41) can be restated as

Ψi(x, y) =
∫ αi(x,y)

L
ψi(ξ, x, y)f(ξ)dξ = 0. (46)

Ψ−i(x, y) =
∫ α−i(x,y)

L
ψ−i(ξ, x, y)f(ξ)dξ = 0. (47)

Solving these relations together with

α−i(x, y) = 3x−i + 2(ν−i − y−i)− (νi − yi) (48)

αi(x, y) = 2xi + x−i + νi − yi (49)

gives a candidate equilibrium on the forward market.

One immediately sees that yi = 0;α−i(x, y) = L always satisfies relations (46) – (49). We refer

to a solution with these properties as a corner solution. A solution satisfying α−i(x, y) > L is

termed an interior solution.

In Appendix A.1.2. we present the second order conditions for both corner and interior equilibria

and present the reaction curves of the players. For the second-order conditions we find that the sign

of ∂2pi
∂y2i

is indeterminate with an interior solution as well as with a corner solution. This leads us to

conclude that in contrast with the infinite capacity model of Allaz-Vila recalled in Appendix 1.1,

the equilibrium does not necessarily exist with a forward market. We discuss separately the cases

of interior and corner solutions.

A reaction curve analysis

We complete the forward-market analysis by exploring the structure of the reaction curves of the

two agents in the forward market. This analysis assumes that the first order conditions suffice

to determine the optimal behavior of an agent given the action of the other, which we have seen

is not necessarily the case. In the Appendix A.1.3. we show that even under these additional

assumptions the existence of the equilibrium is not guaranteed because the slopes of the reaction

functions do not necessarily fall in the range of (−1, 0). The results in the appendix illustrate how

the properties for an equilibrium hold in the standard Allaz-Vila case where capacities are infinite.
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In these equations, if we let α = ∞, and set to zero all terms except the integrals from L to ∞,

we have the reaction functions with infinite capacity, that is reaction functions with no capacity

game. In this case the slopes then fall in the range of (−1, 0) and the game of the forward market

is well behaved.

These properties can be illustrated graphically. Plotting ψi and ψ−i in (44) and (45), we can

see the marginal contribution to profit at each ξ. We can perturb the variables to get a sense of

how the profit forward game changes. We begin with ψ−i.

Figure 1: Marginal contribution in the spot market of y−i as a function of ξ at the equilibrium

solution as seen in the forward market game

In Figure 1 as ξ increases, the contribution to profit increases linearly and then the contribution

stops once capacity is reached, when z−i is equal to x−i. Without a capacity constraint the line

would continue indefinitely. We now look at the effect of increasing yi on ψ−i.

$

L α
-i

α
i

ψ
-i

ξ

Figure 2: The effect of increasing yi on ψ−i

Increasing yi for ξ < α−i decreases ψ−i. We also have to take account of the effect on α−i. Since

α−i is increasing, the direction in the change in profit is dependent on which area is larger, the

13



decreasing area ranging over the ξ or the increasing area associated with the change in α−i. This

cannot be ascertained ex ante and hence the outcome is ambiguous.

Plotting ψi we get Figure 3.

$

L α
-i

α
i

ξ

ψ
i

Figure 3: Marginal contribution in the spot market of yi on ψi, as a function of ξ at the

equilibrium solution as seen in the forward market game

Note that between the α’s the contribution is negative because of the second integral in (42), unlike

Figure 1. Increasing xi enlarges αi and hence adds to the negative area. The impact of an increase

in y−i can be seen in Figure 4.

$

L α
-i

α
i

 

ψ
i

Figure 4: Effect of an increase in y−i on the marginal contribution of yi, λi

Increasing y−i decreases ψ−i in [L,α−i(x, y)] and decreases α−i(x, y). It does not modify αi(x, y).

We see that the effect is unambiguous in that the marginal contribution decreases. This implies

that player i sees its marginal profit becoming negative as a result of an increase of yi. It reacts

by decreasing y−i. We are however unable to determine by how much. Again, note that in the

forward market game without capacity limits, the negative ψ’s between the α’s do not exist.
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These graphs show that the boundaries of the integrals, the α’s, change the character of the

results of the forward market and create the possibility for capacity to increase or decrease through

the addition of a futures market.

4.3 Necessary equilibrium conditions on the capacity market

Assume in the following that the forward market has a unique equilibrium and let y(x) be the

corresponding futures positions of the players. We want to explore whether there is an equilibrium

on the capacity market.

Let pi[x, y(x)] be the profit accruing to generator i on the capacity market after taking the

optimal forward position y(x). The equilibrium on the capacity market must satisfy

dpi
dxi

= 0 (50)

or
∂pi
∂xi

+
∂pi
∂yi

∂yi
∂xi

+
∂pi
∂y−i

∂y−i
∂xi

= 0. (51)

Taking into account that ∂pi
∂yi

= 0 at the equilibrium on the forward market, we obtain

∂pi
∂xi

+
∂pi
∂y−i

∂yi
∂xi

= 0. (52)

Similarly dp−i
dx−i

= 0 implies
∂p−i
∂x−i

+
∂p−i
∂yi

∂yi
∂x−i

= 0. (53)

The establishment of the necessary equilibrium conditions on the capacity market therefore requires

computing

(i) ∂pi
∂xi

and ∂p−i
∂x−i

(ii) ∂pi
∂y−i

and ∂p−i
∂yi

(iii) ∂yi
∂x−i

and ∂y−i
∂xi

.

We here discuss the equilibrium on the capacity market when the assumed equilibrium on the for-

ward market is a corner solution. The formulae for the interior solution are given in Appendix A.1.3.
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4.3.1 The forward market has a corner equilibrium

As shown in the Appendix, this equilibrium is characterized by

yi = 0; y−i ≥
1
2
[3x−i − νi + 2ν−i − L].

