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ELECTRICITY MARKET Looking Ahead 
 
 

Looking Ahead: Price Formation and Multi-Period Dispatch 

The basic model of bid-based, security-constrained, economic dispatch with locational prices is well 
understood and provides the foundation for efficient pricing.  The most common analysis is for a single 
period with well-behaved bids and offers without uncertainty.  With independent dispatches, serial 
application of this approach produces efficient prices.  The real dispatch system requires some degree of 
look-ahead with intertemporal constraints.  The expansion of intermittent resources increases the 
importance of efficient multi-period pricing.  In principle, the same model applies for the multi-period 
dispatch.  Relaxing any of the assumptions, however, presents new challenges for efficient pricing.  Rolling 
dispatches must adjust to uncertain conditions inducing changes over time.  Bids and offers with start-up, 
shut-down, and multiperiod operating constraints require some form of extended locational marginal pricing 
and associated uplift requirements.  Current practices differ across organized market.  How important are 
efficient multi-period prices?  What approaches might balance the current competing requirements to deal 
with efficiency, uncertainty and computational feasibility?  What new modeling and software innovations 
are on the horizon? 
 
The focus here is on the real-time dispatch.  There are related issues in day-ahead models. 
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LOCATIONAL  SPOT  PRICE  OF  "TRANSMISSION"
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ELECTRICITY MARKET Pool Dispatch 
An efficient short-run electricity market determines a market clearing price based on conditions of 
supply and demand balanced in an economic dispatch.  Everyone pays or is paid the same price.  
The same principles apply in an electric network.  This is the familiar starting point, with many 
implicit assumptions. (Schweppe, Caramanis, Tabors, & Bohn, 1988) 

MW

Energy Price
(¢/kWh)

Q1 Q2 Qmax

Demand
2-2:30 a.m.

Demand
9-9:30 a.m.

Demand
7-7:30 p.m.

Short-Run
Marginal

Cost

Price at
7-7:30 p.m.

Price at
9-9:30 a.m.

Price at
2-2:30 a.m.

SHORT-RUN ELECTRICITY MARKET



  3 

ELECTRICITY MARKET ELMP Real-Time Pricing 
The general problem of interest is the multi-period commitment and dispatch problem.  Assume a DC-Load 
model with a linear loss approximation.  A stylized version of the unit commitment and dispatch problem for a 
fixed demand y  is formulated in (Gribik, Hogan, & Pope, 2007) as: 

 
Constants: 
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ELECTRICITY MARKET Look Ahead 
Multi-Period pricing must address both uncertainty and look-ahead dynamics.  For a discussion 
of operating reserves see (Hogan & Pope, 2017).  The focus here is on deterministic models with 
rolling updates with the expected load, not on the related questions surrounding stochastic 
problems and operating reserves.  (Schiro, 2017)   
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ELECTRICITY MARKET Real-Time Pricing 
A real-time dispatch model with multiple periods and look ahead is an approach found in some 
organized markets: 

 
Joel Mickey, “Multi-Interval Real-Time Market Overview,” Board of Directors Meeting, ERCOT Public, October 13, 2015. 
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ELECTRICITY MARKET Real-Time Pricing 
A simple version of a real-time look-ahead dispatch and pricing model with multiple periods might 
be as in: 
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This drops all the commitment decisions, treating them as fixed.  For a given end period, this is a 
basic model.  With a subsequent dispatch period, *t , a version of the rolling model might be have a 
future horizon of fixed length as in the ERCOT example: 

 

   

*

*g,d

*

*
, 1

Min  

subject to
                                            ,

                            ,

0                

T t

it it
it t

it it it

it it i t it

T
t t t t t

GenCost g

m g M i t t

ramp g g ramp i t t

LossFn







   

     

   



e g d d g

 
* *

*

max *

*
, 1 , 1

             

                                               ,

                                          
kt t t kt

i t i t

t t

Flow F k t t

g g i
 

 

   

 

g d

 

 



  7 

ELECTRICITY MARKET Real-Time Pricing 
The full rolling model creates end-point problems. To further simplify the present discussion, 
consider the special case where the end-point is fixed at T , perhaps far ahead.  This produces the 
“truncated rolling model” for the remaining periods of the dispatch. 
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The rolling dispatch model incorporates a revised but still deterministic forecast for dispatch 
conditions.  The rolling pricing model produces updated prices.  A proposed minimal condition is 
to require a pricing method that preserves price consistency. 
 

