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Abstract  
 
Multi-settlement electricity markets typically permit firms to bid increasing supply 

functions (SFs) in each market, rather than only a fixed price or quantity.  Klemperer and 

Meyer’s (1989) single-market supply function equilibrium (SFE) model extends to a 

computable SFE model of a multi-settlement market, that is, a single forward market and 

a spot market.  Spot and forward market supply and demand functions arise 

endogenously under a closed-loop information structure with rational expectations.  The 

closed-loop assumption implies that in choosing their spot market SFs, firms observe and 

respond optimally to the forward market outcome.  Moreover, firms take the 

corresponding expected spot market equilibrium into account in constructing their 

forward market SFs.  Subgame-perfect Nash equilibria of the model are characterized 
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analytically via backward induction.  Assuming affine functional forms for the spot 

market and an equilibrium selection mechanism in the forward market provides for 

numerical solutions that, using simple empirical benchmarks, select a single subgame-

perfect Nash equilibrium.   

Incentives for a supplier in the forward market decompose into three distinct 

effects: a direct effect attributable solely to the forward market, a settlement effect due to 

forward contract settlement at the expected spot market price, and a strategic effect 

arising due to the effect of a firm’s forward market activity on the anticipated response of 

the firm’s rival.  Comparative statics analysis examines the effect of small parameter 

shocks on the forward market SFs.  Shocks that increase the elasticities of equilibrium 

supply and demand functions tend to make firms more aggressive in the forward market, 

in that they bid higher quantities at most prices.  Expected aggregate welfare for the 

multi-settlement SFE model is intermediate between that of the single-market SFE model 

and that of the perfectly competitive case.   
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ELECTRICITY, n.  The power that causes all natural phenomena not known to be caused 
by something else.  It is the same thing as lightning, and its famous attempt to strike Dr. 
Franklin is one of the most picturesque incidents in that great and good man’s career.  
The memory of Dr. Franklin is justly held in great reverence, particularly in France, 
where a waxen effigy of him was recently on exhibition, bearing the following touching 
account of his life and services to science:  

Monsieur Franqulin, inventor of electricity.  This illustrious savant, after having made 
several voyages around the world, died on the Sandwich Islands and was devoured by 
savages, of whom not a single fragment was ever recovered.   

—Ambrose Bierce, The Devil’s Dictionary 
 

It is not from the benevolence of the butcher, the brewer, or the baker, that we expect our 
dinner, but from their regard to their own interest.  We address ourselves, not to their 
humanity but to their self-love, and never talk to them of our own necessities but of their 
advantages.   

—Adam Smith, The Wealth of Nations 
 
 

1 Introduction  

1.1 Electricity sector restructuring  

1.1.1 Scope and extent  

IN THE 1980S, AND INCREASINGLY IN THE 1990S, dozens of countries around the world 

initiated economic reforms—or “restructuring”—of their electricity sectors.  These 

countries launched their reforms from widely disparate circumstances, including varied 

income levels, production and consumption patterns, government roles in the economy, 

legal and institutional frameworks, and resource endowments.  Despite this 

heterogeneity, the trajectory of electricity restructuring has been broadly similar across 

countries, typically comprising the following measures (World Energy Council 1998; 

Girdis 2001):  

1. The privatization or corporatization of publicly-owned enterprises in the 

electricity sector  
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2. The vertical disintegration, or “unbundling” of the industry’s generation, 

transmission, distribution, and retailing segments  

3. The deregulation of the generation and the retailing segments  

4. The introduction of regulatory “open access” rules for the transmission segment  

 In the United States, which has a history of private ownership (though not 

exclusively so) of electric utilities, restructuring progressed through legislative and 

regulatory initiatives on two jurisdictional fronts.  On the wholesale level, the Energy 

Policy Act of 1992 (EPAct) catalyzed the development of an open access regime for the 

electricity transmission grid.  Pursuant to this legislation, the Federal Energy Regulatory 

Commission (FERC)1 (1996d) issued Order 888, implementing open access and 

encouraging the formation of independent system operators (ISOs) to manage the 

transmission grid.2  Later, the Commission’s Order 2000 on Regional Transmission 

Organizations (RTOs) (Federal Energy Regulatory Commission 1999, 5) laid out an 

RTO’s “minimum” configuration and urged (but did not require) transmission owners to 

cede control of their transmission facilities to RTOs.  In its July 2002 Notice of Proposed 

Rulemaking (Federal Energy Regulatory Commission 2002a, 3), the Commission built on 

its earlier initiatives, proposing to establish a standardized transmission service and 

                                                 

1 References to “the Commission” throughout this thesis denote the Federal Energy Regulatory 
Commission.   

2 As of this writing, the Commission had approved the following five ISOs: ISO New England 
(ISO-NE), California ISO (CAISO), PJM Interconnection (PJM—for portions of the mid-Atlantic states), 
Midwest ISO (or Midwest Independent Transmission System Operator) (MISO), and New York ISO 
(NYISO).  The Electric Reliability Council of Texas (ERCOT) was created in 1996 by the Public Utility 
Commission of Texas.  ERCOT is contained entirely within the state of Texas, and is hence not subject to 
the Commission’s plenary jurisdiction (Moore and Gooch 2002, 1).   
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market design to provide a level playing field for all wholesale electricity market 

participants.   

