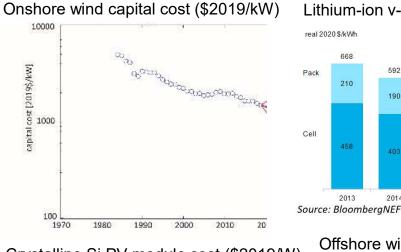
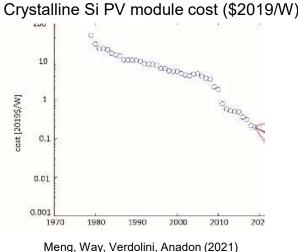


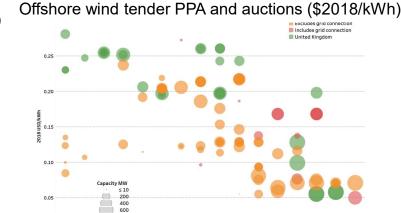
March 4, 2022

Harvard Electricity Policy Group Power Sector Innovation: Creating the Future – Different approaches

Online


Prof. Laura Diaz Anadon


Chaired Professor of Climate Change Policy Director of the Centre for Environment, Energy and Natural Resource Governance (CEENRG) Department of Land Economy, University of Cambridge Fellow Elect, St. John's College Visiting Scholar, Belfer Center for Science & International Affairs, Harvard Kennedy School


Outline

- Identifying promising technologies: what we know about forecasting
- Overview of the impacts of different policies
- Developments of tech push and market pull policies in the US and other countries

The costs of key climate mitigation technologies have come down really quickly

Lithium-ion v-weighted average price (\$2020/kWh)

295

80

2016

221

65

2017

181

50

2018

2021 2022 2023

2024 2025

157

47

2019

137

35

2020

real 2020 \$/kWh

Pack

668

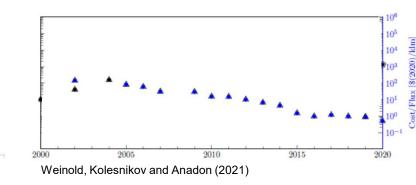
210

2013

592

190

403


2014

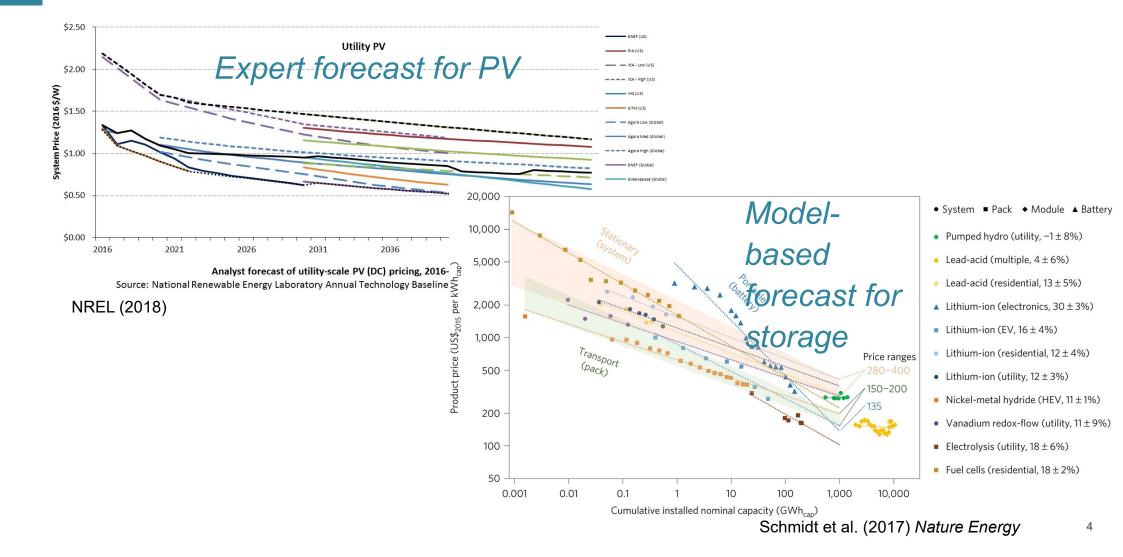
384

127

2015

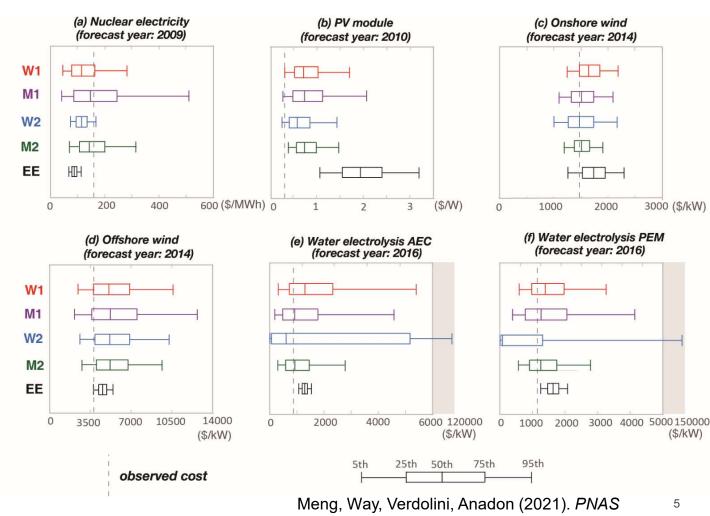
LED lighting \$/flux (\$2020/klm)

- Over the past 10 years: •
 - Cost of PV, LIB, SSL down by 80-90%
 - Cost of on- and offshore wind down by around 50%


Carbon Brief (2019) using data from IRENA

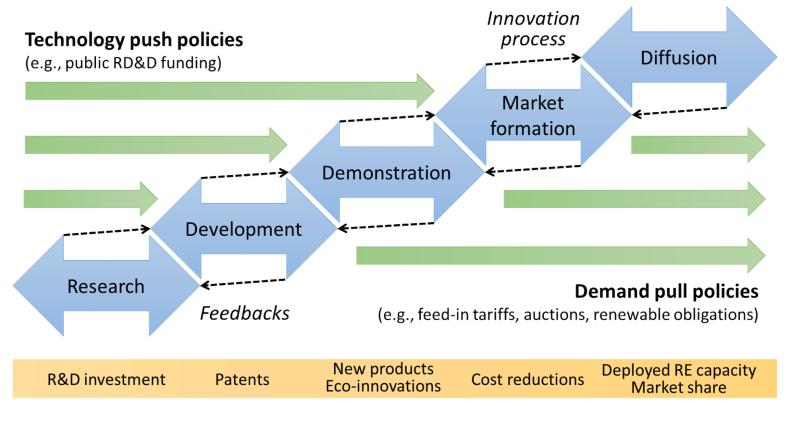
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

≥ 800

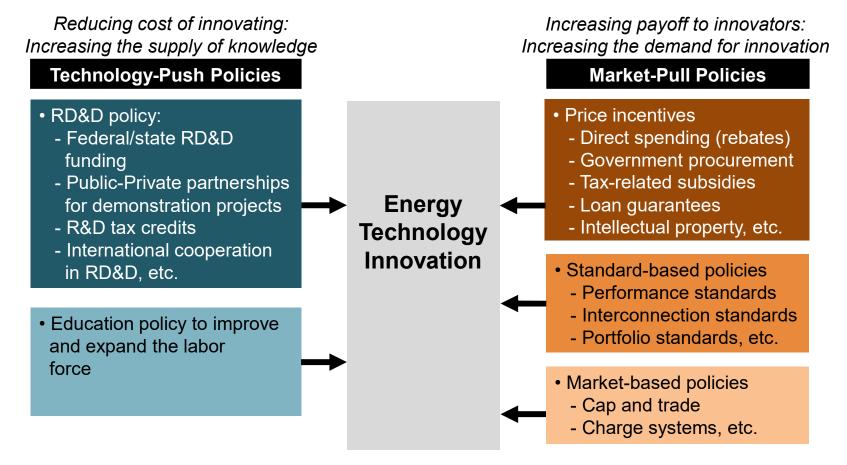

2010

Did we see it coming? Expert- vs. model-based forecasting

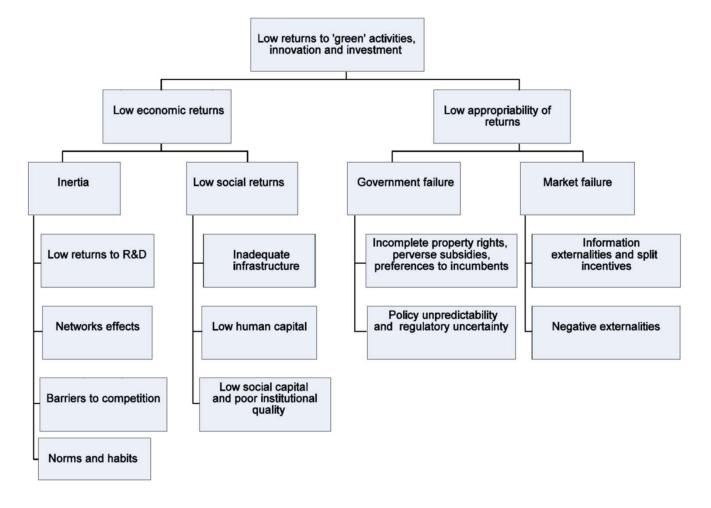
Systematic comparison of the accuracy of model- and expertbased 2019 forecasts