Price Consistency:  With no change in the forecast conditions, the truncated rolling pricing 
model produces no change in the prices. 

 
This is a natural but strong condition that defines the acceptable pricing model. 
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ELECTRICITY MARKET Real-Time Pricing 
The analysis of basic and truncated rolling models is affected by different cases.  The discussion 
here focuses on three different dispatch types that affect the interpretation and the pricing. 
 

 Single Period.  The standard model for a one dispatch period.  This can include commitment 
decisions with start up costs, minimum loads, and other complexities.    This model stands behind 
much of the analysis and intuition. 

 Independent Multi-Period.  The multi-period dispatch reduces to a collection of independent 
dispatch models with no intertemporal interaction.  This excludes ramping constraints, startup 
decisions that last more than a single period, and so on.   This model is useful for isolating the 
important conditions that affect the full dependent multi-period case. 

 Dependent Multi-Period.  The standard model but with intertemporal interactions from startup and 
shutdown decisions, minimum run times, ramping constraints, and so on.   
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ELECTRICITY MARKET Real-Time Pricing 
The interest is in feasible pricing models that support the economic dispatch, have limited uplift, 
and meet the price consistency test. 
 
 Basic Truncated Rolling 

Single Period Independent 
Multi-Period 

Dependent 
Multi-Period 

Independent 
Multi-Period 

Dependent 
Multi-Period 

Strictly 
Convex 
(e.g. linear 
supply curves) 

LMP 
 

LMP LMP LMP LMP 
(Biggar & 
Hesamzadeh, 
2020) 

General 
Convex 
(e.g. step 
function supply) 

LMP 
(Schweppe et 
al., 1988) 

LMP LMP LMP Constrained 
(Hua, Schiro, 
Zheng, Baldick, 
& Litvinov, 
2019) 

Other 
(e.g. start-up 
cost, minimum 
generation, etc.) 

R model 
dependent, may 
equal CH. 
Uplift. 

IR model 
dependent, may 
equal CH. 
Uplift. 

IR model 
dependent.  
Uplift. 

IR model 
dependent, may 
equal CH.  
Uplift. 

Constrained IR 
model 
dependent. 
Uplift. 

CH 
& Min Uplift 
(Gribik et al., 
2007) 

CH 
& Min Uplift 

CH 
& Min Uplift 

CH 
& Min Uplift 

 Look Back CH 
& Min Uplift 
(Hogan, 2016) 
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ELECTRICITY MARKET Convex Real-Time Pricing 
In the fully convex cases, the pricing models almost reduce to the standard interpretation of LMP 
pricing, with the prices equal to the marginal cost from the (intertemporal) optimization.   
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cost, minimum 
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dependent, may 
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IR model 
dependent, may 
equal CH. 
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Uplift. 

IR model 
dependent, may 
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dependent. 
Uplift. 
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(Gribik et al., 
2007) 
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CH 
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(Hogan, 2016) 
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Intertemporal Optimization
with Ramp Constraints

Market-Clearing Prices Support Optimal Dispatch

ELECTRICITY MARKET Convex Real-Time Pricing 
In the fully convex cases, the basic dependent multi-period prices follow the LMP formulation, but 
prices do not always equal generator bid-in marginal costs. 
An intertemporal optimization with ramp constraints.  Consider two generating units with the indicated marginal cost 
curves.  The three-period problem aggregate demands are 200, 225, and 260 MW respectively.  The market clearing 
price is $58/MWh in the first two periods, and increases to $66/MWh in the third period. 
Unit A always produces at the market 
price (in the first two periods) or at 
capacity.  This is the normal condition 
when the ramping constraint is not 
binding and price equals bid-in 
marginal cost.  However, Unit B 
increases production to 125 MW in 
the second period even though its bid-
in marginal cost of $59.25/MWh at 
that level is above the market clearing 
price.  This puts Unit B in a position to 
ramp up to 155 MW in the third 
period, when the price is $66/MWh 
and its direct marginal cost is 
$63.50/MWh.  The difference of $2.50 
is the shadow price of the binding 
ramp constraint for Unit B in the third 
period.   This second period 
production for Unit B would be “out-of-
market” if there were no intertemporal 
interactions.  But for the intertemporal 
optimization, this production profile is 
consistent with the market outcome.  
Both for Unit A and Unit B the optimal 
dispatch is also the profit maximizing 
choice given the market-clearing price.  As a price-taker, Unit B would recognize its ramp constraints and choose to follow 
the economic dispatch.   
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ELECTRICITY MARKET General Real-Time Pricing 
For the general problem, convex hull (CH) pricing minimizes uplift. The integer relaxation (IR) or 
dispatchable model allows for continuous commitment variables.  The  IR is a standard convex 
optimization problem.  Assume the formulation has a convex and homogeneous objective 
function.  (MISO, 2019) 
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The ramping constraints are an important complication.   
  