 On the retail level,3 state restructuring initiatives began with a 1993 California 

regulatory decision (California Public Utilities Commission 1993).  As of April 2004, 

twenty-four states and the District of Columbia had enacted legislation or issued 

regulatory orders to permit retail access to competitive electricity suppliers; more 

recently, however, seven of these states delayed or suspended their plans for retail access 

(American Public Power Association 2004), largely in response to the turmoil in 

California’s market.4   

1.1.2 Restructuring and economic efficiency  

The primary rationale for electricity restructuring in most countries has been to reap 

welfare gains by supplanting regulation with competition where it is viable.  Both theory 

and experience with other formerly regulated industries suggest that these gains will 

include increased short-run productive efficiency, enhanced allocative efficiency through 

pricing that more closely reflects physical and economic reality, and increased dynamic 

efficiency from improved incentives for investment and innovation.  One may gain some 

perspective on the magnitude of potential efficiency gains for the case of the United 

States by noting that revenue from electricity sales to final consumers in 2000 totaled 

approximately $228 billion (Energy Information Administration 2001a, Table A5).  By 

comparison, this amount exceeded recent U.S. annual spending on automobiles, 
                                                 

3 While wholesale and interstate transactions are subject to regulation at the federal level by the 
Commission, retail sales (i.e., sales to final consumers) are under the jurisdiction of each state’s public 
utility commission (PUC) or similar regulatory body.   

4 See Sweeney (2002) and Blumstein (2002) for detailed analyses of the California experience.   
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telecommunications, or higher education (Brennan et al. 1996, 5).  The net book value of 

electric utility plant owned by major investor- and publicly-owned utilities provides a 

rough indicator of the size of the industry’s total capital stock.  As of 1996, this net book 

value was approximately $433.5 billion.5   

 A potentially significant obstacle to realizing these welfare gains from 

restructuring is market power.  Market power exercised by suppliers typically entails the 

withholding of output and an upward distortion in the market price.6  Market power is 

generally associated with various forms of economic inefficiency.  Again, it is instructive 

to consider potential efficiency losses in terms of productive, allocative, and dynamic 

inefficiencies due to market power.  First, market power tends to cause productive 

inefficiencies.  To see this, consider a simple example in which a firm—call it “firm A”—

exercises market power, restricting its production and driving a wedge between the 

equilibrium price and its marginal cost.7  Suppose that firm A’s rivals do not exercise 

market power; they therefore choose their output levels to equate price and their 

respective marginal costs.  In equilibrium, the marginal cost of firm A’s rivals exceeds 

that of firm A, so that aggregate output could be produced at lower total cost if 

                                                 

5 As reported by Energy Information Administration (1997, 7) and Energy Information 
Administration (2001b, Tables 11 and 22) (data for investor-owned utilities were last available for 1996).   

6 Section 1.2 below provides a more formal definition of market power.  Market power is 
usually—but not necessarily—associated with the withholding of output.  Hogan (1997) describes a salient 
exception to this association in an electricity market setting.  In a stylized electricity network model with 
locational marginal pricing, Hogan illustrates how transmission network interactions and constraints enable 
an owner of generation plants at multiple network locations to exercise market power via increased total 
output.  In this event, prices increase at some network locations and decrease at others, while total profits 
for the plant owner increase.   

7 In this stylized example, we assume strictly increasing marginal cost functions and ignore 
capacity constraints.  A profit-maximizing firm, naturally, will always choose its output level to equate 
marginal revenue and its marginal cost.   
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production were reallocated from the rivals to firm A.  Second, market power also creates 

allocative inefficiencies in that it generally lowers aggregate quantities consumed, 

causing a deadweight loss to aggregate welfare.8  Finally, market power creates dynamic 

inefficiency when market participants on both the supply and demand sides of the market 

make investment decisions based on price expectations distorted by market power.  

Temporal and (under locational pricing in a transmission network) spatial distortions in 

prices may arise.  Recalling the argument of note 6 above, these spatial pricing distortions 

due to market power may go in either direction.   

 Empirical estimates of such welfare losses due to market power have been 

contentious, but many case studies suggest that such losses have been considerable.9  

Together, the potential magnitude of the problem, controversies surrounding concepts 

and methodology, and practical difficulties associated with assessing market power 

underscore the need for substantial further research on this issue.  The present 

investigation constitutes one contribution toward improving the theoretical foundations of 

market power assessment in electricity markets.   

                                                 

8 In the special case of perfectly elastic demand for electricity, there is no loss in allocative 
efficiency with supply-side market power, rather, only a rent transfer from consumers to producers.   

9 The Department of Energy (2000) reviews empirical research on market power in the United 
Kingdom, the PJM Interconnection, California, and several other U.S. states.  Particularly noteworthy for 
the present investigation are Borenstein, Bushnell, and Wolak’s (2000, 33) findings that from June 1998 
through September 1999, electricity suppliers in California’s market received revenue in excess of 
competitive levels of $715 million.  These authors later find (Borenstein, Bushnell and Wolak 2002, 1396), 
moreover, that the problem worsened by the summer of 2000, when (from June to October) the state’s 
electricity suppliers received $4.448 billion in oligopoly rents.  In a similar vein, work by the Market 
Surveillance Committee of the California ISO (2000, 17) found that for May and June 2000, wholesale 
revenues in the California spot market were 37% and 182% (respectively) in excess of revenues predicted 
under perfectly competitive pricing.   



