

Resource Adequacy in ERCOT

John Dumas Director of Wholesale Market Operations

The Harvard Electric Policy Group June 13th, 2013 Calgary, Canada

ERCOT Market

- High Level Market Design
 - Energy Only
 - Voluntary Day-Ahead Market
 - Co-optimizes energy and reserves hourly for next day
 - Real-Time Market
 - 5-minute nodal pricing
 - 15-minute settlement
 - Biannual and Monthly Congestion Revenue Rights (CRR) Auctions

What is the proper amount of Planning Reserves?

- Should Resource Adequacy be based on a 1-in-10 year LOLE study?
- Should Resource Adequacy be based on an Economic Evaluation of Loss of Load Impacts? If so, how will it compare to the 1-in-10 year LOLE study?
- What is Peaker Net Margin (PNM) and how does
 it relate to Resource Adequacy?

Resource Adequacy and Scarcity Pricing Concerns

- Proper market signals are crucial to incent investment
- Latest Capacity, Demand, and Reserve(CDR) Report shows reserve levels falling below target levels beginning with 2015
- Study performed by the Brattle Group in 2012 indicated a equilibrium reserve margin of:
 - 6.1% with offer caps at \$3,000
 - 8% with offer caps at \$9,000
 - <u>http://www.ercot.com/content/news/presentations/2013/Brattle%</u> 20ERCOT%20Resource%20Adequacy%20Review%20-%202012-06-01.pdf
- With reserve margins projected to fall below target levels, there has been significant focus on improving Real-Time scarcity pricing

Resource Adequacy Reserve Forecast

Firm Load Forecast — Resources — Forecast + Target Reserve Margin

- Outlook from ERCOT's Capacity, Demand and Reserves (CDR) Report released in May
 - <u>http://www.ercot.com/content/news/presentations/2013/Capacity</u>
 <u>DemandandReserveReport-May2013.pdf</u>
- Report assumed a target reserve margin of 13.75%
 - Wind generation is included at 8.7% of nameplate capacity

Recent Changes Affecting Resource Adequacy

- Increases in the Systemwide Offer Cap over the next two years
- Energy Offer Curve floors for capacity reserved for Ancillary Services on Generators
- Standing deployment for Non-Spinning Reserve Service carried by Online Generators

Scheduled Changes to the Systemwide Offer Cap (2012-2015)

What is the proper Planning Reserve Margin?

- The graph below shows how weather can affect the 1 event in 10 year LOLE analysis
 - Based on an ELCC of non-coastal Texas wind of 14.2% and coastal wind of 32.9%.

Economic Evaluation of Loss of Load Impacts

- Some regions evaluate the total customer cost of reliability and select a reserve margin that minimizes overall cost
- Requires an evaluation of the regional value of unserved customer load

<u>Source</u>: Carden, Pfeifenberger and Wintermantel, *The Economics of Resource Adequacy Planning: Why Reserve Margins Are* Not Just About Keeping the Lights On, NRRI Report 11-09, April 2011.

The Harvard Electric Policy Group June 13th, 2013

Findings There is "Missing Money at the Target Reserve Margin

- Generators cannot earn much with low gas prices and low market heat rates, except during scarcity conditions
- But at high reserve margins, there is almost always more than enough supply, so scarcity-driven high prices are rare, hence "missing money"
- We expect the reserve margin to fall to approximately 8% before energy prices can support investment of new plant (apart from some limited low-cost opportunities)
- Reliability could improve if large amounts of DR develop (unlikely to happen quickly)

The Harvard Electric Policy Group June 13th, 2013

Note: based on a \$9,000 price cap and gradual scarcity pricing

Background & Objective of Hogan B+

- GDF SUEZ commissioned Professor William W. Hogan to draft "Electricity Scarcity Pricing through Operating Reserves: An ERCOT Window of Opportunity." Professor Hogan's paper was filed in PUCT Project No. 40000 on November 14, 2012
- At its November 16, 2012 Open Meeting, the Commission directed ERCOT to study and report on the potential implementation of the proposals in Professor Hogan's paper
- ERCOT reported to the Commission that one element important to Professor Hogan's approach (the real-time co-optimization of energy and ancillary resources) could not be implemented by ERCOT in the near-term, and would require further investigation
- ERCOT committed to work with Professor Hogan to determine if key aspects of Professor Hogan's approach could be implemented in the near-term, and to provide alternatives for such near-term action