We immediately obtain
∂yi
∂x−i

= 0;
∂y−i
∂xi

= 0.

The necessary equilibrium conditions on the capacity market reduce to

∂pi
∂xi

=
∂p−i
∂x−i

= 0 (54)

which look similar to the equilibrium solutions obtained when there is no forward market. The

equilibrium is not the same though, because player −i has a non-zero position on the forward

market. The equilibrium condition for player i can be stated as
∫ U

αi

(ξ − 2xi − x−i − νi)f(ξ)dξ − ki = 0 (55)

where

αi = 2xi + x−i + νi (56)

since yi = 0. These conditions are again equivalent to

αi(x) = 2xi + x−i + νi = αi (57)

where αi is a solution of ∫ U

α
(ξ − α)f(ξ) = ki

that must satisfy αi ≤ U . This equilibrium condition is thus identical to the one obtained when

there is no forward market.

The equilibrium conditions of x−i are different and are

1
2

∫ αi

L
(ξ − 2x−i + νi − 2ν−i)f(ξ)dξ

+
∫ U

αi

(ξ − xi − 2x−i − ν−i)f(ξ)dξ − k−i = 0
(58)

or
1
2

∫ αi

L
ξf(ξ)dξ +

∫ U

αi

ξf(ξ)dξ

= k−i + 1
2(−2x−i + νi − 2ν−i)(αi − L)

−(xi + 2x−i − ν−i)(U − α−i)

(59)
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which, because αi is known, is a linear expression in xi and x−i. The candidate capacity equilibrium

for a corner equilibrium on the forward market is thus found by solving a linear system of equations.

We now verify the second order conditions

∂2pi
∂x2

i

= −2
∫ U

αi

f(ξ)dξ < 0

∂2p−i
∂x2
−i

= −1
22

∫ αi

L
f(ξ) + 1

2(αi − 2x−i + νi − 2ν−i)f(α)

−2
∫ U

αi

f(ξ)dξ − (αi − xi − 2x−i − ν−i)f(α)

= −
∫ αi

L
f(ξ)dξ − 2

∫ U

α
f(ξ) +

(
−αi2 + xi + x−i +

νi
2

)
f(αi)

= −
∫ αi

L
f(ξ)dξ − 2

∫ U

αi

f(ξ)dξ + xi
2 f(αi)

(60)

which is again of indeterminate sign. As with the forward market, it is impossible to ascertain ex

ante the existence of an equilibrium solution.

4.3.2 Using the reaction functions in the capacity game

We examine the qualitative properties of how the capacities change with the addition of a forward

market, using the reaction functions in the capacity game. From (56) the capacity x−i from the

model without a forward market, xi is the optimal capacity in the model with a forward market

when yi = 0. The left side of (58) evaluated with the capacities set at the levels from the model

without a forward market tells us the direction of change in the capacity of player −i. If this

expression is positive (negative), then the capacity x−i increases (decreases) and the effect of a

change in x−i on xi determines the total change in capacity. Note that the equilibrium condition of

the capacity market in the game with no forward market, (38), differs from (59) only in the lower

limit of the first integral, α−i versus L. Subtracting (38) from the left side of (59), leads to the

following,
∂p−i
∂x−i

=
1
2

∫ α−i

L
(ξ − 2x−i + νi − 2ν−i)f(ξ)dξ. (61)

At

ξ = α−i = 3x−i + 2ν−i − νi. (62)

We have

ξ − 2x−i − 2ν−i + νi = xi > 0. (63)

For small ξ the term in the integral can be negative. Thus, we cannot determine the sign of ∂p−i
∂x−i

in general. Nevertheless, we can determine the response of xi to a change in x−i.
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Taking the derivative of (57) with respect to xi, we get

∂xi
∂x−i

= −1
2
. (64)

Repeating the process by taking the derivative (58) with respect to xi yields

∂x−i
∂xi

= −1
2
. (65)

Thus, with the inclusion of forward markets, if (61) is positive, total capacity increases, and if

(61) is negative, total capacity decreases. As we see in the numerical experiments, we can generate

cases that lead to (61) having either sign.

The necessary equilibrium conditions for the interior solution on the forward market are given

in appendix. They are amenable to numerical treatment but do not lead to any general property

as with the corner solution.

5 Numerical investigation

In this section we illustrate the possible consequences of adding a forward market using numerical

examples. We show that a forward market can increase or decrease investments and its impact on

market power is ambiguous.

For the details behind the parameter selection, see the Appendix A.1.5. We assume a linear

demand function ξ − q with ξ uniformly distributed in the interval [250,450]. For costs we use two

technologies, combined-cycle gas turbines and coal, with annual fixed costs of 8 ⊂= and 16 ⊂= and

annual operating costs of 28 ⊂= and 35 ⊂= per Mwh respectively.

The model takes the form of nonlinear equations that are solved in EXCEL. The nonlinear

equations are based on expressions that assume α−i < αi. It is not known in advance which plant

reaches its capacity limit first in operations and hence whether i is associated with coal or gas units.

We thus proceed by assuming an assignment of coal and gas to i and −i respectively (intuitively

coal should reach its capacity limit before gas) and verify afterwards that the inequality α−i < αi

is satisfied. Note that we can think of three sets of necessary conditions that correspond to

αgas < αcoal
αcoal < αgas

αcoal = αgas

18



5.1 Asymmetric costs

We solved the necessary equilibrium conditions for both the capacity expansion model without and

with a forward market and tested that we found a true equilibrium through varying the solutions

and using second-order conditions in the futures market.

Capacity (in Gw) α Profit (106⊂=/h)

Gas 25.43 393.4 2.390

Coal 22.22 375.3 1.848

Total 47.65 4.238

Table 7.1.: Equilibrium without futures market

In this solution the player with the gas capacity builds more than the coal player, has 30 % higher

profits, and operates below capacity for higher values of ξ than the coal player.