 

  6 

1.2 Market power  

1.2.1 Definition and origins  

To economists, market power is “the ability to alter profitably prices away from 

competitive levels” (Mas-Collel, Whinston and Green 1995, 383).10  As it relates to 

industry structure, market power on the part of suppliers is commonly classified as either 

horizontal or vertical.  Vertical market power is the ability to engage in exclusionary 

behavior conferred by one’s control of different segments of the industry: generation, 

transmission, distribution, and retail services.  Horizontal market power, in contrast, is 

the ability to influence price within one of these segments.   

 Historically, most of the world’s electricity industries consisted of vertically 

integrated, publicly-owned and/or -regulated monopolies with exclusive geographic 

franchises.  In the United States, private ownership of electric utilities has been the norm, 

under which state regulatory commissions established prices consistent with a “just and 

reasonable” standard (see, e.g., Phillips 1993, 119, ch. 5).  Under a competitive regime, in 

contrast, interactions between competing generating firms would determine prices 

endogenously.  In light of this regulatory legacy, the deregulation of generation would 

endow these utilities—de facto vertically-integrated regional monopolies—with 

considerable market power.  The advantages of incumbency enjoyed by these monopolies 

would not necessarily be overcome by the timely entry of new competitors. 11   

                                                 

10 While either suppliers or demanders may possess market power, we consider only supply-side 
market power in this investigation.  See also note 6 above.   

11 It is sometimes argued that entry will significantly lessen concerns over horizontal market 
power, rendering it at best a transitional problem.  In the abstract, this reasoning has some appeal.  It is 
often the case today, however, that formidable entry barriers (e.g.¸ local siting restrictions) for new 
generation and transmission facilities characterize electricity markets in the United States, particularly close 
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1.2.2 Policy response  

A number of prominent industry observers have argued that federal lawmakers have 

granted the FERC adequate authority to address vertical market power in the U.S. 

electricity industry.  For example, Pierce (1996, 32) writes that “for antitrust purposes, 

the FERC can now ignore the vertical constraints on competition that were the primary 

focus of the FERC’s antitrust activities during the 1980s.  As amended by the EPAct, the 

FPA [Federal Power Act] now gives the FERC regulatory tools that allow it to 

address . . . [these] vertical constraints.”12  Via its open-access transmission policies 

(Federal Energy Regulatory Commission 1996d, 1999) the Commission has, in fact, 

brought these tools to bear on vertical market power concerns.  In the future, the 

Commission’s commitment to RTOs may reasonably be expected to mitigate 

substantially if not eliminate any remaining vertical market power problems.  On the state 

level, moreover, regulators (typically, state attorneys general or PUCs) in many 

jurisdictions have insisted upon the divestiture of vertically-integrated utilities’ 

generation assets as a quid pro quo for recovery of “stranded costs,” or sunk costs in 

                                                                                                                                                 

to urban centers where electrical load is concentrated.  One also commonly observes transmission 
constraints in such settings, creating so-called “load pockets.”  Thus, the short-run transition may indeed 
last for some time, and may well be associated with considerable efficiency losses as well as significant 
transfers to suppliers with market power.   

12 This assessment has so far proved perhaps too optimistic, since as the Commission wrote later 
in its Order 2000, “we . . . conclude that opportunities for undue discrimination continue to exist that may 
not be adequately remedied by functional unbundling [see below].  We further conclude that perceptions of 
undue discrimination can also impede the development of efficient and competitive electric markets.  These 
concerns . . . provide the basis for issuing [Order 2000]” (Federal Energy Regulatory Commission 1999, 
65).  Functional unbundling, required by the Commission’s Order 888, comprises three restrictions on 
conduct for a vertically-integrated utility.  The utility must (1) take transmission services under the same 
tariff as do others, (2) post separate rates for generation, transmission, and ancillary services, and (3) rely 
on the same electronic information network as do its transmission customers when arranging transactions 
(Federal Energy Regulatory Commission 1996d, 57).   
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excess of market prices.13   

 As for horizontal market power, Pierce (1996, 32) also remarks that “the FERC 

needs to refocus its antitrust attention on horizontal market power issues. . . .”  Indeed, 

horizontal market power in the industry’s generation segment has emerged as a central 

public policy concern in U.S. electricity restructuring.  For this reason, this investigation 

focuses exclusively on horizontal market power—denoted hereinafter simply as “market 

power”—in the electricity industry’s generation segment.  The following chapter, chapter 

2, provides a more detailed account of the policy response in the U.S. to market power.   

1.2.3 Motivation and objectives of the present investigation  

Below, we detail some gaps and inadequacies in both the theoretical foundations for 

market power analysis in restructured, competitive electricity markets and in the policy 

framework for addressing market power problems.  In light of the dramatic structural 

changes in the electricity industry worldwide, the relevant theory needs to be refined and 

extended.  The highly-structured institutional environment that is necessary to coordinate 

efficiently firms’ behavior in electricity markets creates complex incentives; these 

incentives render the characterization of market power in this context a difficult—and 

unfinished—task.  To advance the discussion, a fruitful starting point would be to lay the 

analytical foundations for defining and measuring market power given the architecture of 

today’s competitive electricity markets.  The present work provides a coherent, if 

stylized, characterization of key incentives that market participants face in this 

                                                 

13 While most commentators have taken the view that these regulators lack the authority to compel 
divestiture, the prospect of (at least partial) denial of stranded cost recovery induced some integrated 
utilities to divest generation assets.  Such divestiture, of course, can have both horizontal as well as vertical 
competitive ramifications.   
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environment, which is necessary to guide the development of analytical methodologies 

for empirical analyses of market power.  Policymakers and regulators may then bring 

such methods to bear in assessing the severity of market power, and in crafting 

appropriate and welfare-enhancing policy responses.   