 With no intertemporal constraints.  The LMP prices from the relaxed problem are the same as 
the convex hull prices. (Chao, 2019) 

 With ramping constraints.  The IR LMP prices are good approximate convex hull prices.  There 
are additional valid inequalities that can be included to strengthen the approximation.  (Hua et al., 
2019) 

 
The IR problem is easy to solve, uses the exact formulation of the corresponding dispatch 
model, but treats the commitment variables as continuous.  
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ELECTRICITY MARKET General Real-Time Pricing 

The interest is in feasible pricing models that support the economic dispatch, have limited uplift, 
and meet the price consistency test. 
 
 Basic Truncated Rolling 

Single Period Independent 
Multi-Period 

Dependent 
Multi-Period 

Independent 
Multi-Period 

Dependent 
Multi-Period 

Strictly 
Convex 
(e.g. linear 
supply curves) 

LMP 
 

LMP LMP LMP LMP 
(Biggar & 
Hesamzadeh, 
2020) 

General 
Convex 
(e.g. step 
function supply) 

LMP 
(Schweppe et 
al., 1988) 

LMP LMP LMP Constrained 
LMP 
(Hua et al., 
2019) 

Other 
(e.g. start-up 
cost, minimum 
generation, etc.) 

IR Model may 
equal CH. 
Uplift. (Chao, 
2019) 

IR Model may 
equal CH. 
Uplift. 

IR Model 
dependent. 
Uplift. 

IR Model may 
equal CH.  
Uplift. 

Constrained IR 
Model 
dependent. 
Uplift. 

CH 
& Min Uplift 
(Gribik et al., 
2007) 

CH 
& Min Uplift 

CH 
& Min Uplift 

CH 
& Min Uplift 

 Look-Back CH 
& Min Uplift 
(Hogan, 2016) 
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ELECTRICITY MARKET Extended LMP 
A simple example illustrates connections among the different pricing model formulations that 
affect the integer relaxation approach. 
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ELECTRICITY MARKET Extended LMP 
A easy dispatchable model applies an integer relaxation. 
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ELECTRICITY MARKET Extended LMP 
The convex hull or minimum uplift model provides the best convex approximation to the total cost 
function. 

Illustrative Convex Hull
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ELECTRICITY MARKET Extended LMP 
An alternative description of the model with the same solutions provides a different integer 
relaxation.  (Chao, 2019)  In this case the integer relaxation produces the convex hull.  In general, 
there are many ways to change the formulation of the original model without affecting the dispatch 
solutions but producing different price approximation.  (Zheng, Zhao, Schiro, & Litvinov, 2018) 
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ELECTRICITY MARKET General Real-Time Pricing 
A real-time pricing model involves multiple periods and look ahead.  Applying an Extended LMP 
framework involves choices about what is fixed and what is variable.  Natural principles suggested 
include: 
 

 Real-time quantity anchor.  Conditioning to reflect evolving economic dispatch and commitment.  
For example, the pricing dispatch would account for ramping limits that constrain the degree that the 
pricing dispatch could deviate from the actual dispatch to ensure that the price market-clearing 
dispatch would always be feasible conditioned on the actual dispatch. 

 Real-time price consistency.  Given perfect foresight, where actual conditions equal the forecast 
conditions, the methodology produces the same set of prices. 

 
For actual commitment and dispatch, past decisions are sunk and real-time quantity anchors 
apply.   
The pricing model could employ more flexibility.   The ELMP approach in general incorporates 
intertemporal constraints, past decisions are important, and reflects fixed costs of units not 
committed.   
Apparently, without full convexity, there must be a choice of which principle to apply in the pricing 
model.  Under both CH and IR, the pricing model dispatch deviates from the physical dispatch.   
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ELECTRICITY MARKET ELMP Real-Time Pricing 
The minimum uplift or convex hull prices present a computational challenge. 
 