- Model forecasts much more likely to include observed value 6/6 vs 1/6
 - When data is available, probabilistic methods are helpful
 - When no data is available, larger uncertainty
- In all methods the median forecast was higher than the observed value (nuclear is the exception)
- Underestimation of the pace of technological change, but d
- ➔ 2030 forecasts also more optimistic using models

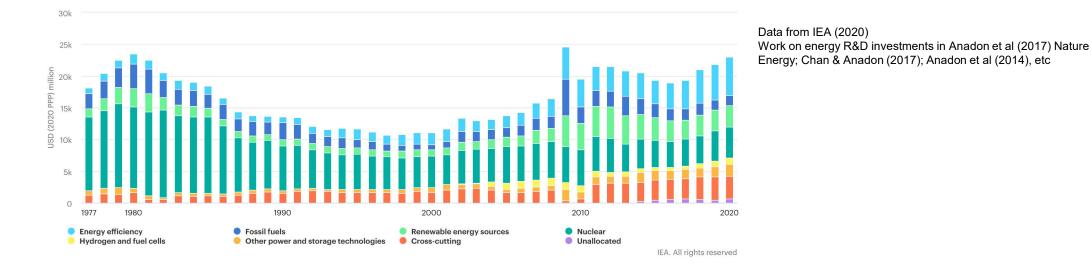
Innovation spans from research to diffusion


 Innovation: the process by which technology is conceived, developed, codified, and deployed (Brooks, 1980)

 Different indicators used to assess efforts across the different stages


Source: Adapted from Grubler et al. (2012) by Peñasco, Kolesnikov and Anadon (2021)

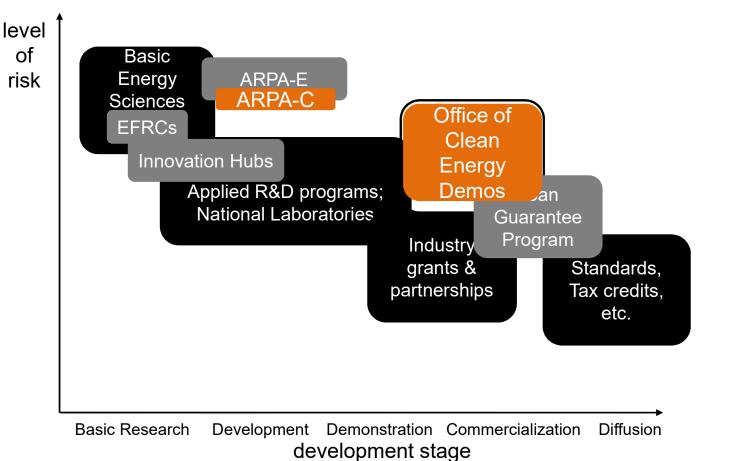
Many policies shape direction and pace of energy innovation


Adapted from Mowery and Rosenberg (1979) and Anadon and Holdren (2009), Brookings Press

Typology of reasons explaining for low investment in innovation in green technologies

Hausmann, Velasco and Rodrik (2008), "Growth Diagnostics" in J. Stiglitz and N. Serra, (eds)

Public energy RD&D investments in OECD countries Getting close to oil crisis levels – China playing a growing role



- OECD plus China and India in 2018 were at \$25 bn
- China made up 5% of total in 2008 and 24% in 2018
- Largest number of institutional changes for RD&D at the turn of the century and the financial crisis, not so much with Mission Innovation

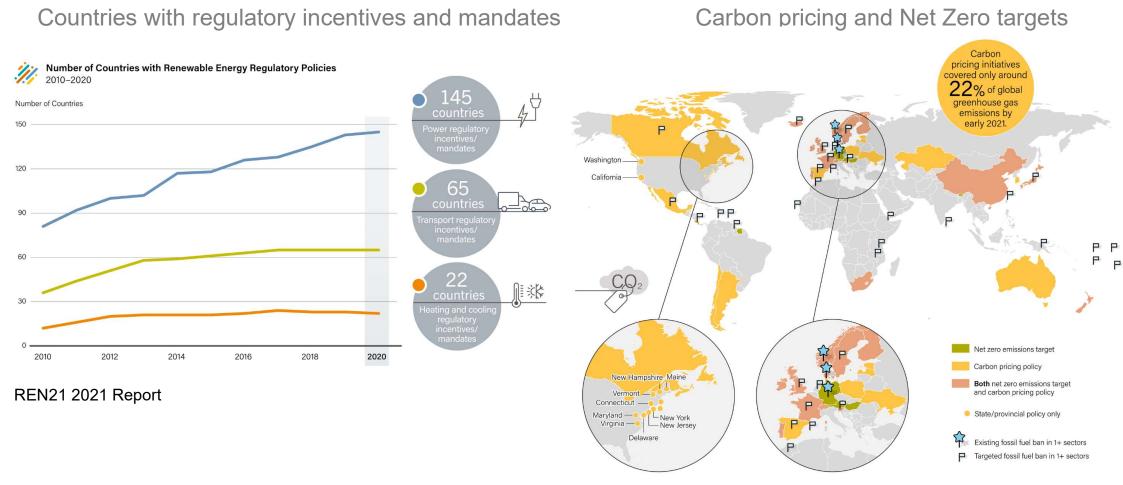
Meckling et al. (2022) Under review

The United States has an ecosystem of public programs

- Some conduct research
 - EFRCs, Innovation Hubs, National Labs
- Some finance firms
 - SBIR, industry grants, industry-public cooperation, loan guarantees, R&D tax credits
- Some allocate R&D funds in novel ways
 - ARPA-E, now ARPA-C, OETC, etc

Updated from Anadon, Bunn, Narayanamurti (2014). Cambridge University Press.

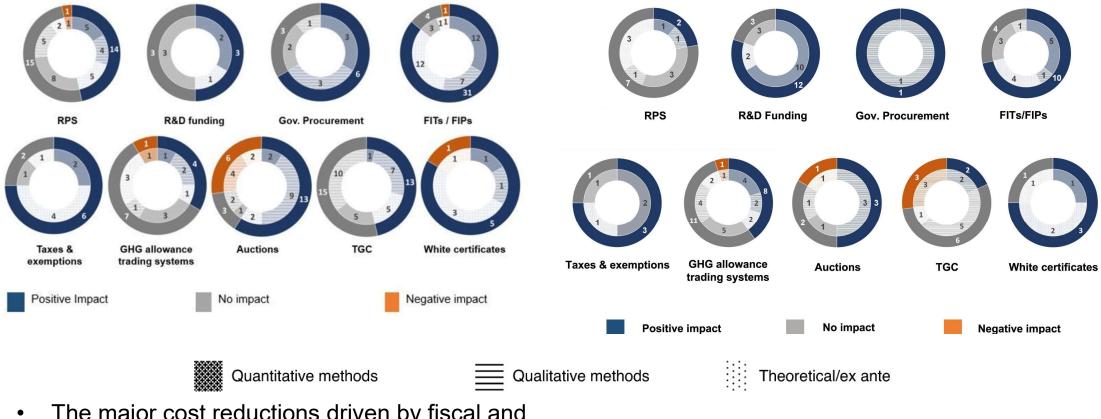
What have we seen elsewhere in the tech push side? A selection


ARPA-E model

- Japan: Moonshot around \$900 m over 5 years)
- UK: ARIA \$1.2 bn over first few years
- Canada: CARPA starting wiht \$2bn
- EU: European Innovation Council introducing an 'active management' model

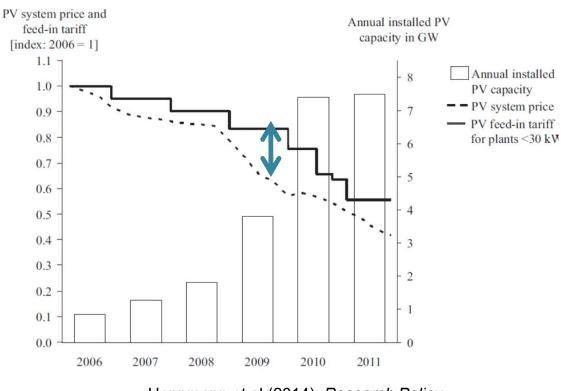
National lab model

- Germany: its own version with Max Planck and Fraunhofer Institutes (the latter with closer industry connections (Hoppmann, Anadon, Narayanamurti 2021, *Research Policy*)
- China: expanding (from 200 to 700) and restructuring its national lab system (Shenzen Grubb Institute)
- UK: (no labs) experimenting with Catapults and the Faraday Institution (storage)
- Support for R&D in firms
 - UK has something similar to SBIR, R&D tax credits lead to 'additional' R&D in small firms (Pless, 2020)
- **Missions approach** (novelty for Horizon programs 2021-2027)
 - EU: 5 'missions' (4 of them environment-related) to guide and complement policies at different levels