 The present investigation focuses on the competitive implications of a sequence 

of markets, an architectural feature present in many competitive electricity markets.  This 

particular element of market design creates intertemporal incentives for market 

participants—related, in general, to risk hedging, speculation, and strategic 

considerations (see, e.g., Allaz 1987)—the effects of which are as yet poorly understood.  

This thesis examines the behavioral incentives induced by the architecture of newly 

restructured electricity markets.  In particular, we derive profit-maximizing supply 

function14 equilibrium bids for electricity suppliers competing in sequential forward and 

spot markets.  In a series of numerical examples, we examine how these bids depend on 

underlying economic characteristics of this environment, and compute expected 

aggregate welfare for this market setting.  Sections 1.3 and 1.4 below elucidate the scope 

of this investigation in greater detail.   

1.3 Modeling competitive electricity markets  

1.3.1 Market characteristics  

Competitive electricity markets in the U.S. share some salient market design features 

with others around the world.  Among these common characteristics are the existence of 

forward markets (in addition to the spot market) for electricity, significant flexibility in 

                                                 

14 For more on supply functions, see subsection 1.3.3.   
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the form of bids permitted from suppliers, uncertainty in demand, and determination of 

prices via a market-clearing competitive equilibrium.   

 First, the design of many of the world’s electricity markets includes at least one—

and sometimes several—forward energy markets.  Such a market design is commonly 

referred to as a multi-settlement market.15  When forward energy markets clear close to 

real time (e.g., one day ahead), they typically rely on a market coordinator and 

competitors’ bids (rather than on bilateral negotiation) to set price.  Second, market rules 

in many electricity markets around the world permit significant flexibility in firms’ 

supply bids, requiring only that bids take the form of increasing functions from price to 

quantity.16  Third, demand uncertainty in each periodic market17 arises from uncertain 

weather conditions, equipment failure, and other contingencies.  Market participants may 

make demand forecasts to aid their market decision making, but these forecasts will 

naturally be imperfect.  Last, the point at which the aggregate supply function intersects 

aggregate demand normally determines the market-clearing price in each market.  The 

approach to modeling competitive electricity markets described in the remainder of this 

section and developed later in the thesis reflects each of these market characteristics.   

 Other features of electricity markets having significant competitive implications 

include the interconnected transmission and distribution network, intertemporal 
                                                 

15 The modifier “multi-settlement” denotes that the forward and spot markets entail distinct 
financial settlements (billing and payment) between buyers and sellers in the respective markets.  The cash 
flow paid or received by a participant in a particular market’s settlement is, naturally, the product of the 
market-clearing price and that market participant’s quantity bought or sold.  See note 29 below for further 
details.   

16 These functions are sometimes also required to be continuous.   

17 Competitive electricity markets for energy typically comprise regular, periodic spot markets 
(e.g., hourly or half-hourly) during each day.  Associated with each period’s spot market may be one or 
more forward markets as well as markets for reserves (i.e., generating capacity).   



 

  11 

constraints, and multiple products and markets.  This investigation abstracts, for 

simplicity, from the complications associated with these characteristics.  We discuss 

briefly below the implications of these simplifying assumptions. 

 The transmission and distribution network is necessary, of course, for transport 

and delivery of electricity as well as for ensuring reliability and quality (e.g., voltage and 

frequency stability).  Because network capability is limited, the competitive price of 

electricity will vary across different locations (in addition to temporal variations) under 

locational marginal pricing.  The model developed here simplifies this situation 

considerably.  It may be interpreted as a model analyzing competition at a single network 

location.  Alternatively, one may view the present work as modeling a completely 

uncongested transmission network while also ignoring transmission losses.   

 Electricity generation technologies exhibit to varying degrees numerous dynamic 

constraints restricting the pattern and associated costs of generation plant production over 

time.  Examples of such constraints include minimum times for startup and shutdown 

(with associated costs), minimum run times, and ramp rate constraints.  Startup costs 

imply that a currently idle unit may not find it profitable to begin operation in a given 

hour if expected prices in the near term are insufficient to cover its variable operating 

cost as well as its startup cost.  Ramp rate constraints limit the amount by which a 

generating unit can change its production level from one hour to the next.  In practice, 

these constraints have potentially significant economic implications for generating units’ 

operating schedules.  Proper analysis of such constraints is complicated not only by their 

intertemporal nature, but also because they introduce non-convexities into the unit’s 

production function.  We abstract from all such complications by assuming (see 
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subsection 3.1.8) that cost functions are strictly convex and that there are no 

intertemporal operating constraints of economic importance.  This rather strong 

assumption permits us to analyze each operating period independently.   

 Finally, competitive electricity markets comprise multiple products and markets.  

As one salient example, in the early days of California’s restructured market, there was a 

total of eleven markets for energy and ancillary services.18  Designs in most other regions 

do not include as many distinct product markets, although most competitive electricity 

markets do feature, at a minimum, both forward and real-time (or “spot”) energy markets.  

The present work presumes the simplest market architecture—a single forward market 

and a spot market—that permits us to examine the influence of multiple markets on 

competition.  Introducing additional product markets (e.g., for ancillary services) would 

substantially complicate the analysis.  An extension of the present model to a sequence of 

two or more forward markets in advance of the spot market would be relatively 

straightforward, at least conceptually.   