 Calculation of the Lagrangean Dual Solution.  Works in theory but is slow to converge and 
inevitably leads to numerical approximation. 

 New Methods.  Focus on primal construction of the convex hull. 
o Primal Convex Hull.  Constructing the convex hulls of the components and then optimizing 

the resulting problem.  Provides exact solutions for a useful class of problems, and reports 
good approximations in other case.  (Hua & Baldick, 2017) 

o Expanded Unit Commitment.  Adding constraints and variables, constructing a master 
problem that characterizes the convex hull via Benders Decomposition.  Provides exact 
solution and reports good computational performance. (Knueven, Ostrowski, & Wang, 2018) 
(Knueven, Ostrowski, Castillo, & Watson, 2019) (Bacci, Frangioni, Gentile, & Tavlaridis-
Gyparakis, 2019) 

 Integer Relaxation.   How best to formulate equivalent models?  (Chao, 2019)  How close is close 
enough in approximating CH prices?   
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ELECTRICITY MARKET Energy Pricing and Uplift 
Alternative pricing models have different features and raise additional questions for both dispatch 
and pricing. 
 

 The Full Rolling Model.  The truncation assumption simplifies the analysis and provides an 
approximation for the true rolling model.  Extending the endpoint alters the dispatch and prices. 

 Uncertainty.  As the dispatch rolls forward, new information arises and the forecast changes.  The 
pricing model can create new prices.  This leads to uplift requirements to ensure that the prices 
support and associated uplift support the actual dispatch. 

 Rolling Dispatch with Endpoint Constraints.  A rolling real-time dispatch model is constrained to 
match the real-time past and DA future after the LA horizon, which should be the best available 
estimate of the future conditions.  “If the realization deviates significantly from the [DA] forecast value, 
then the estimations become inaccurate, [DA] re-optimization should be performed.”  (Zhao, Zheng, 
& Litvinov, 2019) 

 Operating Reserve Demand.  All models compatible with existing and proposed operating reserve 
demand curves. 

 Financial Transmission Rights.  Transmission revenue collected under the market clearing solution 
would be sufficient to meet the obligations under the FTRs.  However, this may not be true for the 
revenues under the economic dispatch, which is not a market clearing solution at the ELMP prices, 
even though the FTRs are simultaneously feasible.  The FTR uplift amount included in the 
decomposition of the total uplift that is minimized by the CH prices.  This uplift payment would be 
enough to ensure revenue adequacy of FTRs under CH pricing. (Cadwalader, Gribik, Hogan, & 
Pope, 2010) 

 Day-ahead and real-time interaction.  With uncertainty in real-time and virtual bids, expected real-
time price is important, and may be similar under all pricing models. 
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ELECTRICITY MARKET Real-Time Pricing 
Rolling forward to the t* interval, with prior dispatch 

,1

* *
, * 1i i tg g  .  A Look Ahead (LA) dispatch model 

has: 
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This model will produce LMP values for the future periods.  However, even in the fully convex case 
with perfect foresight, this model may produce prices that are not consistent over time and do not 
support the dispatch.  (Hua et al., 2019)    
Part of the difficulty arises from the generality of convex generation offer functions that can create 
dual degeneracy in the supply curves.  With strictly convex cost functions,  implying continuous 
offer curves rather than step functions, the “time inconsistency problem disappears.”  (Biggar & 
Hesamzadeh, 2020) 
This clarifies the source of the difficulty.  However, given the ubiquitous use of step-function 
generator offer curves, the price consistency problem remains. 
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ELECTRICITY MARKET Real-Time Pricing 
A modified version of a rolling pricing model addresses this price consistency problem in the 
convex case.  The essence of a more general proposal of (Hua et al., 2019) is to use the dual or 
shadow prices from the prior LA dispatch model to modify the objective function for the current LA 
pricing model. 
Accompanying the LA dispatch model, with up and down ramp shadow prices * *