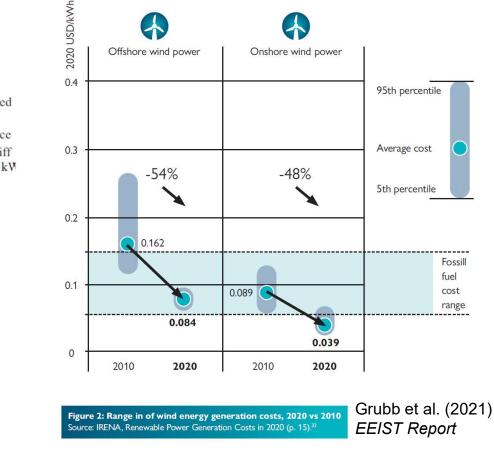

Many countries have put in place demand-pull fiscal and regulatory policies, carbon pricing and targets (as of 2020-21)

Direction of policy impacts by policy instrument on...

deployment


other innovation indicators

 The major cost reductions driven by fiscal and regulatory policies, not carbon prices


Peñasco, Anadon, Verdolini (2021) Nature Climate Change

Providing certainty about profits incentivizes private investments and innovation – evidence also about FITs vs RPS

Hoppmann et al (2014). Research Policy

German feed-in-tariffs guaranteed
 returns for solar PV

 UK contracts for differences reduced uncertainty for on- and offshore wind

What have we seen elsewhere in the market pull elsewhere? A selection from Europe

EU

- Emissions trading scheme
 - Carbon Border Adjustment
- 'Fit for 55 package' package to deliver 55% reduction from 1990 levels by 2030
 - emissions standards for cars & vans, revision of Energy Taxation Directive
 - €72 bn fund to help distributional impacts

UK

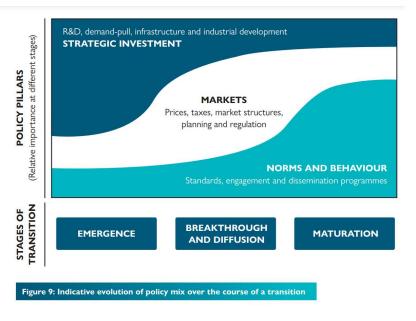
- UK ETS + Carbon Price Floor
- Doubling down on offshore wind (CfDs)
- Ofgem Regulatory Sandboxes and evaluation
- Heatpump subsidies to come...

Germany and the Netherlands:

Green procurement, competence centers

Case: Green H2 for industry

EU:


€ 2bn R&D partnership for green H24/7 demos of € 1bn on green H2

At a national level, supporting demand:

 E.g.: HyDeal: Green H2 for Mittal and Fertiberia with Enagas in Spain (7.5 GW of electrolyzer power), guaranteeing H2 purchase at €1.5/kg (generation supported with EU funds)

Some high-level policy conclusions

- 1. We are seeing rapid change resulting from both push and pull policies
- 2. Sustained and targeted support for deployment is needed in some areas: some technologies need to be 'picked'
- 3. Policy sequencing matters, early action important
 - E.g. shifting to EVs with more renewable electricity decreases emissions further
 - E.g., preferences are endogenous and there is path dependency; action now determines options & paths
- 4. Given urgency international coordination can help
 - E.g. Carbon border adjustment, technology standards, etc
- 5. New approaches to policy appraisal beyond CBA needed to account for systemic, non-marginal, change
 - adaptive governance and monitoring (including independent evaluation)

Grubb et al. (2021). EEIST Report

Dr. Cristina Peñasco Michael Weinold Prof. Elena Verdolini Dr. Jing Meng

Thank you for your attention! And thanks also to my co-authors!

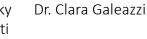
@I diaz anadon

https://eeist.co.uk/

皴 Department for Business, Energy & Industrial Strategy ALFRED P. SLOAN FOUNDATION

INNPATHS

Dr. Anna Goldstein



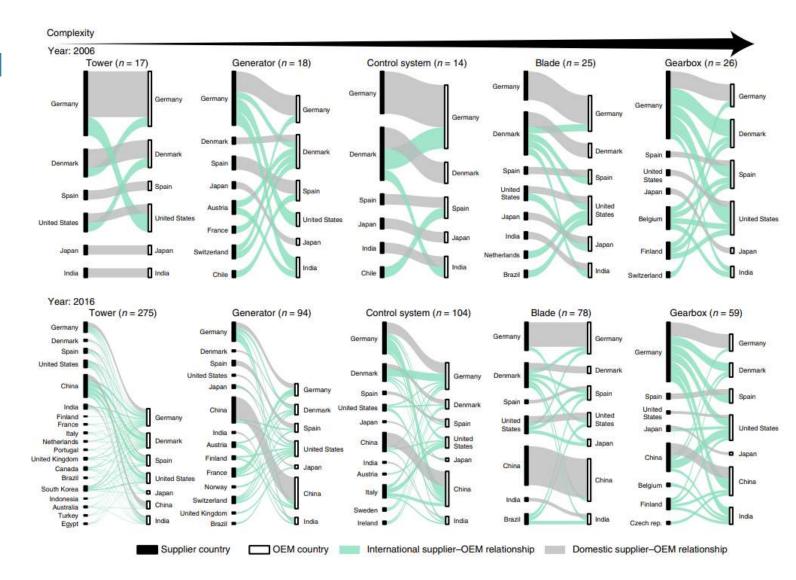
Dr. Deyu Li Dr. Sergey Kolesnikov

Dr. Kavita Surana Prof. Claudia Doblinger Dr. JF Mercure

Prof. Venky Narayanamurti

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730403

ECONOMICS OF ENERGY INNOVATION AND SYSTEM TRANSITION



Not all technologies and countries are equal in terms of economic development opportunities


 Less internationalization for more complex components in the value chain

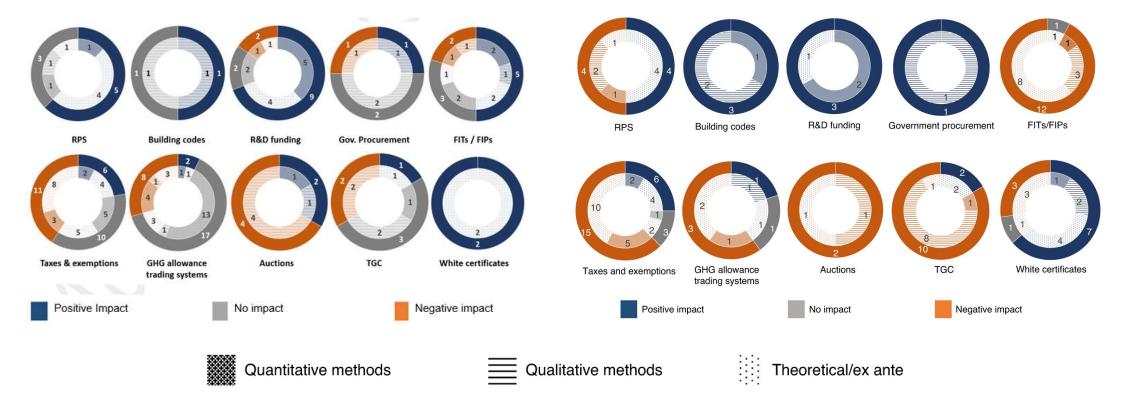
Surana et al. (2020) Nature Energy

Sustained and systemic policies are needed to deliver multiple benefits – e.g. local content requirements (LCRs) in India

- LCRs in India from 2014-2017 for some solar auctions
- 6% increase in kWh from LCR
- Short-term increases in manufacturing capacity but little impact on market share or export markets

Probst et al. (2020) Nature Energy

Market creation and aggregation essential But so is a dynamic approach


Carbon prices not enough because:

- Urgency, timescales
- Missing markets
- Other externalities including spillovers and learning-by-doing
- Lock-in
- ... and political feasibility

The picture depends more on context and policy design for...

competitiveness impacts

distributional impacts

Peñasco, Anadon, Verdolini (2021) Nature Climate Change

Decarbonisation Policy Evaluation Tool (DPET) to explore the evidence in more detail