1.3.2 Application of game theory 

As a general matter, it is natural to model interactions among agents in diverse market 

settings using the tools of game theory.  This is particularly true in electricity markets, in 

which market participants’ interactions are highly structured and regularized via market 

institutions—witness the centrally-cleared markets for electrical energy and ancillary 

services organized by various system operators around the world.  Such electricity 
                                                 

18 “Ancillary services” refer to reserve generation capacity, available on timescales varying from 
instantaneous to up to several hours.  California’s original market design envisioned four ancillary services 
traded in day-ahead and hour-ahead markets and imbalance energy dispatched in real time by the CAISO.  
The CAISO operated these nine product markets.  In addition, the (former) California Power Exchange 
cleared day-ahead and hour-ahead markets for energy, for a total of eleven product markets.   
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markets have, in effect, a well-defined set of players, and for each player, a strategy 

space and a payoff function; these elements of electricity market design are also the basic 

constituent elements of any game-theoretic model.   

 In electricity markets, the supply side is sometimes sufficiently concentrated that 

the presumption of perfectly competitive (i.e., price-taking) behavior on the part of 

suppliers seems inappropriate.19  Instead, models that permit oligopolistic interaction—or 

imperfect competition—are relevant in this context; these models capture the ability of 

individual producers to influence the market-clearing price.  While several alternative 

models of oligopoly behavior have been widely applied,20 the features of competitive 

electricity markets reviewed above strongly suggest that supply function equilibrium 

(SFE) models are best suited for modeling such markets, as the following subsection 

elaborates.   

1.3.3 Supply functions 

In the supply function (SF) model developed in this investigation, players’ strategy spaces 

are the set of strictly increasing continuous functions from price to quantity.  Since 

forward markets such as the former California Power Exchange (PX) commonly 

require—as with spot markets—that suppliers’ bids be increasing continuous functions or 

step functions, multi-settlement markets (see subsection 1.3.1) lend themselves to a 

nested SF model in which firms bid SFs in both the forward and the spot markets.  For 

                                                 

19 Apart from concentration, common features of electricity markets generally viewed as 
contributing to market power are the inability to store electricity economically together with the necessity 
of instantaneous supply and demand balance at every location in the transmission grid, and demand 
inelasticity, particularly in the short run.   

20 Well-known oligopoly models include those of Cournot, Bertrand, conjectural variations, and 
Bertrand-Edgeworth; see Vives (1999) for a comprehensive survey of these models and their application.   
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each market, the behavioral assumption of SFs—in contrast to pure quantity or price 

choice under Cournot or Bertrand competition—is suggestive of the range of strategies 

actually available to suppliers in competitive electricity markets.21  As discussed further 

below, the SF model explicitly recognizes and accommodates demand uncertainty: SF 

bids enable suppliers to achieve an ex post optimal outcome under any realization of 

uncertain demand.22  Finally, price formation in SF models occurs consistent with basic 

economic intuition: the point of intersection of aggregate supply and aggregate demand 

determines the market-clearing price.   

 The above discussion suggests that models based on the SF behavioral 

assumption possess a striking verisimilitude to the characteristics of competitive 

electricity markets, and that SF models, therefore, are especially well-suited to modeling 

supplier behavior realistically in such markets.  Moreover, we may extend the single-

market SFE framework developed in Klemperer and Meyer’s (1989) seminal paper to a 

multi-settlement market.  Accordingly, we assume in this work that suppliers bid (strictly 

increasing) SFs in both the forward and spot markets.   

 In the single-market SFE framework, firms’ equilibrium SF bids will result in ex 

post optimal production at any market-clearing price.  Put another way, for any 

realization of demand uncertainty, a firm that bids its equilibrium SF given the SFs of the 

                                                 

21 The SFE framework is inherently more flexible than Cournot or Bertrand, allowing suppliers to 
specify through their bids a schedule of quantities over a range of prices, rather than a fixed quantity or 
price.  In this sense, we may view SF-based models as a generalization of the Cournot or Bertrand 
frameworks.  Such flexibility in firms’ strategies is present in contexts other than electricity, as well.  
Namely, Klemperer and Meyer (1989) cite as salient examples the airline industry—in particular, its 
computerized reservation system—and management consulting.   

22 This strong result is strictly true only in a single-market setting, and must be qualified somewhat 
in a multi-settlement market context, as we discuss in subsection 3.4.3.   
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other bidders guarantees that it will be called upon to produce its optimal quantity.  

Remarkably, a firm’s equilibrium SF in the single-market SFE framework is distribution-

free, in that it is independent of the (non-degenerate) probability distribution of the 

uncertain demand shock.  This property of SFs may at first appear counterintuitive, but it 

is attributable precisely to the way in which the SF is constructed.  As chapter 4 will 

show, every feasible value of the stochastic shock to demand corresponds to a distinct 

point on the corresponding SF.23   

 In contrast, the extent of the SF—that is, the domain of prices over which the SF 

is defined—does depend on the support of the demand shock.  This is a direct 

consequence of the claim above that every feasible value of the demand shock 

corresponds to a distinct point on each firm’s SF.  Moreover, the expected values of 

price, quantity, and profits associated with a given SF do depend, as intuition would 

suggest, on the probability distribution of the demand shock.   