* 1 * 1,ur dr
t t    from the 

prior pricing run, set the (separate but related) LA pricing as: 
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The shadow price from the prior LA pricing model reflects the opportunity cost over past 
decisions.  This “prices out the past” and preserves price consistency in the perfect foresight case. 
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ELECTRICITY MARKET Real-Time Pricing 
The ZZL model modifies both the actual dispatch formulation and the associated pricing model.  
The dispatch model uses the solution from the (longer horizon) day-ahead market to constrain 
the starting and terminal conditions for the real-time LA dispatch.  
Suppose the LA dispatch terminate at t**.  Then let , * 1

DA
i tg   be the solution from the next period for the 

day-ahead market.  The essence of the rolling ZZL dispatch is  
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Hence, the rolling real-time dispatch model is constrained to match the real-time past and DA 
future after the LA horizon, which should be the best available estimate of the future conditions. 
 
“If the realization deviates significantly from the [DA] forecast value, then the estimations become 
inaccurate, [DA] re-optimization should be performed.”  (Zhao et al., 2019) 
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ELECTRICITY MARKET Real-Time Pricing 
The ZZL pricing model proposal modifies both the actual dispatch formulation and the 
associated pricing model.  The pricing dispatch model uses the dual or shadow prices from the 
(longer horizon) day-ahead market price out the past and the future. 
With ramp shadow prices from the day-ahead solution * 1 * 1 ** 1 ** 1, , ,urDA drDA urDA drDA

t t t t       , set the (separate but 
related) LA pricing as:1 
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Hence, this preserves the computational advantage of a shorter dispatch period by using the 
day-ahead solution to connect the present to the past and future.  With perfect foresight, this 
achieves price consistency.  

 

1  This differs from the LA model of (Hua et al., 2019) in the treatment of the priced-out constraints.  For the perfect foresight analysis, these 
constraints are redundant. 
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ELECTRICITY MARKET Extended LMP 
The ELMP model applied to the stylized unit commitment problem employs the dual prices from a 
particular Lagrangean relaxation.   
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The ELMP price is determined for all periods as the pricing solution to this problem. 
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ELECTRICITY MARKET ELMP Real-Time Pricing 
The ELMP is a solution p  for the dual or convex hull problem with the loss and transmission limits included as 
constraints.  A “market-clearing” solution is a solution to the inner problem for given prices p . 
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ELECTRICITY MARKET ELMP Real-Time Pricing 
A proposal for real-time price consistency in ELMP is to fix past decisions in the inner “market 
clearing” solution, as well as fixing the prices.  Hence, the conditional market-clearing pricing 
model at time   would take the determined prices * * *

1 2 1, ,p p p    and market clearing dispatch 
 1
g ,d ,on ,startt t t tz   for the prior periods as fixed and solve as the pricing model: 
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However, the hoped for price consistency depends on separability across periods.  The general 
problem is not separable, and fixing   1

g ,d ,on ,startt t t tz    does not ensure price consistency.  
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ELECTRICITY MARKET ELMP Real-Time Pricing 
A sufficient condition for real-time price consistency in ELMP is that all commitment and 
dispatch variables that are in the economic dispatch or are assigned an uplift payment from the 
market-clearing solution be included in the pricing model.  This allows for slowly pruning those 
offers that were not committed in either the economic commitment or the market-clearing 
commitment and are subsequently excluded from retroactive starts ( Excluded ).  Hence, the 
conditional dual pricing model at time   could take as determined prices the prior periods 

* * *
1 2 1, ,p p p  : 
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ELECTRICITY MARKET ELMP Real-Time Pricing 
Different formulations of the unit commitment problem yield the same convex hull but have 
different integer relaxations.  
Suppose that  it itGenCost g  is convex and homogeneous of degree one.2  This is a very weak 
condition.  Suppose we have a commitment variable and a piecewise representation of 
generation cost over intervals 0, ,j j

j

X X M     .   

A:   Cos , 0 , ,0j j j j jx j j
Gen t g z Min c x x X x g g zM
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B:  Cos , 0 , ,0j j j j jx j j
Gen t g z Min c x x zX x g g M

 
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These functions agree when 0,1z  , so they have the same convex hull.   