Capacity (in Gw) Futures in Gwh α Profit (106⊂=/h)

Gas 24.11 0 393.5 1.911

Coal 24.88 16.6 250 1.985

Total 49 3.896

Table 7.2.: First equilibrium with a futures market

The introduction of a futures market slightly increases the invested capacity. The level at which

gas capacity is fully utilized is ξ ≥ 393.5 while the coal capacity is fully utilized for all levels of

ξ. Total profits drop to 3.896 106 ⊂=/hour. However, the coal player increases its profits at the

expense of the gas player.

Profits are huge (profits of 4 106 ⊂=/h for an hourly demand of 50 Gwh lead to profits of 80

⊂=/Mwh. This is due to the low (in absolute value) elasticity (from .25 to .125) for a long term

problem and the Cournot assumption. Even though these values seen unrealistic for a long term

problem, they correspond to those obtained by most authors when looking at market power.

The equilibrium with a futures market is a corner solution in that the coal player takes a futures

position that fully utilizes all of its capacity for all potential demand levels and drives the other

player from the futures market. The coal player comes out ahead of the gas player and garners
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greater profits than in a situation with no futures market. This solution is anomalous in that the

higher-cost player increases its position at the expense of the lower-cost player. This can happen

because a large futures position can completely block the other player from entering the futures

market. That is, the Cournot assumption that the other player does not respond in the futures

game actually obtains in this case.

It is also true that the other corner solution is an equilibrium with gas capacity operating for all

levels of ξ and the coal player out of the futures market. This equilibrium is shown in the following

table.

Capacity (in Gw) Futures in Gwh α Profit (106⊂=/h)

Gas 27.43 40 250 2.629

Coal 19.82 0 370.4 1.389

Total 47.25 4.019

Table 7.3.: Second equilibrium with a futures market

Note that in this corner solution total capacity declines from the case with no futures equilibrium.

Thus, with the parameters we have chosen, we get two corner equilibria, one where total capacity

is increased and the other where total capacity is decreased. We see that anything can happen to

total capacity within the same example.

One of the issues raised with the original Allaz Vila model is that the decision to enter or not the

futures market is a Prisoners dilemma game because both players are worse off. However, with the

corner equilibrium, the result is not a Prisoners dilemma solution because the player that operates

at capacity for all alphas improves its profit at the expense of the other player.

The following table contains the prices at the upper limit, U , and the lower limit, L, on the

probability distribution.

U L

No futures equilibrium 212 104

First futures equilibrium 205 77

Second futures equilibrium 214 74

Table 7.4.: Prices for the upper and lower limits of the probability distribution
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We see that adding a forward market can either raise or lower the price at the upper limit of

the probability distribution, depending on the change in total capacity. In both cases the price is

lower at the lower levels of demand because a positive futures position increases spot production

when capacity is not binding (the usual Allaz-Vila phenomenon). The price at the upper limit gives

a sense of the effect of adding a forward market during the peak period in electricity generation

because utilization is at or near capacity in the peak period. The effect on prices in base-load

periods of a load duration curve would not be as dramatic as our results because there is a separate

futures market for the base-load time slices and a corner solution is unlikely to occur then.

We now present a symmetric case where both players use gas. In the Appendix A.1.6. we

present the case of two coal firms.

5.2 Competition between two gas firms (k = 8, ν = 28)

We solve for the capacity equilibrium both without and with forward markets. With these param-

eters we find two equilibria. However, one is interior and one is at a corner. The interior solution

is almost a corner solution. We checked the validity of the interior solution by varying the y’s and

the x’s and found that the profit is at its peak in both the futures and capacity games. The result

holds even though the profit difference is in the eighth decimal place between the interior and the

corner solutions. The second-order conditions for the futures market for each player also hold. The

results are as follows

Capacity (in Gwh) α Profits in 106⊂=
Gas 1 24.36 393.4 2.241

Gas 2 24.36 393.4 2.241

Total 48.72 4.482

Table 7.5: Equilibrium without forward market

The solution without a futures market is symmetric. However, adding a futures market leads to

an asymmetric equilibrium. Since either player can be labeled Gas 1, an asymmetric equilibrium

implies two possible equilibria.
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Capacity (in Gwh) Futures in Gwh α Profits in 106⊂=
Gas 1 25.44 .002 393.42 2.174

Gas 2 22.20 11.1 250.04 2.253

Total 47.64 4.427

Table 7.6: First equilibrium with a forward market

Here the introduction of the forward market decreases the total investment in this equilibrium.

Capacity (in Gwh) Futures in Gwh α Profits in 106⊂=
Gas 1 22.78 0 393.42 1.669

Gas 2 27.52 30 250 2.427

Total 50.30 4.096

Table 7.7: Second equilibrium with a forward market

Again, we checked to make sure this is an equilibrium by varying the x’s around the solution.

Unlike the interior solution, total capacity increases. The next table presents the prices.

U L

No futures equilibrium 206 102

First futures equilibrium 212 84

Second futures equilibrium 198 70

Table 7.8: Prices for the upper and lower limits of the probability distribution

As before the corner solution can lead to higher or lower prices at U and leads to lower prices

at L.

In the Appendix we present another symmetric case with only an interior solution.
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6 Conclusions

Market power is a recurrent concern in restructured electricity markets. The common wisdom is

that incumbent generation companies have market power and will eventually exercise it. Resource

adequacy is an emerging concern: restructured electricity markets may not provide sufficient incen-

tives for investments. Market power may add to the effect, as restricting capacities is an obvious

way to exercise and reinforce market power. Forward contracts have appeared as an ingenious

remedy in that context. Besides offering hedging possibilities, they are almost universally seen

as good instruments to mitigate market power. Following the seminal contribution of Allaz and

Allaz-Vila, a whole stream of literature argues that position. We show that the situation is much

less clear than usually assumed.