Implementing the Hogan B+ Approach

- ERCOT estimates that implementing the near-term solution could be accomplished in 6-8 months at a cost between \$100,000 & \$200,000
- Can the ORDC B+ Solution generate sufficient revenues to support a target reserve margin?
 - The CDR reports for 2011 and 2012 showed a Planning Reserve margin approximately equal to the 13.75% target
 - The PNM for 2011 was \$125,001
 - The PNM for 2012 was \$33,952
 - The PNM for 2011 did support a 13.75% Planning Reserve target due to the extreme summer weather and high number of scarcity intervals
 - The PNM for 2012 did not support a 13.75% Planning Reserve target due to the low numbers of scarcity intervals and less extreme temperatures
- The Back-Cast for 2011 & 2012 utilizing the ORDC B+ approach is highly dependent on the level of minimum contingency reserves and the Value of Lost Load (VOLL)

Implementing the Hogan B+ Approach

- The Real-Time reserves prices would be calculated based on analysis of historical risk and VOLL
- The price for On-line, spinning reserves would also act as a price adder for the Real-Time energy price
- Resources that sold reserves in the Day-Ahead Market but are dispatched for energy in Real-time will have to buy back reserves at the Real-Time price

Additional PNM for 2011 & 2012 for Different VOLLs and Minimum Contingency Levels

The numbers in these Tables are in addition to the realized PNM in 2011 & 2012, \$125,001 & \$33,952 respectively

VOLL	Total Additional PNM under Interim Solution B+ with X at 1375 MW (\$/MW)		Total Addit under Interi B+ with X a (\$/N	ional PNM m Solution t 1750 MW IW)	Total Additional PNM under Interim Solution B+ with X at 2300 MW (\$/MW)		
	2011	2012	2011	2012	2011	2012	
\$5000/MWh	38,544	7,740	67,892	17,267	192,728	53,194	
\$7000/MWh	62,141	11,189	107,327	24,809	296,489	76,367	
\$9000/MWh	85,773	14,643	146,795	32,362	400,361	99,568	

Estimated additional PNM for 2011 and 2012 by only increasing the SWCAP
 Total Additional PNM if SWCAP

SWCAP	Total Additional PNM if SWCAP Increased to VOLL (\$/MW)				
	2011	2012			
\$5000/MWh	57,631	2,877			
\$7000/MWh	114,168	5,883			
\$9000/MWh	170,706	8,889			

Energy-weighted Average Price Adder P_S (\$/MWh) for Different VOLLs and Minimum Contingency Levels (X)

VOLL	Energy-weighted average price increase with X at 1375 MW (\$/MWh)			Energy-weighted average price increase with X at 1750 MW (\$/MWh)			Energy-weighted average price increase with X at 2300 MW (\$/MWh)		
	2011	2012	2011 & 2012 combined	2011	2012	2011 & 2012 combined	2011	2012	2011 & 2012 combined
\$5000/MWh	7	1.08	4.08	12.03	2.4	7.28	33.74	7.36	20.71
\$7000/MWh	11.27	1.56	6.48	19.06	3.45	11.35	52.08	10.55	31.57
\$9000/MWh	15.54	2.05	8.87	26.08	4.5	15.42	70.42	13.75	42.43

Summary

- ORDC B+ implements scarcity pricing based on the level of Operation Reserves in Real-Time
- The back cast of 2011 & 2012 suggests that the ORDC B+ with a higher minimum contingency reserve level can support a Planning Reserve target of 13.75%
- The back cast does not account for future market behavior changes that may result from the implementation of ORDC B+

 <u>http://interchange.puc.texas.gov/WebApp/Interchange/application/dbapps/filings/pgSearch_Results.asp?TXT_CN</u> <u>TR_NO=40000&TXT_ITEM_NO=392</u>

