

## Coal/gas plant cycling: Costs, causes, impacts

Dr. Debra Lew, GE Energy Consulting Harvard Electricity Policy Group March 11, 2016 Imagination at work

## Wear-and-Tear Cycling Costs



## Quantifying cycling costs is not easy





## Ignoring wear-and-tear costs impacts commitment and dispatch



Note: start-up fuel costs are included in optimization in both scenarios

Security-constrained unit commitment and economic dispatch should include wear-and-tear cycling costs



## Cycling costs - in perspective

Cycling costs are 1-7% of overall production cost



The average fossil-fueled plant sees an increase in O&M of \$0.47-1.28 per MWH generation



Cycling costs may impact financial viability of generators







### Wind and solar have different impacts on cycling



### Wind and solar have different impacts on cycling



### Which units are being started more often?







### Natural gas prices can significantly impact cycling





Wind/solar can *reduce* total cycling costs for high/low gas price scenarios



# From baseload to super peaker



Low marginal cost energy sources can drive change

Designed as baseload coal plant

Over decades, evolved into intermediate and then superpeaker

2-shifting, even 4-shifting (5-10am then 4-8pm)

500 MW gross units: 480 MW net running at 90 MW net, even down to 60 MW net with gas support

**Automatic Generation Control (AGC)** 

Sliding pressure (increases efficiency and flexibility at part load)

Suffered high Equivalent Forced Outage Rates (EFOR)





Graphic: Milligan, et al, 2011, <a href="http://www.nrel.gov/docs/fy11osti/51860.pdf">http://www.nrel.gov/docs/fy11osti/51860.pdf</a>

## **Enabling Cycling**

#### Operating procedural changes

Layup procedures

Natural cooling

Temperature monitoring of economizer inlet headers, boilers, etc

Pressure management

Inspection and repairs for thermal/cycle fatigue, DMW, corrosion, boiler tubes

Water chemistry maintenance

**Breaker maintenance** 

#### Physical changes

Boiler

- Modified buckstays
- Replace DMW
- Strategic replacement of tubes

Pulverizers – from water deluge system to steam inert

Turbines - added drains

Rotors – insulated key parts

Condenser – plugged tubes at top of condenser

Significant plant savings came from operating procedure changes



# Does it make sense to retrofit my plant?



## Coal/gas retrofit study – costs and benefits

- Examined retrofits for coal and gas plants in a high renewables scenario for the Rocky Mountain region
- Retrofits to improve turndown had system-level net benefits
- Benefits were individualized for each plant

| Retrofit Options                                                     | Cost to Install in Millions |      |            |        |      | Expected Benefit: |           |          |          |
|----------------------------------------------------------------------|-----------------------------|------|------------|--------|------|-------------------|-----------|----------|----------|
|                                                                      | Small Sub                   |      | Large      |        |      |                   |           |          |          |
|                                                                      | Critical Co                 | oal  | Subcritica | l Coal | Supe | ercritical        |           |          | Startup/ |
|                                                                      | 200MW                       |      | 500MW      |        | Coal | 750MW             | Ramp Rate | Turndown | Shutdown |
| Improved and automated boiler drains                                 | \$                          | 3.00 | \$         | 5.00   | \$   | 5.00              |           | 50%      | 50%      |
| Steam flow redistribution and metallurgy improvements in in SH/RH    | \$                          | 2.50 | \$         | 5.00   | \$   | 7.00              | 33%       | 33%      | 33%      |
| Steam coil air heater to pre warm boiler and airheater               | \$                          | 0.50 | \$         | 1.00   | \$   | 2.00              | 33%       | 33%      | 33%      |
| Gas bypass to keep air heater warm                                   | \$                          | 0.70 | \$         | 1.50   | \$   | 3.00              |           | 50%      | 50%      |
| Improved APH basket life when cycling in or through the wet flue gas |                             |      |            |        |      |                   |           |          |          |
| temperature region by installing traveling APH blowers to remove     |                             |      |            |        |      |                   |           |          |          |
| deposits prior to cycling down in load                               | \$                          | 0.75 | \$         | 1.00   | \$   | 1.00              |           | 50%      | 50%      |
| Improved APH basket life with improved materials when cycling in or  |                             |      |            |        |      |                   |           |          |          |
| through the wet flue gas temperature region                          | \$                          | 1.20 | \$         | 2.00   | \$   | 2.00              |           | 50%      | 50%      |
| Improved selected expansion joints. This is not a complete           |                             |      |            |        |      |                   |           |          |          |
| replacement of all expansion joints.                                 | \$                          | 1.50 | \$         | 2.00   | \$   | 3.00              |           |          | 100%     |
| Add steam cooled enclosure min flow protection for balanced flow     |                             |      |            |        |      |                   |           |          |          |
| with blow down or dump to LP turbine                                 | \$                          | 0.30 | \$         | 0.50   | \$   | -                 |           | 50%      | 50%      |



### Conclusions

- Wear-and-tear cycling costs can increase with the changing power portfolio or fuel prices.
- These costs are generator-specific. They can impact financial viability of generators.
- Incorporating cycling costs into commitment and dispatch decisions can change these decisions.
- Solar and wind have different impacts on cycling.
- Operational and/or physical changes to coal/gas plants can increase flexibility. Retrofits have the potential to increase overall profitability.



### References

Western Wind and Solar Integration Study Phase 2: <a href="http://www.nrel.gov/docs/fy13osti/55588.pdf">http://www.nrel.gov/docs/fy13osti/55588.pdf</a>

Cycling costs: www.nrel.gov/docs/fy12osti/55433.pdf

**Cost/Benefit Analysis of Retrofits:** 

http://www.nrel.gov/docs/fy14osti/60862.pdf

Coal cycling case study:

http://www.nrel.gov/docs/fy14osti/60575.pdf







Contact Debbie at debra.lew@ge.com 303-819-3470