The good properties of long-term contracts have indeed been established under ideal situations;

they are either exogenously given as in the early electricity literature, or endogenously determined

in a market with infinite capacities. We show that endogenously limiting capacities can destroy the

ability of forward contracts to mitigate market power. In Part 1 we indicated that forward contracts

have no effect when future demand is known. We prove here that they have an undetermined effect

when demand is unknown at the time the investment and forward positions are taken.

Although we do not have a load curve in our model, the results are broadly applicable to pricing

at the peak, the time of day when markets are most susceptible to market power. Given the high

levels of demand at or near the peak, corner solutions can create opportunities for a player to keep

other players out of the futures market and potentially limit capacity to levels below what would

be case without a futures market.

Our results also show the conceptual difficulties of making broad conclusions about complicated

markets using simple models. We have results that lead to the three possible outcomes that can

occur by making natural modifications to models. Allaz and Vila show that futures markets increase

competition. Adilov (2005) shows that adding a capacity constraint increases market power using a

binomial distribution of demand. We show that the result is ambiguous when we use the assumption

of a continuous demand distribution. This serves as a caution when generalizing theoretical results

in modeling abstractions as the basis for forming government policy.

23



References

[1] Adilov, N. 2005. Forward markets, market power, and capacity investment, working paper,

Cornell University.

[2] Allaz, B. 1992. Oligopoly, uncertainty and strategic forward markets and efficiency. Interna-

tional Journal of Industrial Organization, 10, 297–308.

[3] Allaz, B. and J.-L Vila. 1993. Cournot competition, forward markets and efficiency. Journal

of Economic Theory, 59, 1–16.

[4] Averch, H. and L.L. Johnson. 1962. Behavior of the firm under regulation constraint. American

Economic Review, 52, 1053–1069.

[5] Ehrenmann, A. 2004. Manifolds of multi-leader Cournot equilibria. Operations Research Let-

ters, 32(2), 121–125.

[6] Gabszewicz, J. and S. Poddar. Demand fluctuations and capacity utilization under duopoly.

Economic Theory, 10(1), 131–147, 1997.

[7] Grimm, V. and G. Zoettl, 2006. Equilibrium investment is reduced if we allow for forward con-

tracts. WP-AD2006-05, Departamento do Fundamento del Analisis Economico, Universidad

de Alicante, Alicante, Spain.

[8] Harker, P.T. (1991). Generalized Nash games and quasi-variational inequalities. European

Journal of Operations Research, 54, 81–94.

[9] IEA, 2005. Projected costs of generating electricity 2005 update. International Energy Agency,

Paris.

[10] Kreps, D.M. and J.A. Scheinkman. 1983. Quantity precommitment and Bertrand competition

yield Cournot outcomes. The Bell Journal of Economics, 14(2), 326-337.

[11] Murphy, F.H. and Y. Smeers. 2005. Generation capacity expansion in imperfectly competitive

restructured electricity markets. Operations Research, 53(4), 646-661.

[12] Murphy, F.H. and Y. Smeers. 2007. On the impact of forward markets on investments in

oligopolistic markets with reference to electricity. Part 1. Deterministic demand. CORE Dis-
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Appendix

The appendix consists of two parts. Appendix A1 presents the standard Allaz-Vila model, the

formulas of the interior equilibrium solution and additional case studies. Appendix A2 specializes

all equilibrium formulas to the case of the uniform distribution.

Appendix A1

A.1.1 The standard Allaz-Vila result

Allaz (1992) and Allaz-Vila (1993) showed that the introduction of a forward market mitigates

market power. They establish their result in the case of a symmetric equilibrium in a two-stage

game where the players optimize their futures position given the resulting equilibrium in the spot

market. We first rederive their result in our power market context. We extend Allaz-Vila’s model to

players operating different technologies and use the model of Section 2 but assume that capacities

are non binding whatever the values of ξ. Consider the spot market first. Adapting from Part 1,

and assuming zi(xi) > 0 for all xi, i = 1, 2, the equilibrium conditions on the spot market when

the forward positions are respectively yi and y−i are

ξ − 2zi(ξ)− z−i(ξ)− νi + yi = 0, i = 1, 2.

This implies

zi(ξ) =
1
3
[ξ − 2(νi − yi) + (ν−i − y−i)] (A.1)

and

p(ξ) =
1
3
[ξ + (νi − yi) + (ν−i − y−i)]. (A.2)

In order to assess the impact of the forward market, we first compute the equilibrium on this

market. One can easily verify that the profit of player i for forward positions (yi, y−i) is

Πi(yi, y−i) = 1
9

∫ U

L
(ξ − 2νi + ν−i − yi − y−i)

(ξ − 2νi + ν−i + 2yi − y−i)f(ξ)dξ.
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Taking the derivative of Πi and Π−i with respect to yi and y−i respectively, we obtain

∂Πi
∂yi

= 1
9

∫ U

L
(ξ − 2νi + ν−i − 4yi − y−i)f(ξ)dξ = 0

∂Π−i
∂y−i

= 1
9

∫ U

L
(ξ − νi + 2ν−i − yi − 4y−i)f(ξ)dξ) = 0

∂2Πi

∂y2
i

= −4
9
< 0

∂2Π−i
∂y2
−i

= −4
9
< 0.

The solution of ∂Πi
∂yi

= ∂Π−i
∂y−i

= 0 is thus an equilibrium and the corresponding positions on the

forward market are given by

yi =
1
5
[E(ξ)− 3νi + 2ν−i], y−i =

1
5
[E(ξ)− 3ν−i + 2νi] (A.3)

where

E(ξ) =
∫ U

L
ξf(ξ)dξ.

