
 

 1

Market-Clearing Electricity Prices and Energy Uplift 
Paul R. Gribik,i William W. Hogan, and Susan L. Popeii 

December 31, 2007 

 

Electricity market models require energy prices for balancing, spot and 
short-term forward transactions.  For the simplest version of the core 
economic dispatch problem, the formulation produces a well-defined 
solution to the energy pricing problem in the usual form of the intersection 
of the supply marginal cost curve and the demand bids.  In the more 
general economic unit commitment and dispatch models, there may be no 
analogous energy price vector that is consistent with and supports the 
quantities in the economic dispatch solution. Uplift or make-whole 
payments arise in this condition. Comparison of three alternative pricing 
models illustrates different ways to define and calculate uniform energy 
prices and the associated impacts on the energy uplift required to support 
the least cost unit commitment and dispatch. 

Introduction 
Electricity markets require energy prices for balancing, spot and short-term forward 
transactions.  In the core framework of bid-based-security-constrained-economic-
dispatch, locational energy prices that are consistent with market equilibrium appear as 
the locational system marginal costs associated with the economic dispatch solution.  
These prices are charged to loads and paid to suppliers. The prices support the 
equilibrium solution in the sense that at these prices competitive suppliers and loads 
would have no incentive to change their bids and would have an incentive to follow the 
dispatch.  However, the core model does not incorporate all the features of the electricity 
market, such as the discrete nature of unit commitment.  Going beyond the simple core 
model, there are important cases where there are no exact prices that support the 
quantities determined in the economic electricity dispatch, i.e., there are no exact prices 
that support the economic equilibrium. 

 In practice, two general types of problems arise in choosing and using electricity 
prices.  First, there may be products and services that are not included in the formal 
model, so that the model does not produce market prices for these products in the form of 
marginal costs.  For example, reactive power may not be formally represented in the 
model so that there are no reactive power prices.1  Hence, reactive power and similar 
ancillary services must be addressed outside the formal model.  Second, even when 
products are included in the formal model, there may be no set of prices for these 
products that support the dispatch solution.  For instance, the core model assumes all the 
decision variables are continuous and, because of this, it is relatively easy to identify the 

                                                 
1  Including reactive power explicitly in the model of dispatch is possible in principle, but it is not 
yet common practice.  W. Hogan, "Markets in Real Electric Networks Require Reactive Prices," Energy 
Journal, Vol.14, No.3, 1993.  
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optimal solution in terms of both the optimal dispatch quantities and the associated 
prices. But for certain critical choices in the unit commitment stage, the relevant 
decisions are discrete and not continuously variable.  The individual plant is either off or 
is committed, a zero-one choice.  In addition, the actual dispatch may be nearly but not 
exactly optimal because of software limitations or operator intervention to address 
specific constraints not accounted for in the formal model.  Both discrete decision 
variables and less than fully optimal solutions can produce circumstances where there are 
no exact prices that support the electricity dispatch. 

 The discussion and analysis here address the second of these two types of 
problems, in which exact prices do not exist to support the dispatch solution because the 
underlying problem contains discrete decisions, or because the solution is nearly but not 
exactly optimal.  When there is no set of energy prices that supports the solution, this 
requires some accommodation in selecting a workable rule for pricing electric energy and 
treating the implications for any deviation from the equilibrium solution.  The first half of 
the paper develops the general interpretation with accompanying graphical illustrations.  
The second half of the paper summarizes a formal model. 

Market-Clearing Prices  
Before considering the details of a representative electricity commitment and dispatch 
model, a more general statement of the issues in terms of the fundamentals of constrained 
optimization highlights the critical ideas and issues related to pricing.  We state the basic 
issue in terms of the fundamentals of constrained optimization, and later extend the 
concepts to the electricity market model as a special case. 

Consider a generic optimization problem for fixed y, 

( )
( ). . .

x X
Min f x

s t g x y
∈

=
 

The decision variables in the vector x  must meet two types of constraints.  First, the 
decision variables must be in the set X , which may incorporate many different 
constraints or special characteristics.  For example, part of the specification of X  may be 
that some or all the variables take on discrete values. 

The vector y  represents some external requirement that must be met by the 
choice of the decision variables, x.  For instance, in the economic dispatch problem the 
external requirement might be to meet a certain level of net demand.  The constraint 
functions ( )g x  map the commitment and dispatch decision variables into the external 

requirement to meet load y .  The separation of the ( )g x  constraints from those in the set 

X implicitly recognizes that there are instances in which the constraints ( )g x  are 
complicating and the optimization problem would be easy to solve if these constraints 
could be removed.  For example, in the electricity unit commitment and economic 
dispatch problem we might have the constraints in ( )g x  describing interactions across 
many separate unit decisions, while the set X decomposes into many separable and 
individually simple problems. 
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In the broad context of the optimization literature, the general objective function 
( )f x  could be some form of cost-benefit function.  The electricity market interpretation 

might be that this is the cost of commitment and dispatch to meet load.  A more general 
formulation would see the objective function as some cost-benefit aggregation.  For the 
present purposes it is simpler to explain the concepts using the interpretation of 
minimizing costs to meet load. 

As the load varies, the value of the least-cost solution changes accordingly.  
Define the value function (a.k.a., minimum cost function, perturbation function, auxiliary 
function) as 

( ) ( ) ( ){ }
x X

v y Inf f x g x y
∈

= = . 

The value function plays a central role in the definition and derivation of equilibrium 
prices. The slope of the value function represents the marginal cost of meeting an 
additional unit of load.  Along with the more general derivation when both load and 
generation are optimized, this marginal cost defines the market-clearing price. 2 

 The requirements for this interpretation of the marginal cost as the appropriate 
price are met by the core electricity dispatch model with continuous dispatch variables 
and well-behaved cost functions.  For example, consider three plants as shown in the 
table.  The first illustration utilizes just the first two generating units, each with two levels 
of variable cost for up to a 100 MW each for a total capacity of 400 MW. 

 
Plants

q (MW) A B C
Fixed Cost ($) 0 6000 8000
Var cost1 ($/MWh) 100 65 40 25
Var cost2 ($/MWh) 100 110 90 35  

 

In the first illustration, we also ignore the fixed cost of committing the plants, and take 
into account only the variable costs, so that all of the dispatch variables are continuous.  
The individual and aggregate least total cost for each level of load—i.e., the value 
function—for this example would be as shown in the figure. 

                                                 
2  For a further discussion of market equilibrium concepts, see William W. Hogan and Brendan R. 
Ring, “On Minimum-Uplift Pricing for Electricity Markets,” March 19, 2003, (available at   
http://ksghome.harvard.edu/~WHogan/minuplift_031903.pdf ). 
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Here the first level of variable cost for plant B is the cheapest, and defines the aggregate 
cost curve up to 100 MW.  The succeeding increments in the total cost function follow in 
order of increasing variable cost.  A more familiar way of showing the same information 
would be in the individual and aggregate marginal supply curves, which show the 
marginal cost of each unit of output, as a function of increasing output, instead of 
showing the aggregate cost.  When the variable costs are constant over ranges, as in this 
example, the resulting marginal supply function consists of a series of steps.  The vertical 
steps are the points where the aggregate cost function is not differentiable, and any price 
within the vertical segment would support the quantity dispatch solution.  These vertical 
segments present some technical issues to be ignored here as not important to the main 
discussion. 

The aggregate supply function is the horizontal sum of the supply functions of 
individual generating units.  This supply function could be cost-based, or the variable 
cost of generator operation, or could consist of the supply offers in a coordinated 
electricity market.  
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Marginal Cost Illustration
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For any given level of load, the aggregate supply function determines the market 

clearing price at the level of demand or the point of intersection with the demand curve.  
In the electricity market model, these prices are the market clearing prices that satisfy the 
“no arbitrage” condition that there are no remaining profitable trades among the market 
participants.   

 



 

 6
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Adding more plants and more steps, allowing for offers that are not step 

functions, embedding in a transmission system, and so on, present no conceptual 
difficulties. The generalization of the supply function applies, with increasing load giving 
rise to increasing prices.  With offers equal to variable costs, the resulting prices are 
incentive compatible in the sense that given the prices no participant would wish to 
change its offer or change the level of supply. 

 Moving beyond this core model, the next step is to include the fixed cost of plant 
B and consider that it would not be optimal to commit plant B until the level of load was 
high enough to absorb these fixed costs.  This would produce a more complicated 
aggregate cost picture, as in: 
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Aggregate Cost: Two Generator Example 
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As shown in the figure, aggregate costs follow the pattern of plant A until the load level 
is high enough (at approximately 178 MW) to support commitment of plant B and 
switching to the total cost curve of the combination of A & B.  Note that in this case the 
rate of increase of total cost drops, technically, the marginal cost is not monotonically 
increasing. This change in the marginal cost of meeting an increment of new load is seen 
more readily in the companion figure showing the implied marginal cost. 
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Marginal Cost: Two Generator Example 
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This looks quite different than the well-behaved marginal cost or supply curve in the core 
model.  Now the marginal cost increases and then decreases, and then increases with 
increasing load.  Furthermore, there may be no set of prices that satisfy the market 
equilibrium conditions that there is “no arbitrage”, meaning that suppliers would not want 
to change the dispatch at the given prices.  This raises question of how to define the 
“market clearing” prices and how to treat other payments needed to support the solution. 