 Without ramping constraints, unimodular constraints on commitment variables assure that integer 
relaxation with model B provides convex hull prices.  (Chao, 2019) 

 With ramping constraints, an expanded unit commitment characterization can employ a variant of 
model B and provide convex hull prices. (Yu, Guan, & Chen, 2019) 

 
 

 
2  Homogeneous of degree one:     , 0.it it it itGenCost g GenCost g     
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ELECTRICITY MARKET ELMP Real-Time Pricing 
The integer relaxation or dispatchable model allows for continuous commitment variables.  This 
is a standard convex optimization problem.  Assume the formulation has a convex and 
homogeneous objective function.  (MISO, 2019) 
 

  
g,d,on,start

, 1

 

subject to
                                            ,

                        

it it it it it it
t i

it it it it it

it it i t it

Min StartCost start NoLoad on GenCost g

m on g M on i t
ramp g g ramp

 
    

 

    
   



, 1

    ,
                                     ,

0 1                                                           ,
0 1                                         

it it it i t

it

it

i t
start on start on i t
start i t
on





   

  
 

   
  max

                      ,

0                             

                                               ,

T
t t t t t

kt t t kt

i t

LossFn t

Flow F k t



    

  

e g d d g

g d

 

 
The ramping constraints are an important complication.   
  

 With no ramping constraints.  The LMP prices from the relaxed problem are the same as the 
convex hull ELMP prices. (Chao, 2019) 

 With ramping constraints.  The LMP prices are good approximate convex hull prices.  There are 
additional valid inequalities that can be included to strengthen the approximation.  (Hua et al., 2019) 

 
The relaxed problem is easy to solve, uses the exact formulation of the corresponding dispatch 
model but treats the commitment variables as continuous.  
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ELECTRICITY MARKET Approximate ELMP Real-Time Pricing 
An adaptation of the sequential model for the rolling LA pricing with the relaxed approximation of 
the pricing problem presents a relative simply tool.  First we fix the prices for prior periods and 
price out the constraints to include them as part of the objective function.  Then we utilize the 
relaxed model to find the approximate prices: 
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This is a much easier problem to solve than the ELMP.  Absent ramping constraints, it yields the 
convex hull prices.  With ramping constraints, it should provide a good approximation.  
 
Since the integer relaxation is a convex problem, the various LA pricing and settlement 
approximations proposed for LMP in the convex real-time model without commitment decisions 
could be implemented with an appropriate integer relaxation pricing model to account for 
commitment decisions. 
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ELECTRICITY MARKET Energy Pricing and Uplift 
The discussion of pricing enhancements and these alternative models identifies common 
objections. 
 

 Not Using Real Marginal Costs.  The shorthand that short-run efficient prices equal marginal costs 
depends on an underlying assumption of convexity.  In the non-convex case, there may be no 
efficient linear prices that clear the market.   

 Dispatch and Pricing are Inconsistent.  Only under the assumption of convexity will the marginal 
cost prices from the dispatch also support the dispatch solution and clear the market.  The market 
design seeks an efficient commitment and dispatch solution.  The pricing and uplift payment model is 
related but not identical under conditions where there is a duality gap. 

 The Implied Dispatch in the Pricing Model Creates Congestion.  Absent convexity, and with a 
duality gap, the dispatch in the pricing model can violate existing or encounter new constraints.  This 
is a feature, but not a bug.  The prices are relevant, not the dispatch. 

 The Prices and Uplift Will Create Perverse Incentives.  The purpose of the uplift payments is 
precisely to remove the most perverse incentives not to follow the commitment and dispatch.  The 
mechanism for pricing and uplift is “almost” incentive compatible in a manner like other “first -price” 
auction frameworks. 

 Self-Scheduled Units Will Manipulate Prices.  The pricing model only employs bids and offers 
included in the commitment and dispatch model.  Competitive self-scheduled units have an incentive 
to participate in the dispatch. 

 Prices Will Go Up.  This is an empirical question.  If the efficient energy prices under ELMP are 
higher, that is a solution and not a problem. 
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ELECTRICITY MARKET ELMP Real-Time Pricing 
A two period example illustrates the solution and properties of pricing model.  The simplified structure with only 
fixed costs for one plant and variable costs for the other allows us to determine the solution from the graph of 
critical regions in the dual space of the prices. 

Two-Period Price Illustration 
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The dual of this problem reduces to a simple solution. 
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A related version with different assumptions about the relation of costs illustrates the different solutions that can 
arise in the conditional dual and conditional market-clearing pricing problems in the second period. 

Two-Period Sequential Update 
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