Technology of energy storage

Jeremy P. Meyers Assistant Professor Mechanical Engineering

The University of Texas at Austin

Cockrell School of Engineering

Energy flows

MEYERS research group

Cockrell School of Engineering

Energy storage technology present-day cost estimates

source: "Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid." <u>http://www.oe.energy.gov/eac.htm</u>

 $M \in Y \in RS$

research group

Cockrell School of Engineering

Flow batteries

allow for de-coupling of power and duration of storage

Research areas in grid storage

- identifying inexpensive electrochemical couples that are highly reversible and which provide a sufficiently large cell voltage
- cheap, durable electrode materials that will provide rapid kinetics for the preferred reaction, while resisting corrosion and degradation under operating conditions
- cell designs to optimize electrode utilization and to minimize external pumping and control requirements.

Electrochemical energy systems

- Means of storing electricity
 - De-couple primary source and use
 - Recover more wasted energy
- Need to improve rates, storage capability
 - Materials and engineering go hand-in-hand
- Opportunities for new uses

MEYERS research group

What can we do?

- Research and development
- Think about enabling technologies

- "Killer apps"
 - Plug-in hybrid vehicles, smart grid
 - When is one kilowatt-hour worth more than another to end users?

MEYERS research group