 The anomalies persist as we consider additional plants and more complicated 
situations.  For example, repeating the analysis with all three plants (A, B, & C) in the 
illustration produces the following representation of the least-cost value function across 
different load levels. 



 

 9

Aggregate Cost: Three Generator Example 
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 The corresponding implied marginal cost curve for this three plant illustration 
exhibits repeated instances where the commitment decision changes the progression of 
the implied marginal costs. 
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Marginal Cost: Three Generator Example 
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 As is well known, the discrete commitment variables greatly complicate solution 
of the economic commitment and dispatch problem.  With many plants and many levels 
of operation, there are too many possible combinations.  The same complexity arises in 
the analysis of the appropriate prices.  The further examples that follow emphasize this 
point for the case of two plants, each with two levels of variable costs.  This case is 
sufficient to illustrate the basic theoretical points in a manner that captures the essential 
features but is still easy to check. 

 The task is to develop further the concept of the market-clearing prices and to deal 
with the additional measures needed to address the key feature that there may be no 
market clearing prices that support the least-cost solution of the value function ( )v y . 

Energy Prices and Uplift 
In the core model for electricity markets, energy prices derived from marginal costs 
support the equilibrium solution.  This is true in the limited sense that within the formal 
structure included in the model the energy prices provide the appropriate charges to loads 
and payments to suppliers.  However, prices that support the equilibrium solution for 
energy do not provide the necessary payments for products and services not included in 
the core model.  Ancillary serves such as reactive support, black start capability and so on 
are not priced in the same way and must be paid for in a matter separate from the formal 
structure embedded in the core model.  The particular rules for determining these 
payments are often ad hoc and not derived from an inclusive model.  Charges applied to 
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customers to cover these costs are similarly based on reasonable but ad hoc rules that 
often approximate some pro rata allocation across customers.  These charges applied in 
addition to energy payments go under the heading of the “uplift” following a 
nomenclature established in the UK electricity market restructuring. 

 Hence, an uplift payment is an inherent part of energy markets.  The total cost of 
uplift payments is usually relatively small and the effects on market incentives are often 
ignored in formal analysis as being de minimis.  However, this may not be true as more 
and more charges are included in the uplift.  When we move to the more general energy 
model with unit commitment costs and discrete decisions, new opportunities or 
requirements arise to add to uplift charges.  In the more general model, energy prices 
based on marginal costs will not always be able to support the equilibrium solution.  
Going further, there may be no set of energy prices that would support an equilibrium 
solution and something else is required.  

 One approach that has been suggested, but not applied, is to develop alternative 
pricing models that might eliminate a need for energy related uplift payments.  Since the 
problem begins with an existence problem—there is no set of prices that would work—
these alternative approaches involve some form of pricing rule that replaces the uniform 
or linear market-clearing prices of the electricity market.  A linear price is a single price 
that is applies to all transactions and the total revenue is simply the price times the 
quantity, pq.  A nonlinear pricing rule is anything else that might involve discrimination 
across transactions or volumes with a rule needed to determine the total revenue.3  Such 
rules might violate usual prescriptions for non-discrimination through uniform energy 
prices.  In addition, the rules could create added incentive problems that would raise other 
difficulties.  Although this is an area of possible research, it is not pursued further in the 
present discussion which addresses linear or uniform energy pricing models.    

With linear or uniform market clearing prices, the need arises for uplift payments. 

“Absent a nonlinear pricing scheme, the potential for confiscation could 
lead generators to withhold themselves from the market or to distort the 
cost or constraint parameters in their offers to ensure themselves 
sufficiently high energy rents, with the potential to lead to an inefficient 
commitment. Most ISOs overcome this confiscation problem by paying 
uniform hourly energy and ancillary service prices with supplemental 
make-whole payments, which guarantee that a unit will recover any 

                                                 
3  Marcelino Madrigal and Victor H. Quintana, “Existence and Uniqueness of Competitive 
Equilibrium in Units Commitment Power Pool Auctions: Price Setting and Scheduling Alternatives,”  IEEE 
Transactions on Power Systems, Vol. X, No. X, October 2001, pp. 100-108.  Marcelino Madrigal, Victor 
H. Quintana and Jose Aguado, “Stable Extended–Pricing to Deal with Multiple Solutions in Unit 
Commitment Power Pool Auctions, IEEE Porto Power Tech 2001 Conference Proceedings, September 
2001.  Alexis L. Motto and Francisco D. Galiano, “Equilibrium of Auction Markets with Unit 
Commitment: the Need for Augmented Pricing,” IEEE Transactions on Power Systems, Vol. 17, No. 3, 
August 2002, pp. 798-805.  Shangyou Hao and Fulin Zhuang, “New Models for Integrated Short-Term 
Forward Electricity Markets”, IEEE Transactions on Power Systems, Vol. 18, No. 2, May 2003, pp. 478-
485.  Jeovani E. Santiago Lopez and Marcelino Madrigal, “Equilibrium Prices in Transmission Constrained 
Electrcity Markets: Non-Linear Pricing and Congestion Rents,” November 1, 2003. 
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portion of its offer-based costs not covered by inframarginal energy and 
ancillary service rents over the planning horizon.”4 

The “make-whole payments” are part of the aggregate uplift charges.  In the case 
of energy and unit commitment costs, the need for uplift payments can arise because the 
generator has an incentive to change the commitment or dispatch.  For example, given the 
uniform energy price applicable to a particular plant, the unit commitment and economic 
dispatch solution may not produce enough energy revenue to cover the total fixed and 
variable costs.  The deficit should be bounded by the total fixed costs, but with only the 
energy payments the generator would be operating at a loss and would prefer not to be 
committed.  The uplift payment makes the generator whole and adds the needed support 
for the dispatch. 

 Another possibility is that a generator is partially dispatched and has remaining 
unused capacity.  If the energy price is above its variable cost, the profit maximizing 
solution might be to increase output and upset the aggregate energy balance.  This 
condition cannot occur in the core model, but it can arise in the more general framework.  
Depending on how the energy price is determined the generator sees opportunity costs in 
foregone profits from complying with the dispatch.  An uplift payment for the 
opportunity cost makes the generator whole and further supports the dispatch. 

A more extensive form of opportunity costs arises for the case of uncommitted 
plants that would be profitable at the uniform energy prices.  Again, this condition does 
not arise in the core model but may well exist for any given set of energy prices in the 
more general framework.  While it is somewhat more controversial to compensate 
generators who are constrained off, this is another form of opportunity cost and these 
payments have been part of the uplift charges that support the economic dispatch.     

These various forms of energy and commitment cost uplift charges reduce to a 
simple general principle and calculation.  Given the energy price, we can calculate the 
energy profit or loss that would be earned by each generator at the proposed equilibrium 
solution.   Given the same energy price, we can calculate the profit maximizing position 
for that same generator.  In the core model, the two results would be the same.  In the 
more general model there could be a difference and this difference reveals the make-
whole payment that supports the proposed commitment and dispatch decision.  

The analysis below formalizes this view of the necessary uplift payments.  The 
focus is on the unit commitment and energy dispatch with uniform energy prices.  The 
uplift is treated as separate from the formal model with de minimis incentive effects.  In 
assuming that the uplift is small and has small incentive effects, we do not consider the 
rules for allocation of the uplift.  However, the analysis of different energy pricing rules 
addresses the implications for associated uplift payments and provides a basis for 
evaluating alternative uplift magnitudes. 

                                                 
4  Ramteen Sioshansi, Richard O’Neill, and Shmuel S. Oren, “Economic Consequences of 
Alternative Solution Methods for Centralized Unit Commitment in Day-Ahead Electricity Markets,” 
January 2007. (http://www.ieor.berkeley.edu/~ramteen/papers/mip_lr.pdf ). 
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Since there is no unique definition of the energy price, there are alternative price 
models and associated uplift costs. 

  

Alternative Price Models 
The discussion of the need for uplift payments recognizes that the extensions to the core 
dispatch model are important in defining market equilibrium prices.  In the core model, 
with continuous variables and well-behaved cost functions, the analysis points clearly to 
the marginal costs as the appropriate prices.   

In the more general case with the discrete variables of the unit commitment 
decisions, there is not an obvious set of prices to use.  If there is to be a market-clearing 
price, uplift payments will be necessary to support the solution.  And different definitions 
of the appropriate market-clearing price have different implications for the nature of the 
uplift payments. 

To address alternative possible pricing conventions, redefine the general problem 
notation slightly to distinguish the discrete variables.  Here we assume that part of 
feasible set X  is the requirement that some of the variables take on the values zero or 
one, these variables may represent the on/off status of a generating unit.  Restate the 
original problem with explicit identification of the integer constraints.   

( )
( )

( )

( )
,

,

. .
0,1.

x u X
v y Min f x u

g x ys t
u

∈

=

=

=

 

In terms of this restated general problem, the constraints induce prices.  We 
address three alternatives to define market clearing energy prices:  a restricted model that 
comes closest to the strict definition of marginal cost; a dispatchable model that relaxes 
the discrete requirement and assumes that all units are fully dispatchable and pro-rates the 
fixed costs; and a model that uses the convex hull of the value function to find the best 
well-behaved convex approximation that emulates the properties of the core model. 

Restricted Model 
The first approximation provides a pricing definition and interpretation 

conditioned on knowing the optimal commitment decisions.  Given the optimal 
solution ,O Ox u , restrict (“r”) the model to match the optimal commitments as in: 

( )
( )

( )

( )
,

,

. .

