

Better Markets, Better Products, Better Prices

Improving Real Time Price Signals in the New England Power Market

Bob Ethier

VICE PRESIDENT, MARKET OPERATIONS

New Challenges Require Enhancements to New England's Real Time Price Signals

- New England faces significant reliability, investment, and resource performance challenges over the coming decade
 - Volatile natural gas prices
 - Increased penetration of renewable resources
 - Need for new capacity with elimination of historical excess
- ISO-NE is addressing these challenges through changes to its capacity market and real time (RT) energy market
 - Capacity market compensation will be tightly linked to real time performance during shortage; same incentives as high shortage pricing
 - Changes largely accepted by FERC in May 2014
 - Real time energy market enhancements will improve pricing
 - Ongoing discussions with stakeholders
- Expected benefits: Cost-effective solutions to region's investment requirements; improved system reliability; more flexible resources; and a simpler, resource-neutral capacity market design

A Number of Pricing Challenges

- Think of ISO addressing two (mostly) separate problems:
- Pricing during periods of shortage (energy and/or reserves)
 - Approved capacity market Pay for Performance and RCPFs (reserve scarcity pricing) changes
- Pricing during non-shortage conditions
 - How to reflect fixed (start up and no-load) costs?
 - How to reflect costs of inflexible units (high minimum output levels, minimum run times, ramp rates)?
 - On-going energy price enhancement efforts

FCM PAY-FOR-PERFORMANCE DESIGN

Cost-Effective Solutions for Resource Performance and Investment

A Simple, Conceptual Approach

- Theory: In tight conditions, price rises to the value consumers place on reliable service. Could be very high
- Reality: LMPs reflect short-run marginal costs and administrative reserve prices. Much lower
- Concept: The "missing money" that a capacity market provides should depend on performance during scarcity conditions

Sound Principles for Capacity Market Reforms

1. Reward outputs (power delivered), not specify inputs

Let suppliers identify least-cost solutions, bearing risks and rewards

2. Re-define performance measures for capacity resources

- Delivery of energy and reserves during (reserve) scarcity conditions
- Not peak period 'availability,' or EFOR-based measures

3. Better align resources' financial incentives with the value of reliable service during tight system conditions

Mimic the performance incentives of an efficient energy market,
 with the reduced volatility that a forward market provides

Pay-for-Performance: Four Major Elements

• Capacity Obligations: A Standard Incentive Contract

Base payment set in forward auction, and a performance payment

Performance Payment:

- Delivery of energy & reserves during (reserve) shortage conditions
- May be positive or negative (on top of base payment)
- Not based on "availability," or EFOR-type measures

Resource Neutral, No Exemptions

All resources have same base and performance payment rate

Who pays what?

- Loads pay the base payment set by the forward clearing price
- Performance payments are transfers among suppliers

Design Insights: The Product Definition

- Current FCM capacity 'product definition' is... hard to define
 - Common view: Payment (subsidy) for "steel in the ground"
- PFP establishes a new, simple, economic product definition, and changes sellers' <u>financial</u> obligations from current FCM
- With PFP, the FCM employs a standard forward contract structure. It is based on two key concepts:
 - Two-settlement principle in forward markets (i.e., like the DA market)
 - Using a scarcity pricing premium as RT incentive in scarcity conditions

ISO New England's Reforms: Make Capacity a Proper Forward-Sold Good

Forward-Sold Goods

- Initial revenue on fwd sale
- Specifies a forward financial commitment ('position')
- 2nd Settlement based on deviations at delivery ...
- ... at a contract rate, or at replacement (floating) price

ISO's Capacity Reforms

- ✓ Auction-based fwd sale (FCA)
- ✓ Pro-rata share of system demand (load + reserves) during RT reserve shortages
- ✓ 2nd Settle, for delivery (energy + reserves) delta from share
- ✓ At (high) tariff-specified rate (analogous to scarcity pricing)

Expected Benefits of Improved Capacity Design

- Efficient resource evolution. Strong incentives for investment in new capacity that is either:
 - (1) Low-cost and highly reliable (nearly always operating); or
 - (2) Highly flexible and highly reliable (gets online quickly and reliably)
- Greater operational-related investments at existing resources to improve resource performance
 - Esp.: Fuel arrangements and/or secondary fuel supplies
- A more reliable power system, using market incentives
 - PFP rewards suppliers who make cost-effective investments that enable them to perform during tight system conditions