 In the multi-settlement market framework investigated here, this argument must 

be modified.  It is natural, in this setting, to take forward market equilibrium as 

contingent on the expected outcome in the spot market.  Doing so, forward market SFs 

then depend on the distribution of the uncertain spot market demand shock.  The forward 

market SFs, therefore, no longer possess the distribution-free property exhibited by SFs 

in a single-market setting.  As for spot market SFs, once the forward market has cleared, 

                                                 

23 Since we will assume the demand shock to have an atomless distribution, any arbitrary value of 
the shock occurs with probability zero.  By continuity, the values of the stochastic shock within an 
(arbitrarily small) interval correspond to a particular section of an SF; the probability that the shock takes 
on a value in this interval is strictly positive.  Whether the probability of a realization of the shock in this 
interval is large or small—that is, the shock’s probability distribution—is inconsequential; it matters only 
that this probability is strictly positive, that is, that such shocks can occur.  Given such a shock, firms 
respond via their SF bids to maximize profits.  The SF, therefore, is defined over equilibrium prices 
corresponding to the shock’s entire support, the union of all such feasible intervals.   
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the spot market is effectively a single market.  Thus, as with the single-market SFE, spot 

market SFs in the multi-settlement market will again be distribution-free.   

1.4 A closer look at market power  

1.4.1 Competing definitions and the degree of market power  

Subsection 1.2.1 appealed to a standard text on microeconomic theory to define market 

power as “the ability to alter profitably prices away from competitive levels” (Mas-

Collel, Whinston and Green 1995, 383); this is the definition that we apply for sellers 

throughout the present work.  Interestingly, federal antitrust regulators—and by 

reference, the Commission—use a somewhat more restrictive definition of market power, 

namely, “market power to a seller is the ability profitably to maintain prices above 

competitive levels for a significant period of time.”24  Stoft (2002, 366) explores the 

differing implications of these two definitions, and argues (p. 368) that, under either 

standard, “the goal should never be the prevention of all market power.”  Rather, 

regulators inevitably “need to make a hard decision: How much market power is too 

much?”   

 Indeed, the question of the degree of market power—under either definition—is 

central to any welfare-based assessment of market power that would balance efficiency 

losses due to market power with the direct and indirect costs of market intervention.  

Note that while both of the above definitions of market power refer to “competitive 

                                                 

24 Department of Justice (DOJ) and Federal Trade Commission (FTC) (1992, Sec. 0.1) Horizontal 
Merger Guidelines.  The FERC’s Merger Policy Statement (1996f) states that the FERC will use the 
screening approach of the DOJ/FTC Merger Guidelines to determine whether a merger will result in an 
increase in market power.   
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[price] levels,” neither definition is explicit about what constitutes such levels.25  Mas-

Collel, Whinston, and Green(MWG)’s (1995) discussion permits us to make some 

conceptual headway, although here, too, we are ultimately left with unanswered 

theoretical questions. 

 From MWG (pp. 314–315), we may infer that competitive price levels are those 

that clear the market in a “competitive economy” which, in turn, is one in which all 

consumers and producers act as price-takers.  MWG elaborate that “[f]or the price-taking 

assumption to be appropriate, what we want is that [consumers and producers] have no 

incentive to alter prices that, if taken as given, equate demand and supply” (emphasis in 

original).  For the purposes of this investigation of supply-side market power, we then 

confront two questions:26  

1. What constitutes price-taking behavior for supply?  In other words, what is the 

appropriate perfectly competitive behavioral benchmark (PCBB) for a supplier?   

2. What equilibrium price results from such price-taking behavior?   

Given an answer to question 1 above, one easily obtains the answer to question 2 by 

computing the set of prices (not necessarily unique) that clear the market.  Thus, question 

1 is an interesting and important question for market power analysis.  An appropriate 

PCBB may serve, in particular, as a foundation for empirical work assessing the severity 

of market power.  Namely, by comparing observed bid prices with those simulated using 

                                                 

25 Remarkably, the Horizontal Merger Guidelines (Department of Justice and Federal Trade 
Commission 1992) themselves fail to supply any guidance for what constitutes “competitive [price] levels.”   

26 In this investigation, we assume price-taking demand while permitting strategic behavior on the 
supply side.   
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the PCBB, we may—subject to the limitations of the particular modeling framework 

adopted—shed light on the question of whether a supplier has exercised market power.   

 Intuitively, the PCBB depends on the incentives, and hence the institutional 

environment, that agents face.  In an idealized single-period, bid-based market,27 we may 

appeal to basic economic intuition: the PCBB would be a price bid of marginal cost for 

all quantities up to one’s production capacity.  In the multi-settlement market setting 

considered in this thesis, establishing what constitutes the PCBB is a more subtle and 

complex question.  One would generally need to consider (as we do here) the effect of the 

forward market on spot market behavior as well as firms’ anticipation—and thus the 

influence—of the later spot market equilibrium on their prior forward market behavior.   

 The principal goal of the present investigation is, therefore, to characterize and 

analyze the inter-market incentive effects that exist in a multi-settlement market.  

Achieving a solid understanding of such effects is the first step toward determining a 

well-founded and internally consistent PCBB, a task that itself is beyond the scope of this 

work.   

1.4.2 Forward contracting and market power assessment 

Long-term forward contracts for energy generation had been a common feature of the 

electricity industry before restructuring, and they continue to play a role in today’s more 

competitive environment.  They have been instrumental in providing a secure return on 

investment, thereby facilitating project financing.  Once an investor is committed to a 

                                                 

27 Ignoring start-up and no-load costs, and any other non-convexities of firms’ cost functions.   
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project, such long-term contracts also help to alleviate the hold-up problem.28  This 

subsection outlines in more detail the extension of market power analysis to consider 

markets for forward contracts.   