.

r

x u X

O

v y Min f x u

g x ys t

u u

∈

=
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This restricted model is proposed in O’Neill et al. 5  If the underlying problem is convex 
for other than the integer requirements, then this restricted problem is a well-behaved 
problem that yields market clearing prices for both energy load in y  (associated with the 
constraints in ( )g x ) and for capacity commitment (associated with the constraints 

Ou u= ). 

 An attractive feature of this formulation is that with the restriction the model 
reduces to a standard convex optimization problem subject to the usual range of analyses 
of the prices and associated properties.  In effect, the approach embeds the problem in a 
higher dimension including the pricing of commitment variables (u) as well as energy 
load.  Then the restriction limits the application to the solutions which match the optimal 
commitment.  The solution of the restricted model reproduces the economic dispatch and 
provides uniform energy prices. 

Over the range where ( )rv y  is differentiable, the restricted model produces 
implied marginal costs exactly equal to the marginal costs described above.  Hence, in the 
case of the two plant example, the restricted model implied marginal costs appear as: 

Restricted Model Marginal Cost Example 
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5  Richard P. O’Neill,  Paul M. Sotkiewicz, Benjamin F. Hobbs, Michael H. Rothkopf, William R. 
Stewart, Jr., “Efficient Market-Clearing Prices in Markets with Nonconvexities,” European Journal of 
Operational Research, vol. 164, pp. 269–285. 
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 The marginal costs may not support the equilibrium solution, but with the 
appropriate definition of uplift payments to compensate for deviations from the 
equilibrium, these marginal costs could be used as the market prices. 

 The prices associated with the restriction constraints (i.e., the requirement that u 
equal the optimal commitment Ou ) could be viewed as the components of an uplift 
calculation.  In the derivation of the standard results from the optimization model, the 
prices for the commitment decisions can be both positive and negative.  In the fully linear 
model, the effect of the commitment prices is to capture all the scarcity rents and leave 
the short-run profit for each generator exactly zero.  The approach suggested in O’Neill et 
al. is to calculate all the commitment prices but to apply only those that are positive.  In 
effect, this would leave the scarcity rents with generators who earn them at the market 
clearing price, and pay generators the uplift needed when the market prices do not cover 
all their costs.  The analysis below addresses these uplift payments in the comparison of 
the implications of the alternative pricing models.   

Dispatchable Model 
The second model often discussed follows a procedure motivated by the treatment 

of inflexible units by the New York Independent System Operator as part of the New 
York electricity market design.6  The basic idea is to approximate the aggregate cost 
function with a closely related well-behaved optimization model with continuous 
variables.  In essence, the idea is to replace the integer requirement with a simple set of 
bounds but within those bounds treat the commitment variables as continuous: 

( )
( )

( )

( )
,

,

. .
0 1.

d

x u X
v y Min f x u

g x ys t
u

∈

=

=

≤ ≤

 

In the context of the unit commitment problem, this amounts to treating all the 
plants as continuously dispatchable (“d”) with modified variable costs that include a pro 
rata share of the fixed costs averaged across the full capacity of the plant.  This too yields 
a well-behaved optimization problem and produces marginal costs and proposed market 
clearing energy prices associated with the constraints in ( )g x .  An attractive feature of 
this model is its simplicity.  It would be easy to implement using the standard economic 

                                                 
6  “Real-time prices are set by the ideal dispatch pass, in which inflexible (i.e., they must operate at 
zero or their maximum output) gas turbines are dispatched economically over their entire operating range, 
even if they are not actually capable of running at anything other than zero or their maximum output.”  
Federal Energy Regulatory Commission Order, FERC Docket No. ER05-1123-000, July 19, 2005.  New 
York Independent System Operator, Inc. FERC Electric Tariff, 
http://www.nyiso.com/public/webdocs/documents/tariffs/market_services/att_b.pdf “...Fixed Block Units, 
Import offers, Export Bids, virtual supply and demand Bids and committed non-Fixed Block Units are 
dispatched to meet Bid Load with Fixed Block Units treated as dispatchable on a flexible basis. LBMPs are 
calculated from this dispatch.”  Third Revised Sheet No. 331.01.07.  See also 
http://www.nyiso.com/public/webdocs/documents/tariffs/market_services/att_c.pdf for a description of the 
uplift payments. 



 

 16

dispatch models by simply treating the units with fixed costs as being committed and 
dispatchable with a modified variable cost.  Solution of the model would not replicate the 
economic dispatch, but it would produce an implied uniform energy price. 

Using the assumptions of the two plant example, we can illustrate the aggregate 
cost approximation of the total commitment and dispatch costs in the dispatchable model.  
By construction, the dispatchable value function always lies at or below the aggregate 
cost function ( ( ) ( )dv y v y≤ ). 

Dispatchable Model Aggregate Cost Example 
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The implied aggregate cost of the dispatchable model follows a form similar to 

the result of the core model.  This yields a pattern of marginal costs that are increasing in 
load and look like a standard supply curve.  The implied marginal costs are both below 
and above the restricted model marginal costs. 
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Dispatchable Model Marginal Cost Example 
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  Although the marginal cost curve is more like a conventional supply curve, the 
implied prices by themselves may not support the market equilibrium solution.  There are 
times when these dispatchable prices yield outcomes where generators would prefer to 
produce more or less than the equilibrium solution, and uplift payments will still be 
required. 

Convex Hull Model  
One way to frame the third alternative pricing model is as an alternative well-

behaved convex approximation of the aggregate cost function.  Any convex function will 
produce a supply function that has marginal costs increasing in load.  The dispatchable 
model is an example of a convex function that provides a lower bound for the aggregate 
cost function. 

The convex hull of a function is the convex function that is the closest to 
approximating the function from below.  In other words, the convex hull ( )hv y of ( )v y  

is the greatest convex function that is also everywhere such that ( ) ( )hv y v y≤ .  Set aside 
for the moment how to obtain the convex hull in general.  We can examine the 
implications of this function for approximation of the aggregate total costs and derivation 
of the associated marginal cost curve. 

Using the two plant example, the convex hull yields total cost as in: 
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Convex Hull Model Aggregate Cost Example 
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By construction, the total cost of the convex hull is as close as possible to the total 
aggregate cost in ( )v y while preserving the well-behaved properties of the core model.  
The convex hull approximation will not reproduce the economic dispatch, but it will 
provide increasing uniform energy prices.  The resulting implied marginal cost or supply 
curve appears as: 
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Convex Hull Model Marginal Cost Example 
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The marginal cost is increasing in load.  However, for the same reasons as for the other 
approximations, use of these marginal costs may produce energy prices that would not 
support the equilibrium solution.  There would still be a need for a determination of uplift 
payments to compensate for the lack of any energy price that by itself could support the 
outcome.  

Uplift Payments 
The definition of uplift payment applied here begins with the proposed market clearing 
price, p .  The revenues received for meeting load y  will be py  and the cost of meeting 
these loads will be ( )v y .  Hence, the profit or loss of the preferred solution would be  

( ) ( ),p y py v yπ = − . 

 Faced with prices p , competitive generators would seek to offer supply z that 
maximize profits by solving the problem 

( ) ( ){ }*

z
p Max pz v zπ = − . 

Suppose that this unconstrained profit solution includes y  as an optimal solution.  Then 
we say that p  supports the equilibrium solution y .  This is always the case for the core 
model of electricity markets, and will be true for many unit commitment and dispatch 
solutions which could be supported by a market-clearing price. 
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 However, when y  is not a profit-maximizing solution in this sense, the price 
p does not support the solution.  Then in order to support the solution the uplift payment 

would have to make the market participants indifferent between the proposed solution 
and the unconstrained profit.  Hence, the definition of the uplift used here is the 
difference between the actual energy profits at the proposed solution and the optimal 
profits given the proposed price: 

( ) ( ) ( )*, ,Uplift p y p p yπ π= − . 

Under this rubric, the usual market payments of the core model are py  and produce 
profit ( ),p yπ .  The uplift payment compensates for losses or foregone opportunity costs 
to make the suppliers whole when they accept the proposed solution, as long as they 
receive the uplift payment in addition to the direct payments in the energy market at 
prices p . 

 Applying this definition to the three models above we calculate the uplift 
payments per megawatt for the two plant example and compare the three cases in the 
figure: 

Comparison of Example Uplift Costs 
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Below 100 MW the approximating functions are identical to the aggregate cost function 
and there are no uplift payments.  In the intermediate range the uplift payments for the 
restricted model and its volatile marginal cost curve produce high uplift payments, 
sometimes much greater than the uplift payments of the dispatchable model.  Above 300 
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MW, the restricted model and the convex hull model are identical to the aggregate cost 
function and there are no uplift payments.  However, above 300 MW there continue to be 
uplift payments in the dispatchable model because the implied energy prices are above 
the highest variable cost segment.  

 Importantly the uplift payments for the prices associated with the convex hull 
approximation are always less than the uplift payments for the other two alternatives.  
Although the uplift payments for the other two pricing models are sometimes higher and 
sometimes lower, as shown below the convex hull model always has the lowest uplift 
payments.  Therefore, marginal cost prices associated with the convex hull are the 
minimum uplift prices proposed by Ring.7  This relationship is not a coincidence and 
does not depend on the particular assumptions of the example. 