FILTERS		CH	OOSE A POLICY Ta	xes & exemptions						
Search	Q									
Criteria		ASS	ESSMENT OVERVI	EW						
SELECT	-	Effectiveness ()			Efficiency ()	Economic co-benefits ()		Social acceptability (1)		
tudy methodology	0	Environmental effect			Cost-related outcomes	Competitiveness		Distributional outcomes		
2 3 4 5 6 7	8 9	0	24 Technological effect		100 Innovation outcomes				30	ial outcomes
vidence type	()				* *					
SELECT	*		Policy type	Study methodology	Criteria	Evidence Type	Sector	Jurisdiction level	Additional policy considered	Source
urisdiction level		1	Taxes & exemptions	8	= = =	Exante	Cross-sector	National	×	Flues, F and Thomas, (2015). OECD taxation WPN° 23.
SELECT	•		12 12 1 ALC	~		-				
sector		2	Taxes & exemptions	(9)	♦ ♥ €	Exante	Industry	National	~	Scotchmer, S. (2011) Innovation Policy and the Economy, 11(1), 29–54.
SELECT	•				1 (1)					
Show policy comparisons?	0	3	Taxes & exemptions	(7)	\$ € τ	Qual	Industry	State/Regiona	~	Rhodes, E., & Jaccaro M. (2013). Canadian
EY	(i)			0	× ×					Public Policy / Analys de Politiques, 39, S37 S51.
ositive 🕕	-				<u>^</u>					
legative ()		4	Taxes & exemptions	9	🔹 🗘 🏆	Exante	Cross-sector	National	~	Anwar, J. (2014). Pakistan Developmen Review, 53(4), 347–33 and 552.
o npact		5	Taxes & exemptions	(4)		Quant	Transport, Building	National, State/Regiona	×	Marion, J., & Muehlegger, E. (2011)
Mode adores events	adence		Ŭ							Journal of Public Economics, 95(9), 1202–1212.
Hard Compared Constraints		6	Taxes & exemptions	9	🌒 🗘 🕎	Exante	Power, Industry	National, State/Regiona I	×	Dong et al. (2017). Renewable and Sustainable Energy Reviews, 77, 596-603

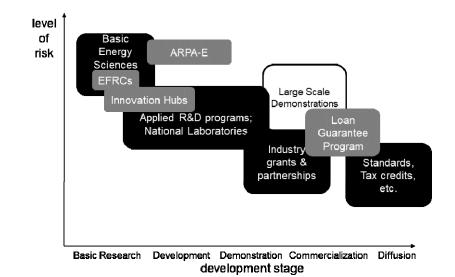
programme under grant agreement No 730403

http://dpet.innopaths.eu/#/

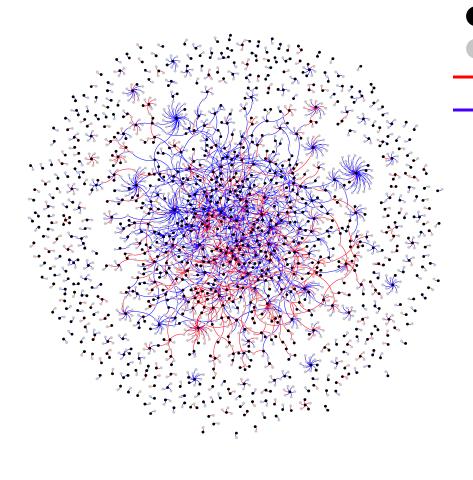
 Some of the competitiveness and distributional impacts were most pronounced in startups and small and medium enterprises

Peñasco, Anadon, Verdolini (2021) Nature Climate Change

Geographical scope of the publications identified in the systematic review



Penasco, Anadon, Verdolini (2021) Nature Climate Change


 Ongoing work with colleagues to assess experiences in developing countries

Broad consensus on the need to increase public funding for green RD&D for climate and economic development (& recovery)

- Public energy RD&D globally around 30 bn USD, up from 25 bn in 2015 (IEA, 2020)
- Increased interest in how to manage and allocate funding (Anadon et al. 2016, Nature Energy)
- Growing interest in the role of new players, startups, small companies
 - → What is the role of public R&D institutions (e.g. labs)? Have they enhanced US cleantech startup innovation and growth?
 - → What has been the impact of ARPA-E in small firms? It is a high risk, actively managed, and mission-oriented agency founded 2009 (>\$3.1bn investments since then)

Analysis of the impact of different technology development and licensing partnerships of US cleantech firms

- Startups
 - Partners
 - Technology-based relationship
- Market-based relationship
- 2,015 alliances
- Patents
- Financing deals
- Variables: degree centrality, age, size, location, prior patents, prior financing deals, sector

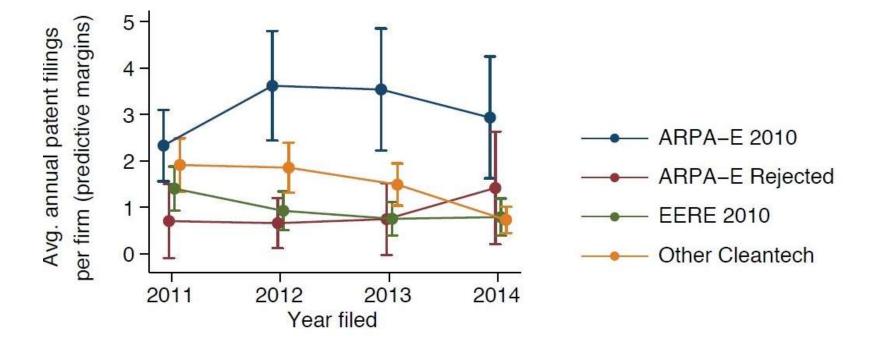
→ Technology-based government partnerships with startups increased patenting activity and follow-on financing the most
Doblinger, Surana, Anadon (2019) Research Policy

25

Public energy innovation institutions have complementary resources

• Expertise and networks:

critical mass of employees with insights on technology development, complementary technologies in the energy system, or future developments

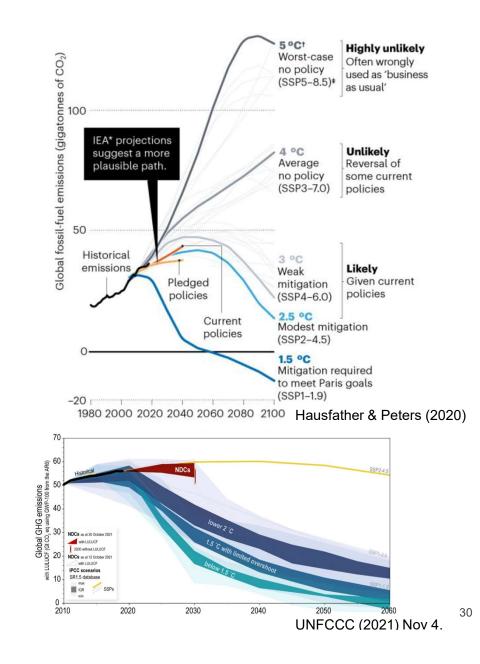

Infrastructure:

physical infrastructures and facilities for experimentation, demonstration, and testing facilities

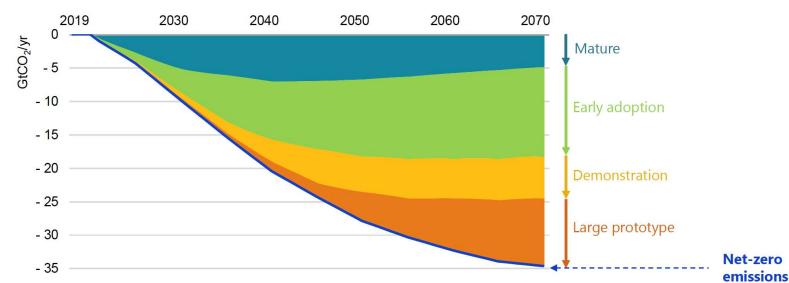
- DOE has over 200 facilities available for external users
- DOD also provides extensive shared infrastructure and test beds
- Inventions available for licensing
- Investors take it as an extra quality check

26

Analysis of the impact of ARPA-E awards for first cohort of funded start-ups


 Enhanced patenting post-ARPA-E compared to other groups controlling by sector, pre-patenting, and other firm level covariates

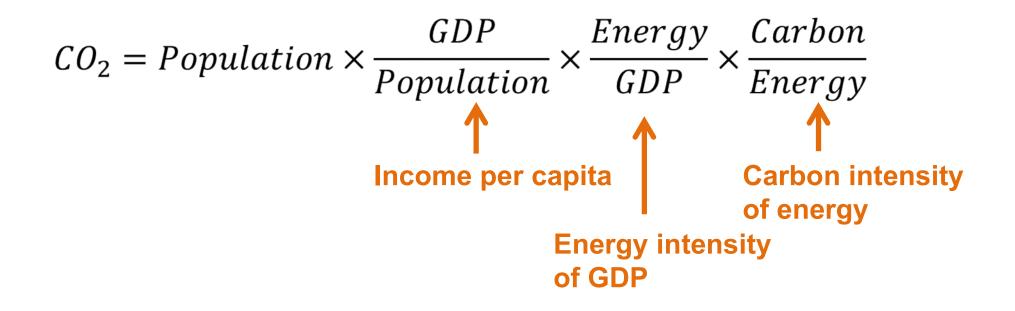
- The EU has created 5 missions, five of them related to environment
 - Climate adaptation and societal transformation
 - Climate-resilien cities
 - Soil regeneration and food
 - Regeneration of oceans and water ways
 - → Inspired by Apollo 11 mission


- £800 million ARIA UK
- Canadian ARPA
- EU ARPA
- Spain Green H2

Current emissions trajectories are not consistent with the goals of the Paris agreement

- Already 1.1 °C over pre-industrial
- Since 1997 the global carbon intensity has been declining at about 1% year
- To get to the 1.5 °C Paris aspirational goal (which was emphasized more strongly in Glasgow) we would need to increase the rate of the rate of decrease in the carbon intensity of the economy by over one order of magnitude

Net Zero emissions is not viable without more & faster innovation


Technologies at prototype or demonstration stage today contribute almost 35% of the emissions reductions to 2070; a further 40% comes from technologies that are at early stages of adoption.