 Short-term (e.g., day-ahead) forward contracts for energy—a more recent 

financial innovation—trade in centrally-cleared markets organized by most U.S. ISOs.  

These contracts enable both hedging of spot (e.g., real-time) prices for both buyers and 

sellers, thus reducing risk, and financial speculation which enhances liquidity in the short 

run.  If the forward market is a credible price benchmark, this can facilitate development 

of futures and options markets for electricity in the longer run.  These markets, in turn, 

are likely to narrow spreads in the various markets, and will provide market participants 

with more flexibility than would long-term bilateral contracts.  Assuming a reasonably 

liquid market, it will be easier and more efficient for market participants to use these 

financial derivatives rather than to renegotiate a bilateral contract when circumstances 

change (since contractual counterparties have opposing interests in such renegotiations).  

A market in short-term contracts can fulfill the additional function of price discovery, 

allowing market participants to profitably exploit technical flexibility.  Contracts also 

support generator scheduling and unit commitment, providing a baseline for potentially 

profitable rescheduling (e.g., through “Schedule Adjustment Bids” in the (former) 

California PX).   

 Multi-settlement markets—that is, forward and spot markets that clear at distinct 

points in time—are a common feature of competitive electricity markets around the 

                                                 

28 The hold-up problem is the ability of opportunistic regulators or a monopsonistic buyer to 
appropriate the scarcity rents from illiquid fixed assets (e.g., electricity generation plants) once the 
investment is sunk by permitting spot prices to cover only marginal cost.    
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world.29  The following electricity markets feature a multi-settlement market structure 

(Jamasb and Pollitt 2001, 17–18): Australia (New South Wales, Queensland, Victoria), 

Canada (Ontario), Colombia, England and Wales, France, Ireland, New Zealand, 

Nordpool (Finland, Norway, and Sweden), and the United States (PJM, New York, New 

England, and proposed in the Midwest (Midwest ISO 2004)).  The intertemporal 

character of multi-settlement markets raises the following policy issues regarding design 

and regulation of these markets:  

1. Both ex ante market design and ex post assessments of electricity spot market 

performance need to take into account (a) how forward contracting changes the 

expected payoffs from (and hence incentives for) spot market activity, and (b) 

what these effects imply for the assessment of market power in a multi-settlement 

market.   

2. How may we evaluate the performance of the forward market itself?  For 

example, is there a perfectly competitive behavioral benchmark that applies to the 

forward market in isolation?  Or, does assessing market power in multi-settlement 

markets require joint evaluation of behavior in forward and spot markets?   

Overall, the theoretical foundation for understanding and assessing market power in 

multi-settlement markets is weak and incomplete.  Questions such as these are only 

                                                 

29 In general, a multi-settlement market is a sequence of markets for a product that includes  

1. at least one “forward market,” in which buyers and sellers may conclude financial contracts for  
  later delivery, and  

2. a “spot market,” which clears contemporaneously with delivery of the product.   

While the approach outlined here could, in principle, be extended to include two or more forward markets, 
this thesis considers a single period of forward trading preceding the spot market.  Market participants may 
transact in both the forward and spot markets, modifying their forward positions in the later spot market, if 
they choose.  In this thesis, we take forward contracts to be legally binding.   
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beginning to be addressed by the relevant academic literature (reviewed in section 1.5 

below).  The practical significance of these lacunae has been particularly acute in the 

context of California’s electricity markets.  The original California market design of 

centrally-organized forward and spot markets for energy (and ancillary services) was an 

early and salient example of a multi-settlement market.  In this environment, market 

power analyses based on the conventional single-market model have been contentious 

and a target for criticism.  Quan and Michaels (2001, 100), for example, “ . . . believe that 

analyses of the [California] ISO and PX have often reached conclusions about market 

power on the basis of abstractions that obscure and misinterpret important aspects of 

competitive behavior.”   

 One early study of the California markets by the Market Monitoring Committee 

(MMC) of the California Power Exchange (1999) evinces the difficulties to which Quan 

and Michaels allude.  The MMC’s study proposed (p. 58) to “assess a firm’s perceived 

market power by calculating the Lerner Index at each quantity level it bids [in the PX’s 

hourly energy auction], and then averaging the Lerner Index values over the whole bid 

curve.  Specifically, for each hour we used the firm’s actual bid curve and our estimate of 

its marginal cost to calculate the weighted average gross margin.”  Thus, the MMC 

defines a PCBB for forward market bidding behavior based on marginal production cost.  

It denotes this as the “Bid-Markup Index (BMI),” defined algebraically as  

 ( ) ( )
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( )Max Q t  =  Maximum quantity offered at any price at or below $250/MWh in hour t  

( ),q tρ  =  Bid price at which the firm offers quantity q in hour t  

C′   =  estimated marginal cost of the firm.   

 Elsewhere in the report, the MMC recognizes the potential importance of 

opportunity costs introduced by the presence of the later spot market (see, e.g., their 

discussions on pp. 12–13 and 50–53).  Moreover, the MMC is ultimately cautious in 

drawing conclusions regarding the exercise of market power in this novel and rapidly 

evolving market environment.  The MMC’s explicit choice of a marginal cost-based 

benchmark as a PCBB would be placed on firmer conceptual footing, however, if 

supported by a formal model.   