 The convex hull approximation always results in energy prices that are increasing 
in load.  As discussed further below, the prices from the convex hull approximation also 
produce the minimum possible uplift of any set of uniform energy prices.  Furthermore, 
the convex hull prices are the same as the dual solution for a natural formulation of the 
dual problem.  This connection to duality theory is important both for conceptual reasons 
and in guiding us towards feasible computational approaches for obtaining the 
appropriate prices. 

Price Comparisons 
For well-behaved problems that are otherwise convex except for the integer 

constraints, these price model approximations are convex in y and we can solve for the 
corresponding price support.  For these alternative price models, we can have values and 
supports such that: 

( ) ( ) ( ) ( ) ,
.

d h r

d h r

v y v y v y v y

p p p

< < =

≠ ≠
 

Comparing the approximate costs for the illustrative two plant example, we have: 

                                                 
7  Brendan J. Ring, “Dispatch Based Pricing in Decentralized Power Systems,” Ph.D. thesis, 
Department of Management, University of Canterbury, Christchurch, New Zealand, 1995.  (see the HEPG 
web page at http://ksgwww.harvard.edu/hepg/).  Ring emphasized the linear case and focused on the uplift 
payments, with the idea of minimizing these payments as a “best compromise” to provide workable pricing 
methods in the presence of deviations from the idealized model.   
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Comparison of Example Aggregate Costs 
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The restricted pricing problem is easy to solve, but it produces a volatile price and 

uplift combination.8  The relaxed problem is also easy to solve, but it produces a price 
that may result in a large uplift.  The convex hull problem requires a method of 
characterization and solution but assures the minimum uplift.  The dispatchable and 
convex hull models produce an increasing energy supply curve. 

   

                                                 
8  William W. Hogan and Brendan R. Ring, “On Minimum-Uplift Pricing for Electricity Markets,”   
March 19, 2003, (available at   http://ksghome.harvard.edu/~WHogan/minuplift_031903.pdf ). 
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Comparison of Example Marginal Costs 

Implied Marginal Cost
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 The combination of energy payments at the uniform energy price and the uplift 
payment produces the total payments by load and the corresponding revenues to 
generators. 
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Comparison of Example Total Revenues 
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 Although the energy supply curves are increasing in load for the dispatchable and 
convex hull models, the uplift is not monotonic and the total revenues increase and 
decrease with total load. The convex hull model minimizes this impact because it 
minimizes the uplift. 

An examination of the connection with duality theory provides additional 
clarification and suggests computational approaches for solving the convex-hull, 
minimum-uplift, pricing problem. 

Duality and Minimum Uplift 
With this motivation, we formulate the dual of the optimization problem with respect to 
the complicating constraints and draw the connections to the convex hull approximation, 
market-clearing prices and uplift payments. 

Introduce the vector of prices (a.k.a., Lagrange multipliers) p and the Lagrangian 
function: 

( ) ( ) ( )( ), ,L y x p f x p y g x= + − . 

The Lagrangian “prices out” the complicating constraints and, given p, produces a 
problem that is easier to solve.  For given prices, define the optimized Lagrangian value 
as: 
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( ) ( ) ( )( ){ }ˆ ,
x X

L y p Inf f x p y g x
∈

= + − . 

Note that this definition makes no assumptions about the feasible set X , which may 
include limitations to discrete choices.  The associated dual problem is defined as 
choosing the prices Dp  to maximize the optimized Lagrangian to obtain 

( ) ( ) ( ) ( )( ){ }{ }* ˆ ,
p p x X

L y Sup L y p Sup Inf f x p y g x
∈

= = + − . 

 In the case of a well-behaved convex optimization problem, where the decision 
variables are continuous and the constraints sets are all convex, the optimal dual solution 
produces a vector of prices that supports the optimal solution.  In particular, using these 
prices, the corresponding solution for x  embedded in ( )v y  also solves the problem in 

( )ˆ ,L y p .  Furthermore, under these conditions, we have  

( ) ( )*L y v y= . 

In the more general situation without the convenient convexity assumptions, there may be 
no equilibrium prices that support the solution at y and we have a duality gap, where  

( ) ( )*L y v y< . 

To make the connection with the minimum uplift, consider this formulation of the 
dual problem.  For convenience here, the integer constraints are enforced as part of the 
constraints implicit in the set X  and are not represented separately.   By definition, for 
the dual solution we have: 

( ) ( ) ( )( ){ }{ }
( ) ( )( ) ( ){ }{ }
( ) ( ){ }{ } ( ) ( ){ } ( )

*

.

p x X

p x X

p x X x X

L y Sup Inf f x p y g x

Sup Inf f x p y g x g x y

Sup Inf f x g x y Inf f x g x y v y

∈

∈

∈ ∈

= + −

≤ + − =

= = = = =

 

So ( ) ( )*L y v y≤ . 

The difference ( ) ( )*v y L y−  is known as the duality gap.  When equality holds, 

as when ( )v y  is convex and certain regularity conditions hold, there is no duality gap.9   

Gribik presents an alternative representation of the argument:10 

                                                 
9  Mokhtar S. Bazaraa, Hanif D. Sherali, and C.M. Shetty, Nonlinear Programming: Theory and 
Algorithms, John Wiley & Sons, 2nd. Edition, 1993, pp. 162-163. 
10  Paul Gribik, Notes (mimeo), July 2007.  See also, James E. Falk, “Lagrange Multipliers and 
Nonconvex Programs,” SIAM Journal on Control, Vol. 7, No. 4, November 1969;  Dimitri P. Betsekis, 
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( ) ( ) ( )( ){ }
( ) ( ) ( ){ }

( ) ( ){ }

( ) ( ){ }{ }
( ){ }
( ){ }

,

,

ˆ ,

.

x X

x X z

x X z

z x X

z

z

L y p Inf f x p y g x

Inf f x p y z g x z

py Inf f x pz g x z

py Inf pz Inf f x g x z

py Inf pz v z

py Sup pz v z

∈

∈

∈

∈

= + −

= + − =

= + − =

= + − + =

= + − +

= − −

 

The Fenchel convex conjugate of v is by definition: 

( ) ( ){ }c

z
v p Sup pz v z= − . 

Note that ( )cv p is the supremum over a set of convex (affine) functions of p and is 
therefore a convex function of p. 

Hence, 

( ) ( )ˆ , cL y p py v p= − . 

Now  

( ) ( ) ( ){ }* ˆ , c

p p
L y Sup L y p Sup py v p= = − . 

Therefore, applying the conjugate definition again, we have 

( ) ( )* ccL y v y= . 

The resulting function ( )ccv y  is a closed convex function of y  and we have11 

                                                                                                                                                 
Constrined Optimization and Lagrange Multiplier Methods, Athena Scientific, Belmont, MA, 1996, pp. 
315-318. 
11  For a discussion of the connection between the convex hull and the dual problem, with an 
application to the special case of separable problems, see D. Li, J. Wang, and X.L. Sun, “Computing Exact 
Solution to Nonlinear Integer Programming: Convergent Lagrangian and Objective Cut Method,” Journal 
of Global Optimization, Vol. 39, 2007, pp. 127-154.  C. Lemarchechal and A. Renaud, “A Geometric Study 
of Duality Gaps, with Applications,” Mathematical Programming, Series A 90, 2001, pp. 399-427.  David 
E. Bell and Jeremy F. Shapiro, “A Convergent Duality Theory for Integer Programming,” Operations 
Research, Vol. 25, No. 3, May-June 1977, pp. 419-434.  Harvey J. Greenberg, “Bounding Nonconvex 
Programs by Conjugates,” Operations Research,, Vol. 21, No. 1, 1973, pp. 346-348.  Fred Glover, 
“Surrogate Constraint Duality in Mathematical Programming,” Operations Research, Vol. 23, No. 3, May-
June 1975, pp. 434-450.  Regarding use of the perturbation function and a penalty function, see D. Li and 
X.L. Sun, “Towards Strong Duality in Integer Programming,” ,” Journal of Global Optimization, Vol. 36, 
2006, pp. 255-282.   
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( ) ( ) ( )*ccv y L y v y= ≤ . 

Suppose that ( )v y  is the closed convex hull of ( )v y .  Then12  

( ) ( ) ( )ccv y v y v y= ≤ . 

In other words, ( )ccv y  equals the convex hull of  ( )v y  over y.  Further, under one of the 

regularity conditions with Dp  as a solution to the dual problem, Dp  defines a supporting 
hyperplane (a.k.a., marginal cost) for ( )ccv y  at y:  

( ) ( ){ } ( ) ( ) ( ) ( ).cc c D c D D cc D cc Dv z Sup z v p z v p p z v y p y v y p z y
λ

λ λ= − ≥ − = + − = + −  

Therefore, Dp  is a subgradient of ( ) ( )cc hv y v y= , 

( )D hp v y∈∂ . 

In general, the price supports defined by the subgradients are not unique, but all elements 
of the set characterized by the subdifferential, ( )hv y∂ , support the convex hull. 

The connection to the uplift depends on a certain economic interpretation of the 
duality gap.  From above 

( ) ( ) ( ){ }{ }ˆ ,
z x X

L y p py Inf pz Inf f x g x z
∈

= + − + = . 