IEA 2020. All rights reserved.

- 130 countries have announced or are considering net zero targets between 2050-2070 (Climate Action Tracker, 2021)
- Some technologies are in the early stages of innovation, particularly in freight, aviation, firm power, energy intensive industries, and led green house gas removal 31

Global CO₂ emissions reductions in the Sustainable Development Scenario, relative to baseline trends

Energy innovation affects various drivers of emissions: the IPAT/Kaya identity

Politics, public policy and innovation studies research suggest the value of a strategy emphasizing innovation & competitiveness

 Competitiveness co-benefits of decarbonisation policies shape public support

Competitiveness, health and other cobenefits (e.g. biodiversity) can change public opinion and sustain effort

It is also a particularly relevant policy goal right now

[Stokes and Warshaw, 2017; Ansolabehere and Konisky, 2014; Deng et al., 2018; Hulme, 2009; Roberts and Zeckhauser, 2011] New players and actors can counter balance the power of the incumbents

New industries create new actors ('winners'), which form new interest groups that can make policy 'sticky' and overcome lock-in

[Geels 2014; Meckling et al. 2015, Breetz, Mildenberger, & Stokes 2018; Schmidt & Severin 2016; Schmidt & Huenteler 2016; Surana & Anadon 2015; Stokes & Breetz 2018; Turnheim & Geels 2019; Sovacool et al. 2020...]

Strategic investments, regulation, green industrial policy

Expert-based forecasting approaches

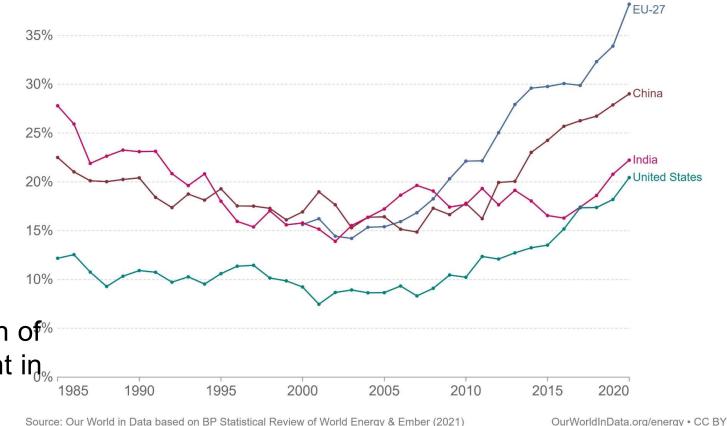
- We cover **expert elicitations** because:
 - they are probabilistic
 - they have been increasingly used
 - they do not assume that previous trajectories will continue and do not preclude the identification of technology surprises or discontinuities

1000			
High-level	Subtypes	Rationale or intuition and	Example References
approach	for expert-&	comments on practice.	when possible, these references
	model-based		covered energy technology cost
	methods		forecasts, but it was not always
			possible
Expert-	Un-	It involves asking experts	Deterministic forecasts: Most
based	structured	informally about cost	IAM scenarios, e.g. 1-3. Some of
forecasts:	expert input	parameters in the future. This	the examples cited and others
experts rely		method is used in many	have 'high' and 'low' forecasts
on		exercises. It is the simplest	(sensitivity analysis or
information		and least resource intensive	scenarios), but they are often
available to		method. Information about the	not probabilistic.
them,		consulted expert(s) is often not	
including		provided, which leads to a lack	Probabilistic forecasts: N/A.
observed		of transparency.	Calls for increased
data, as			transparency.
well as on	Expert	Highly structured formal	Deterministic forecasts: Not
their tacit	elicitations	processes aimed at reducing	applicable, since this approach
knowledge		different psychological biases	was designed to elicit
and mental		from individual experts. Very	probabilistic estimates.
models.		interactive and resource-	
		intensive. In some cases,	Probabilistic forecasts: E.g. 6-11
		multiple expert answers are	
		aggregated although there are	
		pros and cons of this $\frac{4.5}{2}$.	
	Group	Structured iterative group	Deterministic forecasts: E.g. 12
	methods -	process aiming to lead to a	
	Delphi	convergence of opinion, a	Probabilistic forecasts: E.g.,
	method	group response.	some applying to non-cost
			technology attributes 13, 14, 15
	Prediction	It assumes that trading in	Method could be applied to
	markets	futures contracts (or betting) by	make both deterministic or
		large groups of people may help	probabilistic forecasts ¹⁶ . No
		predict events better than	examples related to technology
		individuals or smaller groups of	costs or availability were found,
		experts.	although the use of this
			method has been suggested $\frac{17}{2}$.

Model-based forecasting approaches

- We cover Wright's and Moore's law because:
 - they are most widely used
 - there is more data available
 - to date shown to be more accurate than other model-based methods

High-level	Subtypes	Rationale or intuition and	Example References	
approach	for expert-&	comments on practice.	when possible, these references	
	model-based		covered energy technology cost	
	methods		forecasts, but it was not always	
			possible	
Model-	Wright's law	Evolution of costs as a function	Deterministic forecasts: E.g. 18-	
based		of cumulative production or	<u>20</u>	
forecasts:		deployment (learning by doing).		
forecasts		Link to induced innovation	Probabilistic forecasts: E.g.	
based on			<u>19,21,22</u>	
mathe-	Moore's law	Evolution of costs as a function	Deterministic forecasts: E.g. 23	
matical		of time	Probabilistic forecasts: E.g. 21,22	
relationship	Goddard	Evolution of costs as a function	Deterministic forecasts: N/A	
s between	model	of economies of scale	Probabilistic forecasts: E.g. 21	
selected	Nordhaus	Evolution of costs as both a	Deterministic forecast: E.g. 25	
observed	model 24	function of time and	Probabilistic forecasts: E.g. 21	
parameters		deployment (combining Moore		
		and Wright)		
	SKC	Evolution of costs as a function	Deterministic forecasts: E.g. ²⁴	
	model	of scale (unit costs) and	Probabilistic forecasts: E.g. 21	
		deployment (combining		
		Goddard and Wright)		
	Two-factor	Evolution technology costs is	Deterministic forecasts: E.g. ²⁶	
	learning	represented as a function of		
	curve (R&D	both R&D investments and	Probabilistic forecasts: N/A	
	and	deployment (Wright).		
	deployment)			


Systematic assessment of the performance of forecasting methods

- We collect, harmonize, and make available a large number of data points on the costs of 32 energy technologies
 - 25 sets of data from expert elicitations conducted between 2007 and 2016
 - 25 sets of observed technology data
- We generate forecasts using EEs and the four model-based approaches (the Stochastic Exponent approach is a modified version of previous work)
- We compare 2019 probabilistic expert- and model-based forecasts with observed 2019 costs
 - For 6 technologies for which this is possible
- We compare 2030 model- and expert-based forecasts to each other
 - For 10 technologies for which this is possible

Renewables are contributing to larger shares of electricity production

- While there has been progress in electricity, fossil fuels still generate around 80% of total final energy consumption (Ren21)—it has not changed much between 2009-
- We understand what explains the evolution of[®] costs and deployment in[®] clean technologies

Share of electricity production from renewables Renewables includes electricity production from hydropower, solar, wind, biomass. and waste, geothermal, wave and tidal sources.

Our World in Data

In spite of the evidence of the positive impact of various policies across the innovation indicators...