Because we assume that zi is positive for all ξ in the spot market, we have ξ > νi, ∀ ξ and hence

yi + y−i =
1
5
[(E(ξ)− νi) + (E(ξ)− ν−i)] > 0. (A.4)

Now let pf (ξ) and p0(ξ) be respectively the electricity price when there is a forward market and

when there is only a spot market. Replacing yi + y−i by its expression (A.4), we immediately see

from (A.2) that

pf (ξ) < p0(ξ).

This shows that the forward market decreases the price with respect to the pure spot market. This

is the expected Allaz-Vila type result.

A.1.2 Second order conditions

(a) interior solution

First note that

∂2pi
∂y2

i

= ∂Ψi(x, y)
∂yi

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ + ψi(α−i, x, y)f(α−i)

∂α−i
∂yi

− 1
2

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ

+yi
2 [f(α−i)

∂α−i
∂yi

− f(αi)
∂αi
∂yi

]

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ + ψi(α−i, x, y)f(α−i)− 1

2

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ

+yi
2 [f(α−i) + f(αi)].

(A.5)
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The sign of this expression is indeterminate.

We also have

∂2p−i
∂y2
−i

= ∂Ψ−i
∂y−i

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ − 2ψ−i(α−i, x, y)f(α−i)

∂α−i
∂y−i

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ − 2ψ−i(α−i, x, y)f(α−i) < 0

(A.6)

since ψ−i(α−i, x, y) > 0, f(α−i) > 0, and f(ξ) > 0.

We conclude that it is impossible to ascertain a priori that the forward market with capacities has

an interior equilibrium.

b) Corner solution

We now turn to the corner solution

yi = 0, α−i(x, y) = L.

We here need to distinguish two cases depending on whether the y variable increases or decreases.

We first note that decreasing yi while keeping y−i fixed decreases α−i(x, y) in formula (48). This

is not possible since α−i is already at its lower bound. Similarly, when λ > 0 in (7) at xi = L, αi

does not change. This implies that we set ∂α−i
∂yi

= 0 in expression (A.5) which becomes

∂2pi

∂y2
i

= −1
2

∫ αi

L
f(ξ)dξ +

yi
2
f(αi).

The expression is negative at yi = 0 and can only remain negative when yi decreases. The second

order condition is satisfied in this case.

We now examine an increase of yi. Recall that

L = 3x−i + 2(ν−i − y−i)− νi

or y−i = 1
2[3x−i − νi + 2ν−i − L].

Replacing y−i by this value in ψi(α−i, x, y) we get

ψi(α−i, x, y) =
1
9
(
3L
2
− 3

2
x−i −

3
2
νi − 4yi)

and the sign of (A.5) remains undetermined. In conclusion we cannot ascertain ex ante that a

corner solution is a maximand for player i.

Consider now player −i and assume a change of y−i when yi remains at 0. Increasing y−i should

decrease α−i in the middle term of (A.6), which is not possible. We thus set ∂α−i
∂y−i

= 0 in relation

(A.6) and for y−i decreasing get

∂2p−i
∂y2
−i

= −4
9

∫ α−i(x,y)

0
f(ξ)dξ < 0.
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The second order condition is satisfied here.

Suppose we increase y−i while keeping yi = 0. Replacing in ψ−i(α−i, x, y) we obtain

ψ−i(α−i, x, y) =
1
3
(L− x−i + νi − ν−i).

Again the sign of the final expression cannot be determined. In conclusion the above analysis

reveals that in contrast with the case of infinite capacities, there is no guarantee that the forward

market has an equilibrium.

A.1.3 Reaction functions

We first establish the formulas for the reaction curves of player −i and then for player i. Note

that ψ−i(ξ, x, y) is linear and increasing in ξ. Since Ψ−i(x, y) = 0 at equilibrium, with an interior

solution we know that ψi(α−i, x, y) > 0 and ψ−i(α−i, x, y) > 0. Moreover setting dΨ−i(x, y)
dyi

= 0

implies
∂Ψ−i
∂y−i

× ∂y−i
∂yi

= −∂Ψ−i
∂yi

.

We solve for ∂y−i
∂yi

after finding ∂Ψ−i
∂yi

and ∂Ψ−i
∂y−i

∂Ψ−i
∂yi

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ + ψ−i(α−i, x, y)f(α−i). (A.7)

This is indeterminate in sign.

From (A.6) and (A.7) we can write

∂y−i
∂yi

=
−4

9

∫ α−i(x,y)

L
f(ξ)dξ + ψ−i(α−i, x, y)f(α−i)

4
9

∫ α−i(x,y)

L
f(ξ)dξ + 2ψ−i(α−i, x, y)f(α−i)

. (A.8)

Since both terms in the denominator are positive and the second term has a coefficient of 2, we

can infer
∂y−i
∂yi

> −1

but cannot conclude that ∂y−i
∂yi

≤ 0. Turning now to the reaction curve of yi in response to y−i, we

can state from (42) at a candidate equilibrium

∂Ψi(x, y)
∂y−i

= −1
9

∫ α−i(x,y)

L
f(ξ)dξ − 2ψi(α−i, x, y)f(α−i)− yif(α−i) < 0.

Since
∂Ψi

∂yi
× ∂yi

∂y−i
= − ∂Ψi

∂y−i
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we get

∂yi
∂y−i

= −
+

∫ α−i

L
f(ξ)dξ + 2ψi(α−i, x, y)f(α−i) + yi f(α−i)

[4
∫ α−i

L
f(ξ)dξ + ψ(α−i, x, y)f(α−i)] +

1
2

∫ αi

α−i
f(ξ)dξ − yi

2
[f(α−i) + f(αi)]

(A.9)

from which we cannot derive any properties.