Hence,  

( ) ( )

( ) ( ){ }{ }
( ){ }{ }

* ˆ ,

.

p

p z x X

p z

L y Sup L y p

Sup py Inf pz Inf f x g x z

Sup py Inf pz v z

∈

=

⎧ ⎫= + − + =⎨ ⎬
⎩ ⎭

= + − +

 

Therefore, the duality gap is 

( ) ( ) ( ) ( ){ }{ }
( ) ( ){ }{ }

( ){ } ( ){ }

*

.

p z

p z

p z

v y L y v y Sup py Inf pz v z

v y Inf py Sup pz v z

Inf Sup pz v z py v y

− = − + − +

= + − + −

= − − −⎡ ⎤⎣ ⎦

 

Given any output z , the economic profit is  

                                                 
12  R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970, p. 104. 
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( ) ( ),p z pz v zπ = − . 

This is the difference between the revenues for z at prices p and the minimum cost of 
meeting the requirement in z.  We give an economic interpretation where the first term in 
the duality gap is the profit maximizing outcome given prices p: 

( ) ( ){ } ( )* ,
z z

p Sup pz v z Sup p zπ π= − = . 

The actual economic profit without further uplift payments is 

( ) ( ),p y py v yπ = − . 

If we have to make up the difference in order to compensate direct losses or for foregone 
opportunities, then the total payment is the difference:  

( ) ( ) ( )*, ,Uplift p y p p yπ π= − . 

In other words, the dual problem seeks a Dp  that minimizes the uplift.13  With this 
interpretation, the duality gap equals the minimum uplift across all possible prices p: 

( ) ( ) ( ){ } ( ){ }
( ) ( ){ } ( )

*

* , , .
p z

p p

v y L y Inf Sup pz v z py v y

Inf p p y Inf Uplift p yπ π

− = − − −⎡ ⎤⎣ ⎦

= − =
 

If Dp  is a dual solution and  

( ){ }arg max D

z
y p z v z∈ − , 

then there is no duality gap and no uplift.  In this sense, the prices in Dp  support the 
equilibrium solution if there is no duality gap.  However, if  

( ){ }arg max D

z
y p z v z∉ − , 

then Dp  does not “support” y , and there is a duality gap equal to the minimum uplift. 

Apparently the argument applies to an arbitrary feasible solution with 
( ),a ax X g x y∈ = .  Then 

                                                 
13  Brendan J. Ring, “Dispatch Based Pricing in Decentralized Power Systems,” Ph.D. thesis, 
Department of Management, University of Canterbury, Christchurch, New Zealand, 1995.  (see the HEPG 
web page at http://ksgwww.harvard.edu/hepg/) proposed choosing prices to minimizing the uplift.  
Marcelino Madrigal, “Optimization Models and techniques for Implementation and Pricing of Electricity 
Markets,” Ph. D. thesis, University of Waterloo, Canada, 2000, p. 47, describes the connection with duality 
theory and established an upper bound on the uplift.  
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( ) ( ) ( ){ } ( ){ }
( ) ( ){ } ( )

*

* , .

a a

p z

a

p p

f x L y Inf Sup pz v z py f x

Inf p py f x Inf Uplift p yπ

⎡ ⎤− = − − −⎣ ⎦

⎡ ⎤= − − =⎣ ⎦

 

Here we interpret the uplift as the difference between the optimal profit and the 
actual profit in the arbitrary dispatch.  The argument can be extended to include 
conditions where ( )g x  defines mixtures of equality and inequality constraints. 

Note that under either definition the uplift is nonnegative. 

Ring proposes choosing energy prices to minimize the uplift in the case of 
approximate solutions to dispatch problems.  Ring’s analysis includes the case of the 
discrete unit commitment problems.  Using examples with each plant having a single 
variable cost, Ring showed that the uplift minimizing solution was the same as the 
solution in the dispatchable price model.14  In the more general case with multiple 
segments having different variable costs for the same plant, as shown in the examples 
above, the dispatchable solution and the minimum-uplift, convex-hull, dual-solution 
prices and associated uplifts can be different.  Hogan and Ring compare the minimum 
uplift prices with those of the restricted model.15 

Dispatch-Based Pricing Approximations 
The electricity market model utilizes the formulation of a security-constrained economic 
dispatch.  This formulation includes many constraints to represent transmission 
operations and reliability requirements.   Computational approaches for solving these 
models involve a great deal of art and technique in evaluating and managing the solution 
procedures.  Given the solution, the pricing model can exploit the results of the process to 
greatly simplify the problem and reduce the dimensionality of the model. 

Transmission Constraints   
Suppose that the transmission constraints defining the feasible set are 

( ) MaxK x K≤ . 

Then we have the value function of the economic dispatch as: 

( ) ( ) ( ) ( ){ }, ,Max Max
x X

v y K Inf f x g x y K x K
∈

= = ≤ . 

There are many elements to account for all the possible contingency constraints.  We 
could define the set of “binding” constraints given a solution x as  

                                                 
14  Brendan J. Ring, “Dispatch Based Pricing in Decentralized Power Systems,” Ph. D. thesis, 
Department of Management, University of Canterbury, Christchurch, New Zealand, 1995, p. 203.   
15  William W. Hogan and Brendan R. Ring, “On Minimum-Uplift Pricing for Electricity Markets,”   
March 19, 2003, (available at   http://ksghome.harvard.edu/~WHogan/minuplift_031903.pdf ). 
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( ) ( ) ( ){ }j j jMaxK x K x K x K= = . 

In a convex case of the core model, we can drop the non-binding constraints and not 
change the solution.16  This is not true in the more general formulation with the non-
convex unit commitment constraints and variables. 

A slightly more general solution would be to find a small set of “limiting” 
constraints such that the solution does not change.  This would be any subset ( )K x  such 
that 

( ) ( ) ( ) ( ){ }, ,Max Max
x X

v y K Inf f x g x y K x K
∈

= = ≤ . 

Given the information in the actual dispatch, ax , we seek a small subset that drops most 
of the elements of ( )K x .  If no constraints can be dropped, then this is the full constraint 
set.  Given these constraints we modify the approximation further by linearizing the 
constraints in ( )K x . 

With the appropriate linearization and dualization with respect to the constraints 
in ( )K x  or any other coupling constraints, the model simplifies to be separable across 
many components (generators) that make up the cost function. 

Reliability Commitment 
In organized markets with organized unit commitment and dispatch, a reliability concern 
arises in a potential conflict between equilibrium load solutions and operator load 
forecasts.  In the bid-based day-ahead models, load bids could in principle define the total 
load to be met and the solution could be obtained consistent with that load.  However, 
system operators also regularly forecast load over the short horizon and seek to maintain 
reliable conditions to meet that forecast load. 

 If the two load levels differ, the question arises as whether to solve the unit 
commitment problem to meet the bid-in load or the operator-forecasted load.  Even 
economists would pause at relying solely on the perfection of the market to address this 
reliability question.  System operators argue strongly that deference must be given to 
preserving reliability under the forecast load. 

 The resolution of this issue has been to adopt a heuristic method that follows 
some variant of a three step procedure.  The first step would be to solve for the economic 
commitment and dispatch using the bid-in load.  Then in a second step with the 
economically committed units forced on, solve a related commitment and dispatch 
problem with the forecast load.  In the second step, the related problem has a reliability 
focus and uses only the fixed costs of commitment but treats all the variable dispatch 
costs as zero.  The intent is to minimize the incremental costs imposed by the reliability 

                                                 
16  Ring, 1995.  See also William W. Hogan, E. Grant Read and Brendan J. Ring, “Using 
Mathematical Programming for Electricity Spot Pricing,” International Transactions in Operational 
Research, IFORS/Elsevier, Vol. 3, No. 3/4 1996, pp. 209-221. 
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requirement.17  A third step can then be included to solve for the economic dispatch 
keeping the combined commitment decisions from the second step. 

 One way to view this problem would be to see the forecast load as adding a (very 
large) set of constraints, doubling the size of the commitment and dispatch problem.  The 
sequential three-step procedure is an ad hoc method to meet the reliability requirement 
while avoiding this currently prohibitive computational task. 

 In the context of price and uplift determination, the implication of the sequential 
method is to fix the commitment but not otherwise represent the added reliability 
constraints in the pricing model.  In determining prices and uplift, this is equivalent to 
picking a feasible but not necessarily optimal solution in the simplified pricing model, as 
discussed above.  The price from the first stage dual problem without the reliability 
constraint still provides the minimum uplift result.  

Computational Methods 
Solving the unit commitment and economic dispatch problem involves extensive 
computations that present serious challenges.  Methods for solving these mixed-integer 
programs have advanced to the point where they are a regular production tool.18   In some 
cases, application of a Lagrangian relaxation method might be used in the search for a 
solution to the unit commitment problem.19  A concern with these dual methods is that 
they may not produce a primal feasible solution.  However, these methods would produce 
a dual price as a by-product.   

In other cases where a dual price is not available, separate calculations may be 
required to obtain the appropriate energy prices.  One attraction of both the restricted and 
the dispatchable models is that each offers a straightforward computational model for 
obtaining the implied energy prices.  The convex-hull, minimum-uplift model presents a 
less obvious solution method.  It would always be possible to simply apply the 
Lagrangian techniques directly, but a more focused approach for dispatched-based 
pricing would be preferred that exploits information in the proposed commitment and 
dispatch. 

In the case that a dual price vector is not available as a by-product of solving the 
unit commitment problem, a further characterization of the solution suggests an algorithm 
for obtaining: 

( )D h hp p v y= ∈∂ . 