- Only 8 out of 16 energy economic models in recent survey include innovation outcomes that may represent the impact of decarbonisation policies on innovation
- Other innovation outcomes (e.g., new products and eco-innovations, patenting, R&D investment) are rarely represented
- Most models also do not account for endogenous technological change or knowledge spillovers

➔ Models generally underestimate the economic benefits of decarbonisation policies because only some positive impacts are captured

Kolesnikov, Penasco, Anadon (2021). CEENRG Working Paper 2021-06

Case study: growing evidence on the impact of specific public support tools for energy innovation: startups and SMEs

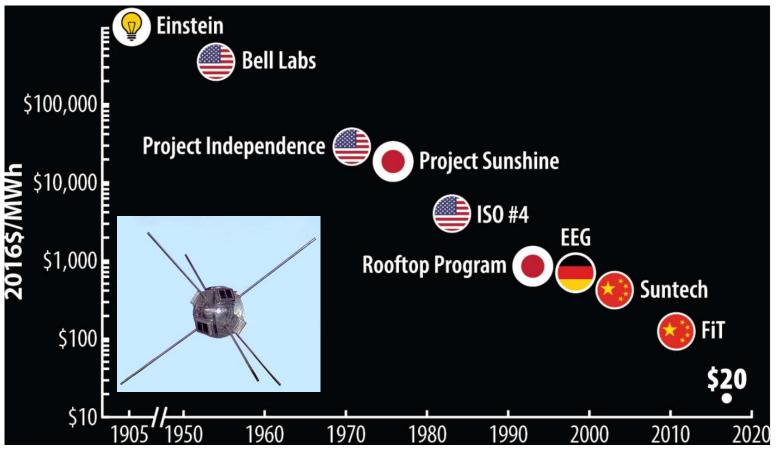
ARPA-style funding was not designed to fill all gaps in the innovation system

- On post-award business success, ARPA-E awardees performed better than rejected applicants
 - it helped riskier technologies get closer to commercialization
 - for the first cohort financing outcomes not better than the wider set of cleantech startups
- Given policy interest, possible areas for future research include:
 - Increasing the timeframe (long-term nature of innovation)
 - Including additional metrics
 - Considering subsequent cohorts and awardees
 - Qualitative work to understand mechanisms that may have been at play related to markets and demonstration

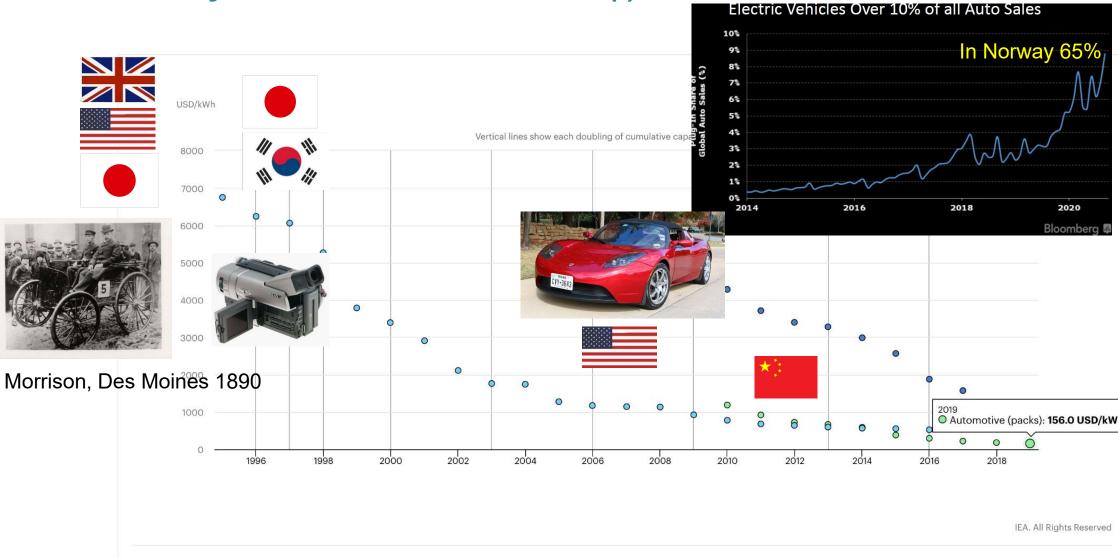
Resources and funding for R&D in startups and SMEs in energy can help advance both technologies and economic development

- Research on the government-startup partnerships and ARPA-E adds to body of evidence indicating that public R&D support (resources and funding) can help cleantech startups and small firms in the energy sector thrive [e.g., Howell, 2017; Pless, 2019]
- Additional support mechanisms (demand pull) also needed in many areas to further de-risk technologies before the private sector can fully take them on e.g., preferential financing, efficiency regulation, financial and fiscal deployment incentives, carbon pricing, and possibly requirements to disclose the carbon content of products

Energy innovation/green industrial policy should consider technology and context

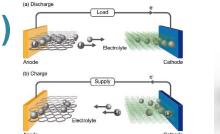

Different research streams investigating determinants of where different clean industries emerge – development benefits

- Technology complexity and industry structure: higher complexity of wind components is associated with less internationalization of manufacturing given differences in country capabilities [e.g., Hidalgo et al. 2007; Hausmann et al. 2013; Surana et al. 2020; Mealy & Teytelboym, 2020]
- Design and manufacturing complexity, mass production, and related capabilities [e.g., Huenteler et al. 2015; Huenteler & Schmidt, 2016]
- Standardization, doing/using/interacting, global innovation system [e.g., Binz et al. 2020; Binz & Anadon, 2018; etc]


The history of solar PV at a glance

- 1905 Einstein discovered photons
- Bell Labs 1954, first cell studying seminconductors
- First solar panel in spage, 1958 Vanguard I

Nemet (2018); Kolesnikov, Anadon et al (2022) In prep. 44

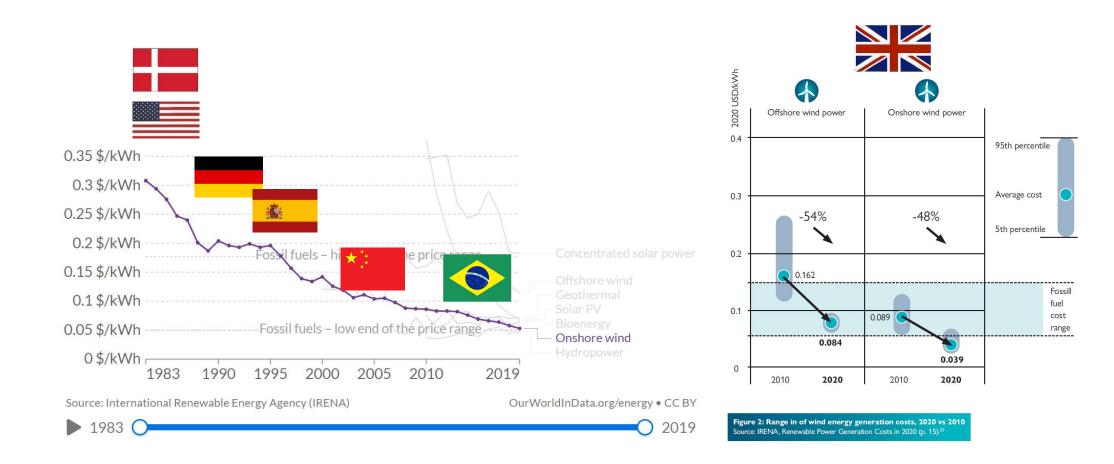

The history of Lithium ion batteries (I)

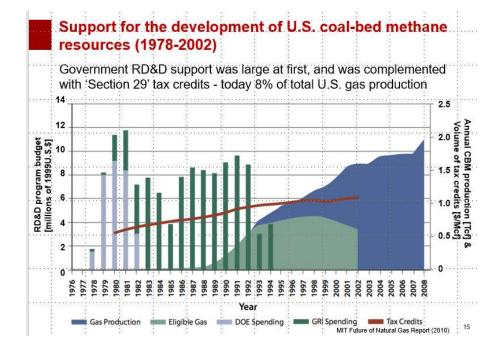
Consumer electronics (cells) Utility scale (projects) Automotive (packs)

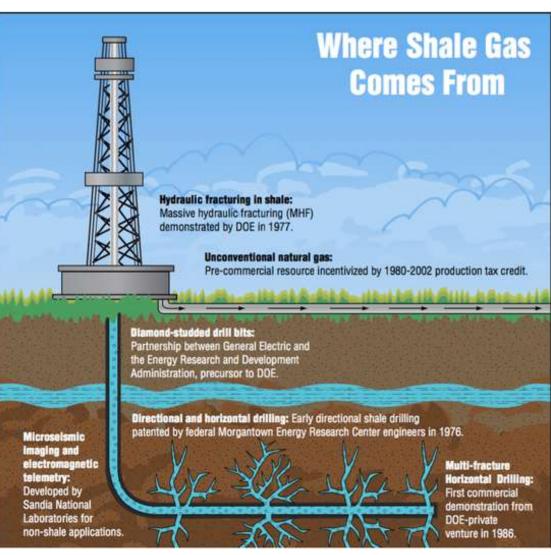
The history of Lithium ion batteries (II)

- Enabling breakthroughs (1-5) happened in the wake of the oil crisis thanks to DoD funding in the US and in the UK, flexible funding for researchers in France, as well as from firms (Exxon and Asahi Kasei)
- In the early 1990s Sony put them together to manufacture batteries for personal electronics (still too expensive for vehicles)
- Other process inventions as manufacturing for vehicles scaled up

