

Capacity Markets in Action:

Challenges from the Purchaser's Point of View

Harvard Electricity Policy Group Forty-Eighth Plenary Session

The Missing Money

- In an average year, some peaking generation will only run a few hours a year.
- For most commodities, infrequent utilization/purchase of a resource/product may be a signal that the resource/product is not needed.
- Electricity is different: we must keep the lights on, so must hold onto some infrequently utilized resources.
- In today's energy markets:
 - If a generator does not run, it does not get paid
 - ISOs need a way to repay this "missing money" to keep enough generation on hand.

How to Recover the Missing Money

- Scarcity Pricing Only: To ensure that sufficient investment is made in supply, a market can be designed such that during those infrequent periods of unusually high demand, prices are also permitted to go unusually high.
- Capacity Market: To combat market power concerns, the energy price is mitigated and generally assumed to only cover short-term variable costs, and a second revenue stream via a capacity construct is developed to cover long-term fixed costs.
- Hybrid: This approach combines a capacity construct with relaxed energy market mitigation and/or limited administrative price setting.

Previous Capacity Market Approach

- Unforced Capacity (UCAP) market
 - Generators assigned an Unforced Capacity value based on the generator's forced outage rate
 - ISO's goal was to procure enough unforced capacity to meet the expected load forecast plus a sufficient Installed Reserve Margin (IRM) to ensure a loss of load probability less than one in ten years.
- Loads must procure sufficient capacity to cover unforced capacity obligation or pay deficiency charge
 - Capacity could be acquired through:
 - Bilateral contracts
 - Auctions (loads needed only procure the delta between their requirement and bilateral contracts)

Previous Capacity Market Issues

 Auctions resulted in very low (\$5/mw-day) or very high clearing prices (\$160/mw-day) with little in between

Previous Capacity Markets

Areas of success:

- Purchasers could easily fulfill obligations through long term bilateral contracts
- Multiple options to make up for capacity requirements beyond bilateral contracts
 - Monthly, multi-monthly, and daily auctions

Areas of failure:

- Price volatility increases long term investment risk
- RTO wide clearing price results in low price for capacity, but does not recognize localized capacity shortages
- Low prices have caused high marginal cost units in areas like New Jersey and Southeastern Mass to retire, requiring expensive out of market Reliability Must Run (RMR) contracts

Case Study: PJM's RPM Approach

- Capacity acquired through annual, forward auctions
 - Centralized procurement
 - Auctions cleared based on resource offers, demand obligation, and reliability metrics
- Auctions contain a Variable Resource Requirement (aka "Demand Curve")
 - Values capacity above the installed reserve margin requirement
 - Sets clearing price at intersection with supply curve
- Locational clearing prices
 - Locational Deliverability Areas (LDAs) defined based on transmission import capability into local areas
 - Each LDA's clearing price may contain an adder over the system price, if additional capacity is needed in the LDA

PJM's Variable Resource Requirement

Issue: Obligation Uncertainty

- Variable Resource Requirement:
 - Intended to value generation capacity above the Installed Reserve Margin
 - Under excess capacity situations, will result in entities incurring a capacity obligation greater than the published Installed Reserve Margin
 - Increased obligation can be up to 5%
- Increased obligation results in inability to accurately hedge capacity obligations
 - Entities that previously had sufficient generation to meet capacity obligations no longer have complete hedge

Issue: Forward Procurement

Three year forward auction provides:

- Ability for new generation to offer into the market and be guaranteed a capacity price
- Certainty for PJM that it will have sufficient installed capacity

Forward auction also:

- Limits ability for load serving entities to arrange bilateral capacity
- Adds risk to generation owners to offer full amount of capacity into the market, which can result in a premium on the generator's offer

Issue: Locational Capacity

Benefits:

- Engineering reality of the electric grid is that generation can't all be built in the same place and transmission relied upon to deliver to any location.
- Sends price signals to locate generators in the proper areas or build transmission into constrained areas

Issue: Locational Capacity (cont)

Drawbacks:

- If a location is constrained, it will already be subject to higher LMP prices and higher capacity prices only serve to increase the costs to load in that area.
- If the previous construct allowed obligation to be met with remote resources, entities that believed they had satisfied their obligation for the long-term may find that the resource they contracted with no longer satisfies the requirement.

Issue: Incentive or Windfall?

RPM Results to Date:

	2007/2008		2008/2009	
LDA	Resource Clearing Price [\$/mw-day]	Net Load Price [\$/mw-day]	Resource Clearing Price [\$/mw-day]	Net Load Price [\$/mw-day]
Eastern MAAC	\$197.67	\$177.51	\$148.80	\$143.51
SW MAAC	\$147.74	\$140.16	\$210.11	\$180.58
RTO	\$40.80	\$40.80	\$111.92	\$111.92

2006/2007 Prices: less than \$10

Issue: Incentive or Windfall?

- Prices set based on the cost of new entry are intended to provide an incentive to new generation.
- Purchasers pay these costs regardless of whether any new generation is constructed.
- Can incentive price overcome other barriers to new construction:
 - Environmental restrictions
 - Local permitting issues
 - Forward price uncertainty

Issue: Transmission Infrastructure

- The forward capacity markets are intended to help bolster transmission upgrades
 - PJM's RPM allows transmission upgrades to be offered into the market to increase the transmission capacity into constrained Locational Deliverability Areas
 - Locational price differences will help justify economic upgrades developed by PJM
- The key is that transmission planning still needs to occur on a longer horizon
 - RTO's cannot count on these capacity markets along to develop the system!
 - Can the capacity market be truly competitive with limited transmission capability?

Questions?

Erik Paulson
Director of Regulatory Affairs, PJM

epaulson@ces-ltd.com

215-875-9440