                                                 
17  Michael D. Cadwalader, Scott M. Harvey, William Hogan, and Susan L. Pope, “Reliability, 
Scheduling Markets, and Electricity Pricing,” May 1998, available at (www.whogan.com ). 
18  D. Streiffert, R. Philbrick, and A. Ott, “A Mixed Integer Programming Solution for Market 
Clearing and Reliability Analysis,” in Power Engineering Society General Meeting, 2005, IEEE, San 
Francisco, CA, 2005. 
19  Marshall L. Fisher, “The Lagrangian Relaxation Method for Solving Integer Programming 
Problems,” Management Science, Vol. 27, No. 1, January 1981, pp. 1-18. 
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In the unit commitment problem, there is a natural separability by unit, assuming that we 
dualize or price out the joint constraints.  Suppose 

( ) ( )

( ) ( )

( )
{ }

( ) ( ) .
i i

i i
i

i i
i

i
i

i i i i
x X i i

f x f x

g x g x

X X

v y Inf f x g x y
∈

=

=

=

⎧ ⎫
= =⎨ ⎬

⎩ ⎭

∑

∑

∏

∑ ∑

 

 

Then 

( )
{ }

( ) ( )

{ }
( ) ( ){ }

{ }
( ) .

i i

i i i

i

i i i i
x X i i

i i i i i i
z x Xi i

i i i
z i i

v y Inf f x g x y

Inf Inf f x g x z z y

Inf v z z y

∈

∈

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
⎧ ⎫⎡ ⎤= = =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
⎧ ⎫

= =⎨ ⎬
⎩ ⎭

∑ ∑

∑ ∑

∑ ∑

 

Following a similar argument, in the separable case we can write the dual problem as  

( ) ( ){ }{ }
( ){ }

*

.
i

p z

i i i
p zi

L y Sup py Sup pz v z

Sup py Sup pz v z

= − −

⎧ ⎫⎧ ⎫= − −⎨ ⎨ ⎬⎬
⎩ ⎭⎩ ⎭

∑
 

Using the Fenchel conjugate again, therefore, we have 

( ) ( )* .c
i

p i

L y Sup py v p⎧ ⎫= −⎨ ⎬
⎩ ⎭

∑  

We know that ( ) ( )cc h
i i i iv z v z=  is the convex hull of ( )i iv z .  Furthermore, 

( ) ( )c hc
i iv p v p= .  In other words, the conjugate of iv  is also the conjugate of its convex 

hull. 

Apparently, 

( ) ( )* .hc
i

p i

L y Sup py v p⎧ ⎫= −⎨ ⎬
⎩ ⎭

∑  

But this is the same as the dual problem obtained by substituting the convex hulls of the 
components as in: 
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( )
{ }

( )* .
i

h
i i i

z i i
v y Inf v z z y

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
∑ ∑  

Hence, the convex hull of *v  is also *L .  Since *v  is itself a convex function, we 
have 

( ) ( ) ( ) ( )* * .hL y v y v y v y= = ≤  

This provides an alternative characterization of the convex hull of ( )v y .20  In 
many cases, it is easy to describe the convex hull of the individual components.  Given 
these components we could solve the convex optimization problem directly to obtain a 
dual solution (with no duality gap) that would be the dual prices for the original non-
convex problem.  This would not necessarily reproduce the economic dispatch but would 
provide a price for the dual solution. 

Even when we cannot write down the full convex hull of each component in a 
convenient way, the formulation of *v  offers an alternative way to generate supports or 
cuts in a cutting plane approach to solving the dual problem. 

In the unit commitment case, if there is a startup cost, then ( )0 0iv =  is a point of 
discontinuity.  Assuming the rest of the cost function is convex away from this point of 
discontinuity, the convex hull is of a simple form connecting the origin and a point on a 
convex function.  Given a good solution to the primal problem for the vector of dispatch 
decisions across segments and periods, Ox , then: 

1. For each non-convex iv , let ( )O O
i i iz g x= .  If 0O

iz = , pick an arbitrary point near 

zero.  Find a point 1
iz  on the ray through the origin and O

iz  where there is a price 

support for iv  with ( )1 1 1
i i i iv z p z= .  Even for a multi-period problem, this is a one 

dimensional search and is easy to do for the simple dispatch problem of a 
separable unit.  By construction, 1

ip  is also a support for the convex hull, *
iv .  Use 

1
ip  and 1

iz  to construct a convex approximation of *
iv , say *

iv .  For the convex 
cost functions *

i iv v= . 

2. Solve for the dual price in ( )
{ }

( )* * .
i

i i i
z i i

v y Inf v z z y
⎧ ⎫

= =⎨ ⎬
⎩ ⎭
∑ ∑  Let this be 1p . Let 

k=1. 

3. For each unit, solve ( ){ }
i

k
i i iz

Max p z v z− for 1k
iz
+ .  Let k=k+1. 

                                                 
20  See the same result for unit commitment problems with linear constraints in C. Lemarchechal and 
A. Renaud, “A Geometric Study of Duality Gaps, with Applications,” Mathematical Programming, Series 
A 90, 2001, pp. 419.  James E. Falk and Richard M. Soland, “An Algorithm for Separable Nonconvex 
Programming Problems,” Management Science, Vol. 15, No. 9, Theory Series, May, 1969, pp. 550-569. 
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4. Solve ( ) ,k k
i i i i ip i

Max py pz v z kσ σ⎧ ⎫− ≥ − ∀⎨ ⎬
⎩ ⎭

∑ for kp .  Check for convergence to 

stop or return to step 3. 

 

This is a heuristic method for getting a good initial solution and support.  Starting 
with step 3 the method becomes a standard outer approximation method.21  If the 
underlying problem is piecewise linear, the solution should be obtained in a finite number 
of steps.  A simple example illustrates. 

Consider another example with two plants, but simplified to have only one 
variable cost segment.  Both have fixed costs.  Plant 1 has a positive variable cost, and 
plant 2 has zero variable cost.  Both plants have limited capacity. 

( )
1 2 1 2

1 1 1 1 2 2, , ,

1 1 1

2 2 2

1

2

1 2

. .
0
0

0,1
0,1

.

x x u u
v y Min Fu c x F u

s t
x K u
x K u

u
u
x x y

= + +

≤ ≤
≤ ≤
=
=
+ =

 

The convex hulls for the individual plants utilize the average costs at full dispatch: 

1
1 1

1

2
2

2

ˆ

ˆ .

Fc c K
Fc K

= +

=
 

In other words, since there is a single step in the variable cost, the problem reduces to the 
same formulation as the dispatchable approximation.  Then the convex hull of the total 
minimum cost function can be found as: 

( )
1 2

*
1 1 2 2,

1 1

2 2

1 2

ˆ ˆ

. .
0
0

.

x x
v y Min c x c x

s t
x K
x K

x x y

= +

≤ ≤
≤ ≤
+ =

 

 

 

                                                 
21  Arthur M. Geoffrion, “Elements of Large-Scale Mathematical Programming, Parts I and II,” 
Management Science, Vol. 16, No. 11, July 1970, pp.  652-691. 
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Convex Hull Illustration

Cost

Load (y)

F1

F2

F1+F2

c1

c1

L*(y)=v*(y)

K1 K2 K1+K2

v(y)

( )
1 2 1 2

1 1 1 1 2 2, , ,

1 1 1

2 2 2

1

2

1 2

. .
0
0

0,1
0,1

.

x x u u
v y Min Fu c x F u

s t
x K u
x K u

u
u
x x y

= + +

≤ ≤
≤ ≤
=
=
+ =

1
1 1

1

2
2

2

ˆ

ˆ

Fc c K
Fc K

= +

=

1̂c

2ĉ

( )
1 2

*
1 1 2 2,

1 1

2 2

1 2

ˆ ˆ

. .
0
0

.

x x
v y Min c x c x

s t
x K
x K

x x y

= +

≤ ≤
≤ ≤
+ =

 
Note that the implicit commitment and dispatch with *

iv  is not the same as the 
commitment and dispatch with iv .  But the convex hull equals the dual solution objective 
function and the dual prices are everywhere equivalent to the slopes of the convex hull. 

Applying the above algorithm and approximations is trivial in this case and solves 
the problem in one pass because the linear support defined here by the average cost is the 
complete convex hull for each function.  In general, there may be pieces in the 
component convex hulls, and more than one pass would be required. 

Electricity Market Model 
The arguments above specialize to the electricity unit commitment and economic 
dispatch problem.  For notational simplicity, the formulation here assumes that aggregate 
demand is fixed and the focus is on the economic commitment and dispatch of generation 
over a short horizon of a few interconnected periods.  Operating reserve requirements are 
not represented.  Further, generators are treated as a single representative generator at 
each node in the grid, having the same index as the node.  Representing multiple 
generators, demand bids, operating reserves and simultaneous determination of energy 
and reserve prices raises no fundamental issues but would complicate the notation. 

Introduction of multiple periods addresses the dynamics over the commitment 
period.  Such intertemporal models always present questions about initial and ending 
conditions.  For example, it may be that some units are on line and still operating based 
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on a previous commitment that cannot be changed.  There may be an obligation to make 
uplift payments for these units, but the decisions are fixed, the costs are sunk and the 
commitment decision is not a choice in the prospective unit commitment problem 
formulation.22  Hence, these units are not part of the uplift as treated here. 