Stephan, Anadon, Hoffmann (2021). iScience




#	Innovation	Spillover sources from other technology (T), sector (S), and scientific discipline (SD)	Short description of how spillover came about		
1	Electrochemical intercalation (cathode)	a) NaS (sodium sulfur) batteries (T)	S. Whittingham had worked on NaS batteries in Stanford before he transferr the mechanisms of intercalation that he and his colleagues discovered at Exx to the battery field		
		b) Superconductors (T,S)	S. Whittingham worked in superconductors at Exxon and discovered the mechanisms of electrochemical intercalation. He was able to transfer this idea to LIBs and discovered TiS_2 as a cathode material		
2	Cathode (LCO, lithium cobalt oxide)	a) Solid-state physics (SD)	J. Goodenough, who was trained as a solid-state physicist, often worked with solid-state chemists		
		b) Digital data storage (T,S)	J. Goodenough, inspired by the Ford Motor Company, wanted to apply his research ideas related to digital data storage in the battery field		
3	Anode (graphite)	a) Material science (SD)	R. Yazami was trained in the two scientific fields of material science and electrochemistry		
		b) Physical chemistry (T,S)	R. Yazami built upon the interdisciplinary knowledge and funding existing in hi research group. Physical chemistry, including thermodynamics, was one of the foci of R. Yazami's group		
		c) Heat storage (T,S)	R. Yazami built upon the interdisciplinary knowledge and funding existing in hi research group. Heat storage was one of the foci of R. Yazami's group		
4	Cathode (LMO, lithium manganese oxide)	a) Crystallography (SD) b) ZEBRA (sodium/metal chloride) batteries (T)	 M. Thackeray was trained as crystallographer M. Thackeray further developed his knowledge from materials used in high temperature ZEBRA batteries to those used in room-temperature LIBs 		
		c) Digital data storage (T,S)	J. Goodenough knew about spinels from his prior work in digital data storag		
		b) Nature (geology) (SD)	M. Thackeray's ideas have built on his interest in the structural stability of materials produced in the geological world.		
5	Electrode coating	a) Cassette/magnetic tape production (T,S)	Sony produced the first LIB electrodes on cassette-tape manufacturing equipment that had been standing idle Leclanché produced battery electrodes at an old BASF manufacturing plant fr magnetic tapes. Leclanché furthermore used the trained personnel who we available		
6	Battery slurry manufacturing	a) Printing-ink production (T,S)	Bühler, a Swiss technology provider, had developed a revolutionary electroc slurry manufacturing process, which originated from the organization's knowledge in developing printing-ink production equipment		


able 1. Overview of the analyzed breakthrough and additional (mainly process) LIB innovations (#) with associated spillovers sources (a-d

The history of wind power

Key shale gas innovations: technology push and market pull policies

 Diamond-studded drill bits, microseismic imaging, and horizontal drilling

Growth in four major heat pump markets (change in 2021)

- Long prominent in Finland and Norway
- Deployment driven by information, grants, training, word of mouth
- Higher rates of return required for new technologies, particularly when they are capital intensive

France: +53% (air source)

Finland: +25%

PCS

140 000

120 000

100 000

80 000

40 000

20 000

0

1996


2002

2005

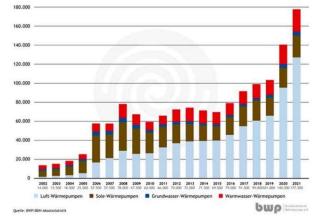
2008

2011

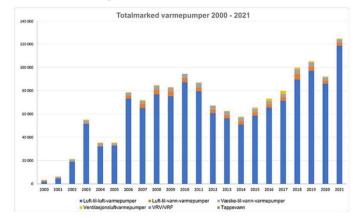
1999

Annual Heat Pump installations in Finland (pcs)

Source : PAC&Clim'Info

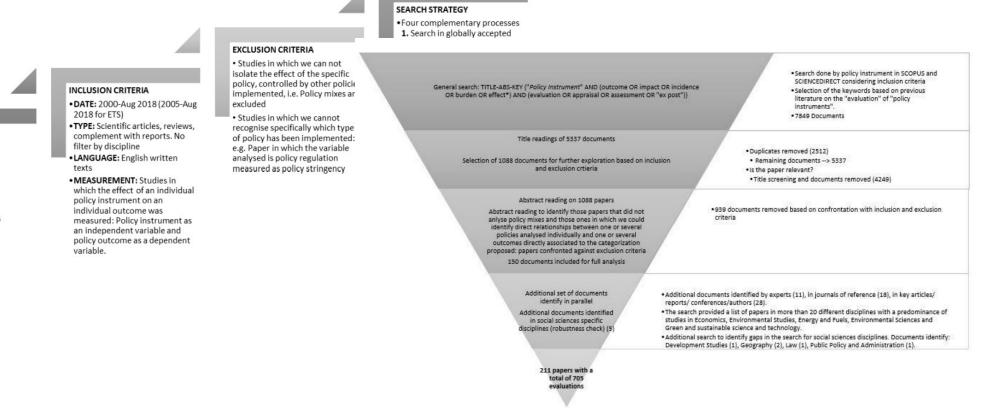

AAHP

AWH


GSHF

Germany: +28%

Absatzentwicklung Wärmepumpen in Deutschland 2002-2021 Nach Wärmepumpentypen

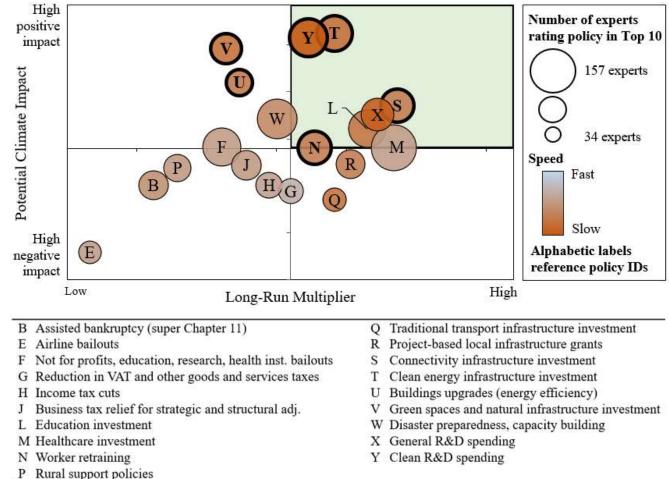


Norway: +36%

Rosenow (2022) 49

Systematic review to understand what is known about the impact of decarbonization policies on different outcomes

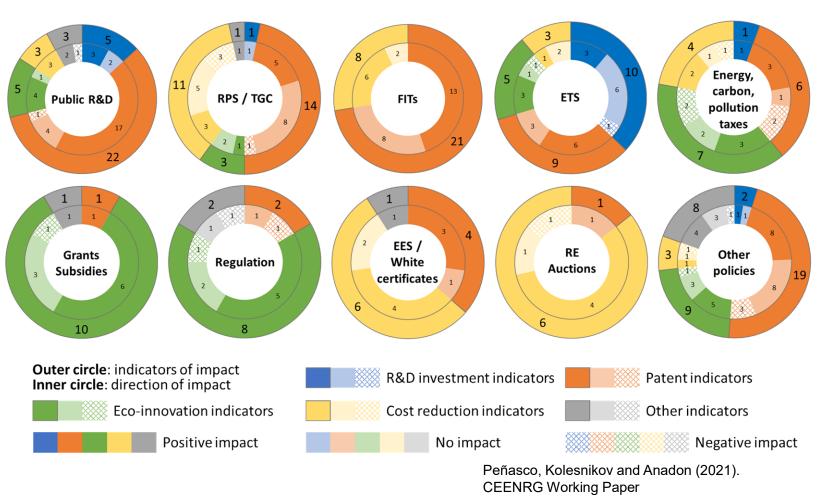
Peñasco, Anadon, Verdolini (2021) Nature Climate Change


50

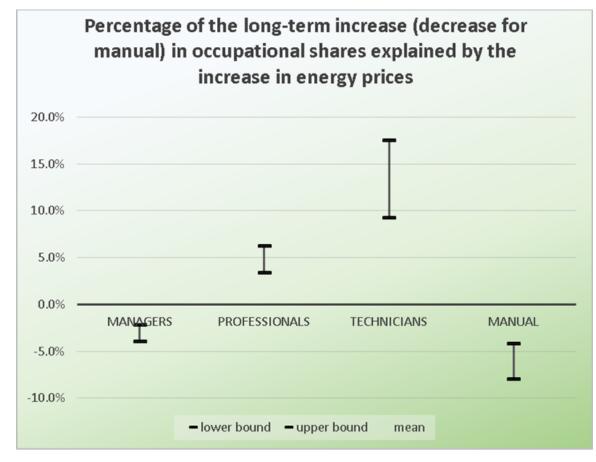
QUESTION

Environ. Effect
 Techno. Effect
 Cost -related outcomes
 Innovation outcomes
 Competitiveness
 Distributional outcomes
 Other social outcomes

Insights consistent with recent survey of experts about recovery Global Survey of Fiscal Recovery Policies


- 231 central bank officials, finance ministry officials, and other economic experts from G20 countries
- Vertical axis: direction and size of the climate impact
- Horizontal axis: direction and size of economic multiplier
- Colour denotes the speed: dark brown is slow)

Hepburn et al. (2020) Oxford Review of Economic Policy


Evidence of a positive impact on innovation indicators

- Evidence on positive impacts of public R&D funding on innovation → patenting and R&D investment. Public R&D play a role as catalysers of R&D investment in the private sector.
- FITs, RE auctions, energy efficiency standards (EES) and white certificates → positive impacts on clean technology patents and cost reductions. Mixed evidence for renewable portfolio standards (RPS) / tradeable green certificates (TGC).
- 3. More research needed for RE auctions as an instrument that is being increasingly used.