Expected Operational-Related Investments

- **PFP provides strong incentives** for suppliers to improve their resources' performance and availability:
 - Dual-fuel capability to protect against fuel shortages
 - LNG, transport arrangements yielding 'less' interruptible fuel supply
 - Faster unit startup capability to supply energy during deficiency hours
 - More rapid price-responsive demand, with more times available
 - Staffing improvements at many facilities
 - And so on.
- **Expectations**: Suppliers will resolve availability and ongoing performance issues in the most cost-effective ways possible

Alternative: Texas-Style Energy Pricing

- **Select suppliers:** Argue for higher RT scarcity prices alone, leaving FCM unchanged (aka, "Texas-sized RCPF" alternative)
- Stakeholder and ISO Concerns:
 - Greater volatility in suppliers' revenue year to year
 - Would tend to increase financing costs for new entry
 - Greater volatility in loads' expenditures over time
 - Face higher DA/RT spot prices during scarcity conditions
 - More risks for competitive retailers signing 1+ yr forward with consumers
 - Does not fix the inherent capacity product definition problem
 - Market clearing problems may require increasing offer caps above current \$1,000 / MWh
 - A 'liquidity' game problem if DA LMP can't converge to expected RT LMP

Many Market Changes Expected to Improve Real Time Pricing

- Replacement Reserve constraints (currently in place)
- Hourly Offers (implementing 12/3/14)
- Increasing RCPFs (pricing during reserve shortages, 12/3/14)
 - \$1,000/MWh for 30-min operating reserve (currently \$500/MWh)
 - \$1,500/MWh for 10-min non-spinning reserve (currently \$850/MWh)
- Demand Resource Energy Market Integration (scheduled 2017)
- Real-Time Pricing Review and Enhancements (schedule TBD)
 - In the midst of series of in-depth technical sessions with stakeholders to explain how pricing works, which characteristics lead to perceived pricing problems, and explore alternatives
 - All identified changes involve trade offs
 - Initial solution focus on fast-start/peaker pricing

Principles for Evaluating Pricing Changes

- **Efficiency.** In the context of the RT energy market, this means two things:
 - a) RT dispatch on offered prices will minimize actual production cost
 - b) Assets want to produce to the cleared (dispatched) MW amount, not something else.

Price Transparency

- Defined as when "much is known by many" about transaction price(s)
- In this context, it is everyone knowing the price(s) others receive
- Side payments (uplift and lost opportunity costs) are not transparent

Simplicity

- a) As few prices as possible (for each location and time)
 - Example: Pay-as-bid systems can have many different prices for the same location and time (to different sellers); uniform pricing has one price
- b) Price formation process should have a simple logic that buyers/sellers understand (ideally)
 - No difficulties answering questions like: "How do we interpret the price?"

Electricity Market Pricing is Inherently Problematic

- Root Causes of Pricing Concerns:
 - Minimum production constraints: Economic minimum (EcoMin) values, minimum run times, minimum down times
 - Commitment-related costs: start-up costs
- Unfortunately, there is NO "perfect" pricing approach that satisfies all three principles when "lumpy" units are needed
- As a consequence, there are NO "perfect" LMPs. All pricing methods make compromises to achieve their goal
- Reviewing three pricing methods: two-tier pricing, convex hull pricing, ELMP (MISO)

ISO New England Fast-Start Pricing: Summary

Fast Start fixed costs

- Incorporates fast start, no-load, and start-up costs during start-up
- Does not incorporate fast start, no-load, and start-up costs when online

Lumpiness treatment in pricing

- Relax EcoMin to 0, amortize fast start, start-up and no-load costs during start-up
- Respect offered EcoMin value when online

Side payments and transparency

- Relatively easy to understand and implement
- Fast-start units may still require make-whole payments to recover bid-in cost

Possible Enhancements to Fast-Start Pricing

- Incorporate start-up and no-load during dispatch?
- Relax economic minimum for pricing purposes while online?
- Other?

Summary

- Accurate electricity pricing is critical to ensuring both longterm investment and incenting an appropriate resource mix
- ISO-NE is seeking to improve price signals
 - Recent capacity market changes directly link compensation to energy market performance
 - Evaluating improvements to energy-market pricing
 - A number of changes are likely to be needed
- All options involve trade-offs between efficiency, transparency, and simplicity