The stylized version of the unit commitment and dispatch problem is formulated 
as: 

( )( )
g,d,on,start

, 1

inf  

subject to
                                            ,

                            

it it it it it it
t i

it it it it it

it it i t it

StartCost start NoLoad on GenCost g

m on g M on i t
ramp g g ramp i−

⋅ + ⋅ +

⋅ ≤ ≤ ⋅ ∀

− ≤ − ≤ ∀

∑∑

, 1

,
                                     ,

0 or 1                                                           ,
0 or 1                                         

it it it i t

it

it

t
start on start on i t
start i t
on

−≤ ≤ + ∀

= ∀
=

( ) ( )
( ) max

                      ,

0                             

                                               ,
                                               

T
t t t t t

kt t t kt

t t

i t

LossFn t

Flow F k t

∀

− − − = ∀

− ≤ ∀

=

e g d d g

g d
d y      .t∀

 

Indices: 

  nodes i (and unit at node) 

  time periods t 

  transmission constraints k. 

 

Variables: 

0 if unit i is not started in period t
1 if unit i is started in period t

0 if unit i is off in period t
1 if unit i is on in period t

 output of unit i in period t
 vector of nod

it

it

it

t

start

on

g

⎧
= ⎨
⎩

⎧
= ⎨
⎩

=
=d al demands in period t.

 

 

Constants: 

                                                 
22  Scott Harvey, private communication. 
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 vector of nodal loads in period t
minimum output from unit i in period t if unit is on
maximum output from unit i in period t if unit is on

maximum ramp from unit i between period t-1 

t

it

it

it

m
M
ramp

=
=
=

=

y

max

and period t
Cost to start unit i in period t

No load cost for unit i in period t if unit is on

Maximum flow on transmission constraint k in period t.

it

it

kt

StartCost
NoLoad

F

=
=

=  

 

 

Functions: 

( )
( )

( )

 Production cost above No Load Cost to produce energy from unit i in period t

 Losses in period t as a function of net nodal withdrawals

 Flow on constraint k in period t as 

it

t

kt

GenCost

LossFn

Flow

⋅ =

⋅ =

⋅ = a function of net nodal injections.
 

In the notation of the value function description above, ( )f x is the objective function, 

x is all the variables, y is the vector or nodal loads for each period { }ty , the constraint 

( )g x y=  reduces to 

( ) ( ){ }
( ){ } { }

{ } { }

max

0

.

T
t t t t t

kt t t kt

t t

LossFn

Flow F

− − − =

− ≤

=

e g d d g

g d

d y

 

The remaining constraints define the set X ,  and the optimal solution value of the 
objective is ( )v y .  The dual variables associated with the final constraints define the 
prices of interest. 

Dispatch Based Approximation 
A standard practice in the dispatch models is to linearize the transmission flow functions 
about given generation and load vectors: ,  t t′ ′g d  
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( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( )

max

max

max max

then .

Defining 

T
kt t t kt t t kt t t t t t t

T
kt t t kt t t t t t t kt

T T
kt t t t t kt kt t t kt t t t t

kt kt k

Flow Flow Flow

Flow Flow F

Flow F Flow Flow

F F Flow

′ ′ ′ ′ ′ ′− ≈ − + ∇ − − − −

′ ′ ′ ′ ′ ′− + ∇ − − − − ≤

′ ′ ′ ′ ′ ′ ′ ′∇ − − ≤ − − + ∇ − −

= −

g d g d g d g d g d

g d g d g d g d

g d g d g d g d g d

( ) ( )( ) ( )

( )( ) ( )

( ) ( )( )

max

.

Then .

Assuming that we are operating in a range where the voltage angle differences are small,
 we will have that

T
t t t kt t t t t

T
kt t t t t kt

T
kt t t kt t t

Flow

Flow F

Flow Flow

′ ′ ′ ′ ′ ′− + ∇ − −

′ ′∇ − − ≤

′ ′ ′ ′− − + ∇ −

g d g d g d

g d g d

g d g d ( ) max max0 or .t t kt ktF F′ ′− ≈ ≈g d
 

Given that the economic dispatch identifies a proposed solution, linearize the loss 
function about given generation and load vectors: ,  t t′′ ′′g d  

( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

( )

( )( )
Defining ,

and 

T
t t t t t t t t t t t t t

T T
t t t t t t t t t t t t t

t t t t

T
t t t t

LossFn LossFn LossFn

LossFn LossFn LossFn

LossFn

OffSet LossFn

′′ ′′ ′′ ′′ ′′ ′′− ≈ − + ∇ − − − −

′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= ∇ − − − ∇ − − − −

′′ ′′= ∇ −

′′ ′′ ′′= ∇ −

d g d g d g d g d g

d g d g d g d g d g

LossSen d g

d g ( ) ( )( )
( ) ( )

,

then .

t t t t t

T
t t t t t t t

LossFn

LossFn OffSet

′′ ′′ ′′− − −

− ≈ − −

d g d g

d g LossSen d g

 

We can re-write the approximation of the economic unit commitment and 
dispatch with the linearized functions 

{ } { }( )
( )( )

max

g,d,on,start

, 1

0, ,

inf  

subject to
                                            ,

                 

kt t

it it it it it it
t i

it it it it it

it it i t it

v F

StartCost start NoLoad on GenCost g

m on g M on i t
ramp g g ramp−

≡

⋅ + ⋅ +

⋅ ≤ ≤ ⋅ ∀

− ≤ − ≤

∑∑
y

, 1

           ,
                                     ,

0 or 1                                                           ,
0 or 1                            

it it it i t

it

it

i t
start on start on i t
start i t
on

−

∀

≤ ≤ + ∀

= ∀
=

( )
( ) max

                                   ,

0   

                                            ,
                                          

T T T
t t t t t t t

T
kt t t kt

t t

i t

OffSet t

Flow F k t

∀

− + − + = ∀

∇ − ≤ ∀

=

e g d LossSen g LossSen d

g d
d y           t∀
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( )In the above, we suppressed ,   when writing   and write t t kt t t ktFlow Flow′ ′ ′ ′∇ − ∇g d g d  

 If the value function v  were convex as in the core model, the associated dual 
variables for the last three complicating constraints correspond to the prices and have an 
interpretation as the system marginal cost of energy, the marginal cost of transmission 
congestion and the locational marginal cost of energy to include the effect of congestion 
and transmission. 

Unfortunately, the unit commitment problem value is not a convex function in 
general, as illustrated above. 

Restricted Pricing Model 
The corresponding version of the restricted price model takes the proposed optimal 
commitment decisions { }* *,it itstart on as given and restricts the solution to match this 
commitment. 

{ } { }( )
( )( )

max

g,d,on,start

, 1

0, ,

inf  

subject to
                                            ,

                

r
kt t

it it it it it it
t i

it it it it it

it it i t it

v F

StartCost start NoLoad on GenCost g

m on g M on i t
ramp g g ramp−

≡

⋅ + ⋅ +

⋅ ≤ ≤ ⋅ ∀
− ≤ − ≤

∑∑
y

, 1

*

*

            ,
                                     ,

                                                            ,

                         

it it it i t

it it

it it

i t
start on start on i t

start start i t

on on

−

∀

≤ ≤ + ∀

= ∀

=

( )
( ) max

                                          ,

0   

                                            ,
                                   

T T T
t t t t t t t

T
kt t t kt

t t

i t

OffSet t

Flow F k t

∀

− + − + = ∀

∇ − ≤ ∀

=

e g d LossSen g LossSen d

g d
d y                  .t∀

 

This is a special case of a dispatch problem that can be solved using normal economic 
dispatch software. 

Dispatchable Pricing Model 
The dispatchable pricing model relaxes the integer requirements for discrete zero-one 
representation of the unit commitment decisions.  The relaxation model treats these as 
continuous variables between zero and one. 
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{ } { }( )
( )( )

max

g,d,on,start

, 1

0, ,

inf  

subject to
                                            ,

                

d
kt t

it it it it it it
t i

it it it it it

it it i t it

v F

StartCost start NoLoad on GenCost g

m on g M on i t
ramp g g ramp−

≡

⋅ + ⋅ +

⋅ ≤ ≤ ⋅ ∀
− ≤ − ≤

∑∑
y

, 1

            ,
                                     ,

0 1                                                             ,
0  1                              

it it it i t

it

it

i t
start on start on i t

start i t
on

−

∀

≤ ≤ + ∀

≤ ≤ ∀
≤ ≤

( )
( ) max

                                 ,

0   

                                            ,
                                            

T T T
t t t t t t t

T
kt t t kt

t t

i t

OffSet t

Flow F k t

∀

− + − + = ∀

∇ − ≤ ∀

=

e g d LossSen g LossSen d

g d
d y         .t∀

 

This is a different type of special case of a dispatch problem that can be solved using 
normal economic dispatch software. 