Evidence on market pull policies points to the need to support manual workers as part of the energy transition

- Energy price increases have had a negative impact on the demand for manual workers, favouring technicians
- Data from 14 European countries and 15 industrial sectors (1995-2011)
- Training and upskilling programs are essential

INN PATHS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730403

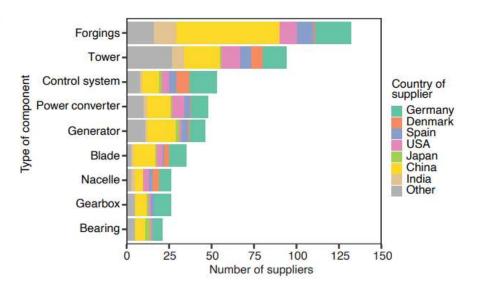
Marin and Vona (2019), JEEM

Measuring and mapping the wind energy global value chain

1. Structuring GVC data from

unstructured wind industry reports*

- 389 Suppliers
- 9 Components
- Over 1,000 relationships with 13 OEMs between 2006 and 2016


*Navigant Research. Supply Chain Assessment Reports

2. Verification and additional data on **supplier firms****

- Home location of firms
- Size, founding year
- M&A
- Specialization in wind

**using Factset, Orbis, Bloomberg

OEM	Supplier	In-house / Acquire / Outsource	Component	Origin Country of Supplier	Actual Location of Supplier	Start Year	End Year	Capacity (annual MW
Vestas	Windcast	Acquire	Castings	Norway	Norway			
Vestas	VTC	Outsource	Castings	Germany	Germany	2013		
Vestas	Titan Wind	Outsource	Towers	China	Denmark			500
Vestas	Vestas	In-House	Nacelles	Denmark	Italy		2013	

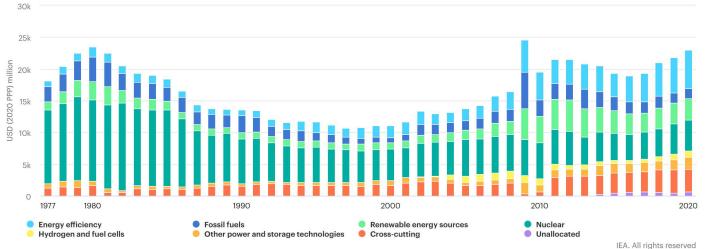
Strategic investment and green industrial policy

- **Industrial policy**: "government actions to alter the structure of an economy, encouraging resources to move into particular sectors that are perceived as desirable for future development." [Altenburg & Rodrik, 2017]
- Green industrial policy: "government measure(s) aimed to accelerate the structural transformation towards a low-carbon, resource-efficient economy in ways that also enable productivity enhancements in the economy." [Altenburg & Rodrik, 2017]

→ GIP focus and framing can help, at least in the short- to medium-term, with the politics, innovation and covid recovery...

Broad guiding principles for public cleantech RD&D

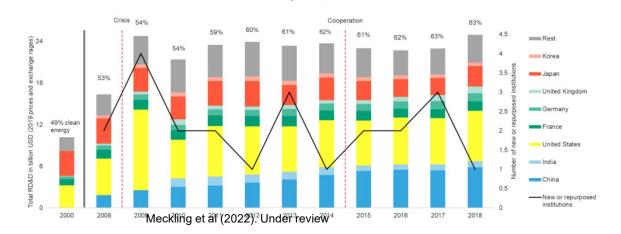
Evidence from high income countries on innovation and competitiveness


- 1. Giving researchers and technical experts autonomy and influence over funding decisions (e.g., lab-directed research at labs, ARPA-E)
- 2. Incorporating technology transfer in research organizations (researcher mobility, investment on tech. transfer and reducing friction, joint development)
- 3. Focusing demonstration projects on learning (decades of projects)
- 4. Incentivizing international collaboration
- 5. Adopting an adaptive learning strategy (monitoring & data collection, analysis, incorporation of uncertainty)
- 6. Keep funding stable and predictable

Chan, Goldstein, Bin-Nun, Anadon, Narayanamurti (2017), Nature; Goldstein et al (2020) Under review

7. Public R&D funding and collaboration (in the form of technical or business expertise, facilities, and legitimacy) helps cleantech SME outcomes (Doblinger, Surana & Anadon, RP 2020; Howell AER 2017; Pless 2020)

Public energy RD&D investments in OECD countries


Higher investments are needed

Data from IEA (2020)

Work on energy R&D investments in Anadon et al (2017) Nature Energy; Chan & Anadon (2017); Anadon et al (2014), etc

 In market exchange rates, including China and India we are at 25 billion USD. China makes up from 5% in 2008 to 24% in 2018 (Meckling et al, 2022)

But green industrial policy needs to...

- be designed to help the most vulnerable workers and communities [Peñasco et al. 2021]
- Account for differential impacts across firms of firms of different sizes and capabilities [Peñasco et al, 2021; Pless, 2019]
- consider the role that global value chains, complexity [e..g., Surana et al. 2020] and sector [Schmidt & Huenteler, 2016; Binz and Anadon, 2018; Binz et al. 2020] Can play in reaping competitiveness benefits
- provide a long term comprehensive framework considering the full innovation system and policy mixes [e.g. Probst et al. 2020; Ossenbrink et al. 2019; Rogge & Reihardt, 2016; del Rio & Howlett, 2013] and the SDG context

Criteria, outcomes and common indicators to evaluate the impact of decarbonisation policy instruments.

Environmental effectiveness outcomes	Technological effectiveness Outcomes	Cost- related outcomes	Innovation outcomes	Competitiveness outcomes	Distributional outcomes	Other social outcomes
GHG emission reductions (tCO2eq) Meeting targets Total energy savings	Installed capacity RE Electricity generated with RE* Deployment of EE** systems buildings Number electric vehicles	Cost installe d capacit RE Total costs E/avoic ed tCO2ec E/saved KWh Difference cost to comply with targets with ar d withou policies	Time series cost- effectiveness indicators Patents Learning rates Reduction technology abatement costs	Industry creation Net job creation Export of RE technology equipment Economic growth (GDP, GNP) Productivity Investments	Incidence of support costs Change in spending on electricity as a % of total household spending Par icipation of stal eholders International equity (tCO2eq/capita) Inequalities among big and small producers	Concentration of facilities leading to public opposition Perceived transparency from consumers Contributions to the participation of new actors Emergence of not in my backyard (NIMBY) movements

Source: Own elaboration based on EC, 2015; IPCC, 2007; IRENa, 2014; Neil and Astranj 2006; Kondari and Mavrakis 2007, Del Rio et al., 2014; Scheneider and Wagner, 2002; Spree, 2013, Field and Olewiler, 2011.

Penasco, Anadon, Verdolini (2021) Nature Climate Change

AND SYSTEM TRANSITION INNOVATION INNOVATION 3

Rationales for government role in fostering the transition to a zero-

carbon economy (in addition to addressing pollution, access, security....)

- Two market failures (environmental and knowledge externalities) (Jaffe et al. 2005)
- Market shaping and creation (Mazzucato, 2013), mission-orientation / multiple missions (Foray, Mowery, Nelson, 2012; Mazzucato, 2013; Anadon, 2012)
- Other system failures:
 - coordination failures
 - information asymmetries
 - institutional capacity
- In addition, in the energy and industrial sectors we have
 - technology development cycles that can take up to several decades
 - significant system lock-in (interest groups, politics, regulation favoring incumbents)
 - undifferentiated/commoditized products

Types of "partnerships" or alliances

Al	liance Type	Example		
Technology- based alliances	Technology development	Arcos Silicon and Broadcom Corporation partnered to improve the interoperability of their power-over-ethernet (PoE) products. Sapphire Power has partnered with University of California, San Diego to demonstrate the viability of saltwater algae in the production of biofuels.		
	Licensee	Natcore has been granted a patent license agreement from the NREL to develop and commercialize a line of black silicon PV products.		
Additional forms of alliances (included as	Procurement or customer	As part of a purchase agreement, Sustainable Green will become exclusive distributor of MagneGas fuel over a two-year period in Pacific Northwest. Avista Corp. is buying the power produced by the Palouse Wind project under a 30-year power purchase agreement and will take delivery of the power through a direct interconnect to the Avista 230 kV Benewah-to-Shawnee transmission line.		
controls)	Licensor	ABB has signed a licensing agreement with ECOtality to use ECOtality's technology for ABB's EV charging network.		
	Project development	Obsidian Renewables partnered with Swinerton Builders to develop the Black Cap Solar facility.		