A.1.4 Computation of ∂pi
∂xi

and ∂p−i
∂x−i

∂pi
∂xi

=
∫ ∞
αi

(ξ − 2xi − x−i − νi)f(ξ)dξ − ki (A.10)

and
∂p−i
∂x−i

= 1
2

∫ αi

α−i
(ξ − 2x−i + νi − 2ν−i − yi)f(ξ)dξ

+
∫ ∞
αi

(ξ − xi − 2x−i − ν−i)f(ξ)dξ − k−i
(A.11)

Computation of ∂pi
∂y−i

and ∂p−i
∂yi

We have respectively

∂pi
∂y−i

= −1
9

∫ α−i

0
(2ξ + yi − 2y−i − 4νi + 2ν−i)f(ξ)dξ (A.12)

∂p−i
∂yi

=
1
9

∫ α−i

0
(ξ − yi − 4y−i + νi − 2ν−i)f(ξ)dξ) (A.13)

− x−i
2

∫ αi

α−i
f(ξ)dξ.

Computation of ∂yi
∂x−i

and ∂y−i
∂xi

These expressions are obtained by perturbing xi and x−i in the forward market equilibrium condi-

tions
∂pi
∂yi

=
∂p−i
∂y−i

= 0.

This is done as follows

(i) Perturbations with respect to xi

Consider first the equilibrium condition

0 = ∂pi
∂yi

= 1
9

∫ α−i(x,y)

0
(ξ − 4yi − y−i − 2νi + ν−i)f(ξ)dξ − yi

2

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ.
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We write

0 = ∂2pi
∂xi∂yi

= 1
9

∫ α−i(x,y)

0
−

(
4∂yi
∂xi

+ ∂y−i
∂xi

)
f(ξ)d(ξ)

+ 1
9

[
(α−i(x, y)− 4yi − y−i − 2νi + ν−i)f(α−i(x, y))

]
∂α−i
∂xi

− 1
2
∂yi
∂xi

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ − yi

2

[
f(αi)

∂αi
∂xi
− f(α−i)

∂α−i
∂xi

]

or (
4∂yi
∂xi

+ ∂y−i
∂xi

)∫ α−i(x,y)

0
f(ξ)dξ

+ 9
2
∂yi
∂xi

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ − 9yif(αi) = 0

(A.14)

This gives a first relation involving ∂yi
∂xi

and ∂y−i
∂xi

.

Consider now the equilibrium condition

0 = ∂p−i
∂y−i

=
∫ α−i(x,y)

0
(ξ − yi − 4y−i + νi − 2ν−i)f(ξ)dξ = 0.

We write
0 = ∂2p−i

∂xi∂y−i

= −
(
∂yi
∂xi

+ 4∂y−i
∂xi

)∫ α−i(x,y)

0
f(ξ)dξ = 0

or
∂yi
∂xi

+ 4
∂y−i
∂xi

= 0 (A.15)

which is a second relation involving ∂yi
∂xi

and ∂y−i
∂xi

.

For the particular case of the uniform distribution the relations reduce to
(

4
∂yi
∂xi

+
∂y−i
∂xi

)
(α−i − L)− 9

2
∂yi
∂xi

(αi − α−i) + 9yi = 0

and
∂yi
∂xi

+ 4
∂y−i
∂yi

= 0.
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(ii) Perturbation with respect to x−i

Consider again the equilibrium condition ∂pi
∂yi

= 0. We write

0 = ∂2pi
∂x−i∂yi

= −1
9

(
4 ∂yi
∂x−i

+ ∂y−i
∂x−i

)∫ α−i(x,y)

0
f(ξ)dξ

+ 1
9(α−i(x, y)− 4yi − y−i − 2νi + ν−i)f

(
α−i(x, y)

)
∂α−i
∂x−i

− 1
2

∂yi
∂x−i

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ − yi

2

[
f(αi(x, y)

∂αi
∂x−i

− f

(
α−i(x, y)

∂α−i
∂x−i

)]

or (
4 ∂yi
∂x−i

+ ∂y−i
∂x−i

)∫ α−i(x,y)

0
f(ξ)dξ

− 3(α−i − 4yi − y−i − 2νi + ν−i)f(α−i)

+ 9
2

∂yi
∂x−i

∫ αi

α−i
f(ξ)dξ

− 27
2 yi[f(α−i)] = 0

+ 9
2yi[f(αi)] = 0

(A.16)

which is a first relation involving ∂yi
∂x−i

and ∂y−i
∂x−i

.

Turning now to the equilibrium condition

0 = ∂p−i
∂y−i

=
∫ α−i(x,y)

0
(ξ − yi − 4y−i + νi − 2ν−i)f(ξ)dξ.

We write
0 = ∂2p−i

∂x−i∂y−i

=
∫ α−i(x,y)

0
−

(
∂yi
∂x−i

+ 4∂y−i
∂x−i

)
f(ξ)dξ

+ (α−i(x, y)− yi − 4y−i + νi − 2ν−i)f(α−i)
∂α−i
∂x−i

−
(

∂yi
∂x−i

+ 4∂y−i
∂x−i

)
(A.17)

or ∫ α−i(x,y)

0
f(ξ)dξ + 3(α−i(x, y)− yi − 4y−i + νi − 2ν−i)f(α−i) = 0 (A.18)

which is a second relation involving ∂yi
∂x−i

and ∂y−i
∂x−i

.
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A.1.5 The test data

Demand assumptions

Consider a reference system with annual average hourly demand of 60 GW. We introduce

a randomized demand function as follows. Suppose an instantanenous (in fact hourly) demand

function

p = ξ′ − βq′

where ξ′ is uniformly distributed in an interval [L,U ]

p is expressed in ⊂=/Mwh

q′ is expressed in Gwh

In order to calibrate the system we assume that hourly demand varies randomly (or depending

on the time of the year) between 40 and 80 Gwh at a price of 50 ⊂=/Mwh as a result of ξ taking its

value in [L,U ]. This is stated as

50 = ξ′ − βq′, q′ ∈ [40, 80].