Convex Hull, Minimum Uplift, Dual Pricing Model 
The convex hull pricing model that minimizes the uplift corresponds to the dual solution.  
In the core model this is the same as the value function.  In the general case the convex 
hull solution can be different. We form a dual optimization problem by dualizing or 
pricing the power balance equation and flow constraints into the objective function. 
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{ } { }( )

( )( ) ( )

( ) ( )

max

max

g,d,on,start

, ,

0, ,

inf  

subjec

sup

h
kt t

T
t t kt kt t t

t t k t

T
it it it it it it t t t

t i t
T T T

t t t t kt kt t t t t
t t k t

p

v F

OffSet F

StartCost start NoLoad on GenCost g

Flow

λ μ

λ μ

λ

λ μ

≡

− − +

⎛ ⎞⋅ + ⋅ + − −
⎜ ⎟
⎜ ⎟− ⋅ − + ∇ − −⎜ ⎟
⎝ ⎠

+

∑ ∑∑ ∑

∑∑ ∑

∑ ∑∑ ∑

y

p y

e g d

LossSen g d g d p d

, 1

, 1

t to
                                            ,

                            ,
                                     ,

it it it it it

it it i t it

it it it i t

m on g M on i t
ramp g g ramp i t

start on start on i t
s

−

−

⋅ ≤ ≤ ⋅ ∀
− ≤ − ≤ ∀

≤ ≤ + ∀

0 or 1                                                           ,
0 or 1                                                               ,

it

it

tart i t
on i t

⎧
⎪
⎪ ⎧ ⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪⎨ ⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪= ∀
⎪ ⎪

= ∀⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

subject to
0      .kt tμ

⎫
⎪
⎪
⎪
⎪
⎪
⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪

⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

≥ ∀
 

 By inspection, we see that the inner problem is unbounded unless the prices 
satisfy the relation  

.t t t t kt kt
k

Flowλ λ μ= + ⋅ − ∇∑p e LossSen  

Therefore, an equivalent restatement of the dual problem that is more transparent would 
be 
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{ } { }( )

( )( )

max

max

g,on,start

, ,

0, ,

sup  

subject to
                                  inf

h
kt t

T
t t kt kt t t

t t k t

T
t t it it it it it it

t t i

it it it it it
p

v F

OffSet F

StartCost start NoLoad on GenCost g

m on g M on
λ μ

λ μ

≡

+ −

⎛ ⎞− ⋅ + ⋅ +⎜ ⎟
⎝ ⎠

⋅ ≤ ≤ ⋅−
+

∑ ∑∑ ∑

∑ ∑∑

y

p y

p g

, 1

, 1

          ,
                            ,

                                     ,
0 or 1                                              

it it i t it

it it it i t

it

i t
ramp g g ramp i t

start on start on i t
start

−

−

∀
− ≤ − ≤ ∀

≤ ≤ + ∀

=              ,
0 or 1                                                               ,

subject to
0      

it

kt

t t t t

i t
on i t

tμ

λ λ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎨ ⎬
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪∀⎪ ⎪⎪ ⎪
⎪ ⎪= ∀⎪ ⎪
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

≥ ∀

= + ⋅p e LossSen       .kt kt
k

Flow tμ− ∇ ∀∑

 

 This equivalent formulation would be useful for designing a computational 
procedure.  However, for the connection to uplift, another equivalent formulation 
presents the minimum uplift version of the dual problem or convex hull model: 

{ } { }( ) { } { }( )
{ } { }( )

( )( )

max max

max max

g,on,start

, ,

0, , 0, ,

0, ,

sup  

subject to

inf
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kt t kt t

T
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t t it it it it it it

t t i
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⋅ ≤ ≤ ⋅
+

∑ ∑∑ ∑

∑ ∑∑
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y p y
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, 1

, 1
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it it i t it

it it it i t

it

i t
ramp g g ramp i t

start on start on i t
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−

−

∀
− ≤ − ≤ ∀

≤ ≤ + ∀
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subjec

it

i t
on i t

⎧ ⎫
⎪ ⎪
⎪ ⎪

⎧ ⎫⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎨ ⎬

⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪∀⎪ ⎪⎪ ⎪
⎪ ⎪= ∀⎪ ⎪
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

t to
0      

      .
kt

t t t t kt kt
k

t

Flow t

μ

λ λ μ

≥ ∀

= + ⋅ − ∇ ∀∑p e LossSen

 

Given the prices, the interior problem separates into individual plant commitment 
and dispatch problems.  This is the Lagrangian relaxation interpretation for the dual 
problem.  The value function is convex in its arguments.  The dual objective is concave in 
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the prices and lends itself to a number of solution procedures developed for the 
Lagrangian relaxation.23 

Denote the solution to the primal problem by { } { } { }[ ]*** ,, ititit onstartg .  The solution 
to the primal problem will satisfy: 

( ) ( )
tt

tttttt
T OffSet

yd

dgLossSendge

=

=+−+−
*

***** 0
 

Using these relations, we can write the minimum uplift as: 

( )( )
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sup
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it it it it it
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⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎟
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tFlow

k,t

k
ktkttttt

kt

∀∇−+=

∀≥

∑           
          0

subject to

μλλ

μ

LossSenep
 

The first terms in the above uplift are the differences between the optimal profits 
for each generating unit given the proposed price and the actual profits at the proposed 
solution.  The last terms are the difference between the implied value of available 
transmission capacity at the proposed prices and the value of the flows on the 
transmission at the proposed solution.  Depending on the configuration of transmission 
rights, this could be the difference the payments that the RTO may have to make to 

                                                 
23  L. Dubost, R. Gonzalez, C. Lemarechal, “ A Primal-Proximal Heuristic Applied to the French 
Unit-Commitment Problem,” Mathematical Programming, Series A, Vol. 104, 2005, pp. 129-151. 
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holder of financial transmission rights (FTRs) and the congestion charges that it collects 
from flows in the market.24   

At the proposed solution, we have ( ) max**
kttt

T
kt FFlow ≤−∇ dg .  Consequently, the 

FTR payment obligation could exceed the congestion charges collected by the RTO.  
This can be viewed as another uplift.  How such a shortfall is handled varies among the 
RTOs.   

The flow on a constraint at the optimal solution to the primal problem can be 
below the constraint limit while the dual assigns a nonzero shadow price to the constraint.  
One way in which this can happen is if the system operator must commit a unit to enforce 
a constraint but the minimum output of the unit would cause the flow on the constraint to 
drop below the limit. 

We note that this approach to setting prices can be applied to minimize required 
uplifts even if the proposed commitment and schedule is not the minimum cost solution. 

Extensions and Computational Tests 
The simple examples above illustrate the basic properties of the alternative price models.  
Preliminary tests of simple models with multiple locations, network constraints, multiple 
periods, ramping limits, and demand bids produce results with pricing properties that are 
similar to the simple graphical illustrations.  The equivalence of minimum uplift prices 
with the prices obtained from the Lagrangian relaxation, even in the presence of a duality 
gap, provides a rich source of experience about the behavior of such prices.25  The need 
for alternative pricing models arises because of the duality gap.  It is known that the 
relative magnitude of the duality gap, and hence the minimum uplift, decreases as the size 
of the problem increases.  In other words, as the number of plants with material fixed 
costs increases, there are more choices and discontinuities at the point of a change in the 
commitment decision are less pronounced.26 

 The presence of transmission contingency constraints raises the question of how 
many of the constraints can be defined as “non-limiting” and dropped from the 
dispatched-based pricing model.  Further simplifications and specializations of each 
model would be available depending on the information that would be available from the 
economic unit commitment and dispatch software.  Although the theory establishes the 
convex hull approximation as the dual solution and this minimizes the uplift, it is not 
clear how large the differences in prices and uplift would be across the three price models 
                                                 
24  With financial transmission rights, the worst case would be if all the constraints with positive 
shadow prices were binding in the allocation of FTRs, in which case the implied transmission payment is 
the congestion revenue deficiency. 
25  For example, see A. Borghetti, G. Gross, C. A. Nucci, “Auctions with Explicit Demand-Sied 
Bidding in Competitive Electricity Markets,” in Benjamin J. Hobbs, Michael H. Rothkopf, Richard P. 
O’Neill, Hung-po Chao (eds.), The Next Generation of Electric Power Unit Commitment Models, Kluwer 
Academic Publishers, Boston, pp. 53-74. 
26  L.A.F.M. Ferreira, “On the Duality Gap for Thermal Unit Commitment Problems,” IEEE 
International Symposium on Circuits and Systems, Volume 4, May 3-6, 1993 Page(s):2204 – 2207.  Steven 
Stoft, Power System Economics, Wiley-Interscience, 2002, pp. 300-302. 
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in realistic applications.  The relative magnitude might affect the workability of the 
assumption that the short-run incentive effects of uplift payments are de minimus.27   

 The interaction between day-ahead and real-time prices is another area to address.  
In the core model with risk neutrality there is a natural connection with expected real-
time prices approximately equal to day-ahead prices.  With the introduction of uplift, the 
formal connection would presumably be more complicated.  As Ring28  and Stoft29  point 
out, the full long run incentive effects of these pricing rules to include the complications 
of multi-part bids, market power, and investment are not well understood.  The 
magnitude of the differences is an empirical question that would be addressed through 
sensitivity analysis of realistic problems with the full array of plants, offers, loads, bids, 
reliability commitments, and transmission constraints.  

Summary 
Electricity market models require energy prices for balancing, spot and short-term 
forward transactions.  For the simplest version of the core economic dispatch problem, 
the formulation produces a well-defined solution to the pricing problem in the usual 
intersection of the supply marginal cost and the demand bids.  This pricing supports the 
equilibrium solution and satisfies a no arbitrage condition.  In the more general economic 
unit commitment and dispatch models, there may be no corresponding uniform energy 
price vector that supports the solution.  This introduces a need both define the appropriate 
energy prices and determine the associated uplift make-whole payments needed to 
support the solution.   Different approximation of the optimal value function yield 
different price and uplift results.  Simple examples illustrate the differences.  
Examination of the relative magnitudes of the differences would require practical 
computational testing. 
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