Let q′(ξ) be the value of q′ when the price is 50 ⊂=/Mwh. Assuming an elasticity of .2 at the point

p = 50 ⊂=/Mwh, q = 50Gwh and a constant β, we impose

.2 =
1
β

or β = 5, and obtain

ξL = 50 + 40× 5 = 250

ξU = 50 + 80× 5 = 450.

One can easily check that this corresponds to an elasticity decreasing from .25 to .125 when ξ

increases from ξL to ξU , the corresponding demand is 40 and 80 Gwh and the price remains 50

⊂=/Mwh, a behavior that is realistic. We can then rewrite the system

p = ξ − 5q′

as

p = ξ − q

by measuring q in 200 Mwh: a demand of 40 Gwh corresponds to 200 “200 Mwh”. With ξ = ξL =

250 this gives a price of 250-200 = 50 ⊂=/Mwh.

Cost assumptions
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We consider a market with two technologies, namely coal and combined-cycle gas turbines. The

cost assumptions used for these technologies are taken from IEA (2005, table A10.2 page 227) after

rounding. The annual fixed costs of the CCGT and Coal plants are obtained as follows

CCGT 5.75 (“Cost of Capital”) + 2.33 (“Fixed O and M Costs”)

∼ 8 ⊂=/Mwh

Coal 12.65 (“Cost of Capital”) + 3.50 (“Fixed O and M Costs”)

∼ 16 ⊂=/Mwh

Fuels costs are then established as

CCGT 19.6 (“Fuel Costs”) + 1.5 (“Variable O and M cost”)

+ 7.344 (“CO2 cost”) ∼ 28 ⊂=/Mwh

Coal 14.93 (“Fuel Cost”) + 3.3 (“Variable O and M cost”)

+ 17.028 (“CO2 cost”) ∼ 35 ⊂=/Mwh

These figures are based on gas and coal prices of 3 and 1.66 ⊂=/GJ respectively (which correspond

roughly to 3 and 1.66 $/MMbtu). These data can easily be updated to reflect current conditions.

We leave a systematic analysis of competitive conditions to a further paper and retain the IEA

assumptions in this work.

A.1.6 Extra cases

Competition between coal firms (k = 16, ν = 35)

As in the other examples, we solve for the necessary equilibrium conditions for the capacity

expansion model both without and with a forward market and check that we have a solution by

varying values around the optimum and using the second-order conditions for interior solutions.

The results are given in Tables 7.9 and 7.10.

Capacity (in Gwh) α Profits in 106⊂=
Coal 1 22.33 379 2.022

Coal 2 22.33 379 2.022

Total 44.66 4.044

Table 7.9: Equilibrium without forward market
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Capacity (in Gwh) Futures in Gwh α Profits in 106⊂=
Coal 1 21.05 0 370.1 1.600

Coal 2 24.91 15.87 250 2.172

Total 45.96 3.772

Table 7.10: Equilibrium with forward market

In this case, a futures market increases capacity.

U L

No futures equilibrium 227 107

With futures equilibrium 220 93

Table 7.11: Prices for the upper and lower limits of the probability distribution

Another symmetric case

So far, we have not presented a case with just an interior solution and no boundary solution.

We now present such a case. Here we use the costs for the coal plant and reduce L to 50 from 250.

The effect of lowering L increases the cost of being at capacity for each ξ because prices are very

low at the low ξ and production is much higher than would be the case at the duopoly solution for

that ξ. Solving this case for the market without and with a forward market, we obtain

Capacity (in Gwh) α Profits in 106⊂=
Caal 1 20.12 336.86 1.082

Coal 2 20.12 336.86 1.082

Total 40.24 2.164

Table 7.12: Equilibrium without forward market

Capacity (in Gwh) Futures in Gwh α Profits in 106⊂=
Coal 1 21.22 3.81 315.92 1.103

Coal 2 17.60 5.19 266.46 .981

Total 38.82 2.084

Table 7.13: Equilibrium with forward market
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To check that there is no corner equilibrium, we did the following. In our model we set yi = 0 and

y−i to a large number so that we have the corner solution for a range of capacity levels. We then

vary the x’s to find the capacity equilibrium given the corner solution from the futures position.

We then tested to see if these capacities could produce a corner equilibrium in the futures market.

We found that at these capacities player −i, in optimizing its futures position, reduced y−i below

the level necessary to have a corner solution. Thus, there is no corner equilibrium with these

parameters. In this case, the futures market leads to a decrease in total capacity.

Appendix 2: The uniform distribution

The appendix reports all formula relative to the treatment of the uniform distribution.

Appendix A.2.1

This gives for the particular case of uniform distribution

∂pi
∂y−i

= − 1
9(U − L)

{
2
[
ξ2

2

]α−i
L

+ (yi − 2y−i − 4νi + 2ν−i)(α−i − L)
}

= − 1
9(U − L)

[
(α2
−i)− L2) + (yi − 2y−i − 4νi + 2ν−i)(α−i − L)

]

∂p−i
∂yi

= 1
9(U − L)

{(
ξ2

2

)α−i

L

− (yi + 4y−i − νi + 2ν−i)(α−i − L)
}

− x−i
2(U − L)(αi − α−i)

= 1
(U − L)

{
1
18(α2

−i − L2)− 19(yi + 4y−i − νi + 2ν−i)(α−i − L)
}

− x−i
2(U − L)(αi − α−i).

For the particular case of the uniform distribution, these relations reduce to
(

4 ∂yi
∂x−i

+ ∂y−i
∂x−i

)
(α−i − L)− 3(α−i − 4yi − y−i − 2νi + ν−i)

+ 9
2

∂yi
∂x−i

(αi − α−i)− 27
2 yi = 0

and (
∂yi
∂x−i

+ 4
∂y−i
∂x−i

)
(α−i − L) + 3(α−i − yi − 4y−i + νi − 2ν−i) = 0.
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Appendix A.2.2: The pure capacity market: first and second order conditions

Take f(ξ) = 1
U − L where L and U indicate lower and upper bound of ξ. We have for ∂pi

∂xi∫ ∞
αi

(ξ − 2xi − x−i − νi)f(ξ)dξ − ki

= 1
U − L

[
ξ2

2

]U
αi

− U − αi
U − L (2xi + x−i + νi)− ki = 0

or
1

2(U − L)
(U2 − α2

i )−
U − αi
U − L

(2xi + x−i + νi)− ki = 0.

or
U2 − α2

i

2
− (U − αi)(2xi + x−i + νi)− ki(U − L) = 0.

Note that αi = 2xi + x−i + νi and hence

U2 − α2
i

2
− (U − αi)αi − ki(U − L) = 0

or

(U − αi)
[
U + αi

2
− αi

]
− ki(U − L) = 0

or

(U − αi)2 = 2ki(U − L)⇒ αi = U ±
√

2ki(U − L).

The second order condition for the equilibrium is

∂

∂xi

[
U − αi)2 − 2ki(U − L)

]
≤ 0

or

2(U − αi)(−2) ≤ 0

or

U − αi ≥ 0.

Therefore the equilibrium is reached for αi = U −
√

2ki(U − L).

We also have for ∂p−i
∂x−i

1
2

∫ αi

α−i
(ξ − 2x−i + νi − 2ν−i)f(ξ)dξ

= 1
2(U − L)

[
α2
i − α2

−i
2 − (2x−i − νi + 2ν−i)(αi − α−i)

]

∫ ∞
αi

(ξ − xi − 2x−i − ν−i)f(ξ)dξ

= 1
U − L

[
U2 − α2

i
2 − (xi + 2x−i + νi)(U − αi)

]
.
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In total
1

U − L

[
1
4(α2

i − α2
−i)−

αi − α−i
2 (2x−i − νi + 2ν−i)

+ U2 − α2
i

2 − (xi + 2x−i + ν−i)(U − αi)− k−i

]
= 0.

∂p−i
∂x−i

= 1
2

[(
α2
i − α2

−i
2

)
− (αi − α−i)(2x−i − νi + 2ν−i)

]

+ U2 − α2
i

2 − (U − αi)(xi + 2xi + ν−i)− k−i(U − L).

The first order condition can thus be restated as

[3(αi − U)2 + 3U2 − 2αi(2ν−i − νi)− 12k−i]

− 2[3U − αi − (2ν−i − νi)]α−i + α2
−i = 0.

In order to verify the second order condition, we derive the expression. This gives with respect to

x−i

6(αi − U) ∂αi
∂x−i

− 2(2ν−i − νi)
∂αi
∂x−i

− 2α−i
(
− ∂αi
∂x−i

)
− 2[3U − αi − (2ν−i − νi)]

∂α−i
∂x−i

+ 2α−i
∂α−i
∂x−i

or
6(2xi + x−i + νi − U)− 2(2ν−i − νi) + 2(2x−i + 2ν−i − νi)

− 6[3U − 2xi − x−i − νi − 2ν−i + νi) + 6(3x−i + 2ν−i − νi)

Second order condition

∂pi
∂xi

= (U − αi)2 − ki

∂p−i
∂x−i

= [3(αi − U)2 + 3U2 − 2αi(2ν−i − νi)− 12k−i]

− 2[3U − αi − (2ν−i − νi)]α−i + α2
−i

∂2pi
∂x2

i

= −2(U − αi)
(
∂αi
∂xi

)
= −4(U − αi)

always satisfied if

2xi + x−i + νi ≤ 0.

∂2p−i
∂x2
−i

= ∂
∂αi

(
∂p−i
∂x−i

)
∂αi
∂x−i

+ ∂
∂α−i

∂p−i
∂x−i

∂α−i
∂x−i

∂i
∂x−i

= 1; ∂α−i
∂x−i

= 3
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[3(αi − U)(2)− 2(2ν−i − νi) + 2α−i]

− 2[3U − αi − (2ν−i − νi)]3 + 2α−i(3)

= 6(2xi + x−i + νi − U)− 2(2ν−i − νi) + 6x−i + 4ν−i − 2νi

− 6(3U − 2xi − x−i − νi − 2ν−i + νi) + 6(3x−i + 2ν−i − νi)

= 12xi + 6x−i + 6νi − 6U − 4ν−i + 2νi + 6x−i + 4ν−i − 2νi

− 18U + 12xi + 6x−i + 6νi + 12ν−i − 6νi + 18x−i + 12ν−i − 6νi

= 24xi + 36x−i − 24U + 24ν−i

2xi + 3x−i − 2U + 2ν−i

Second order verified if

xi +
3
2
x−i + ν−i ≤ U

which results from

α−i(x) ≤ αi(x) ≤ U.

Appendix A.2.3: the forward market

∂pi
∂yi

= 1
9

[
(α2
−i − L2

2 − (α−i − L)(4yi + y−i − 2νi + ν−i

]
− yi

2 (αi − α−i) = 0

∂pi
∂y−i

= 1
9

[
(α2
−i − L2

2 − (α−i − L)(yi + 4y−i + νi − 2ν−i)
]

= 0

α−i = 3x−i + 2ν−i − νi − (2y−i − yi) = a−i − (2y−i − yi)

αi = 2xi + x−i + νi − yi

i) The corner solution

Note that

α−i = L of
∂p−i
∂y−i

= 0

always satisfy the first order conditions

ii) The non corner solution

Eliminating the corner solution, we rewrite the first order conditions as

α2
−i − L2

2 − (α−i − L)(4yi + y−i − 2νi + ν−i)− 9
2yi(αi − α−i) = 0

α−i + L
2 − (yi + 4y−i + νi − 2ν−i) = 0.
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