 Borenstein, Bushnell, and Wolak (2002) also study market power within the 

California markets.  They argue that forces of arbitrage across the spot and forward 

markets will tend to make prices in these markets converge, and find that such price 

arbitrage is supported by their data.30  Given these observations, the authors’ use of an 

estimated marginal production cost function for fossil-fuel generation31 as the PCBB for 

energy bid into either market is internally consistent.  In the present work, we do not 

assume arbitrage in the sense of Borenstein, Bushnell, and Wolak, but instead take 

                                                 

30 Over their sample period of June 1998 to October 2000, “the PX average price was not 
significantly greater than the ISO average price” (Borenstein, Bushnell and Wolak 2002, 1384).  If one also 
invokes the rational expectations assumption, under which agents (unobserved) ex ante expectations are 
consistent with ex post realized price distributions, then we may conclude that for their sample period, spot 
and forward market prices are equal in expectation.  See also Borenstein, Bushnell, Knittel, and Wolfram 
(2001).   

31 The authors focus on residual demand—that is, total demand net of demand met by non-fossil 
fuel generation—in the market power analysis.  The estimated marginal production cost for fossil-fuel 
generation accounts for generator efficiency and availability, fuel costs, and variable operating and 
maintenance expenses.   
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demand to be strictly risk averse32 (while assuming supply to be risk neutral).  Under 

these more general circumstances, it is no longer clear that marginal production cost is 

the appropriate PCBB for the forward market.   

 Multi-settlement markets raise issues of bidding based on opportunity costs and 

scarcity, each of which is distinct from market power as defined above.  Distinguishing 

these issues both conceptually and empirically has been the subject of much debate and 

confusion.  In the paragraphs below, we briefly contrast these concepts with market 

power.   

 Market power vs. bidding based on opportunity cost.  Marginal opportunity cost 

(“MOC”) for a firm is the marginal revenue from the highest-valued alternative sales 

opportunity for an increment of output.  In electricity markets, such outside options—that 

is, alternative market opportunities for a given increment of generating capacity—are the 

rule rather than the exception.  Such possibilities may be due simply to geography, such 

as the prospect of exporting power outside of a given regional market.  Alternatively, the 

architecture of electricity markets may offer these opportunities, for example, the 

chance—within a given regional market—to sell ancillary services (see n. 18), instead of 

selling into a forward energy market.  Each such alternative opportunity is associated, at 

least in principle, with an MOC.  When such opportunities exist, the conceptually 

appropriate benchmark for assessing the competitiveness of market behavior (e.g., a 

firm’s SF bids) would be the greater of marginal production cost (MPC) and MOC (see, 

e.g., Borenstein, Bushnell and Wolak 2000, 6–7).   

                                                 

32 This assumption motivates the derivation (in chapter 6 of the present work) of an endogenous 
forward market demand function.  In our framework, we may model risk neutrality of demand as a limiting 
case by permitting the parameter capturing demand’s risk aversion (see subsection 6.2.2) to approach zero.   
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 In the multi-settlement SFE model, there is a (probabilistic) opportunity cost in 

making forward market commitments, even though financial contracts may be unwound, 

or reversed, in the spot market.  Such opportunity cost arises because of the chance that a 

generator might contract forward to sell quantity fq  at a contract price fp , which may 

turn out to be less than the later spot price, sp .  In a competitive equilibrium, we should 

expect this risk to be reflected in contract reservation prices (i.e., forward market bids), 

both for firms exercising market power as well as for perfectly competitive firms.   

 Market power vs. scarcity.  In a given competitive market equilibrium, the 

difference between a particular generator’s revenue and its total variable costs is 

commonly referred to as scarcity rent.  Scarcity rents contribute to covering generators’ 

fixed costs.  They are particularly important for peaking generation capacity, which 

operate for relatively few hours each year.  If sufficient over time, scarcity rents can also 

provide the necessary incentive for investment—either by existing market participants or 

new entrants—in new generation, transmission capacity, or demand management 

technologies.  Absent capacity withholding, however, there is no welfare loss associated 

with the existence of scarcity rents (rather, only a wealth transfer), and therefore, no 

exercise of market power.   

The present model assumes no generation capacity limits, and so will not address 

the traditional notion of scarcity directly.  However, a strictly increasing marginal 

production cost function—which we do assume—serves, in effect, as a soft capacity 

constraint: it increases the average opportunity cost (see above) of firms’ forward market 

positions.  In this sense, then, scarcity will play a role in the multi-settlement SFE model 

analyzed here.   
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1.5 Existing literature  

As in other settings, simple models of quantity or price choice under the Cournot or 

Bertrand frameworks have formed the basis of many studies of electricity market 

competition.  As subsection 1.3.3 explained, we may view the SFE framework as a 

generalization of these simpler competitive models, and one, in particular, having a 

greater degree of verisimilitude to the architecture of many competitive electricity 

markets.  Accordingly, in this section’s review of relevant literature, we focus primarily 

on single-settlement SFE models and studies of multi-settlement markets.  Kamat and 

Oren (2002) cite additional relevant sources and provide a useful overview of recent 

work on market power in competitive electricity markets.   

1.5.1 Single-settlement SFE models  

Klemperer and Meyer (1989) (“KM”) characterize a Nash equilibrium in SFs under 

uncertainty for an oligopoly; these equilibrium SFs map market price into a level of 

output.  In their model, suppliers bid SFs once into a spot market that is cleared 

simultaneously with physical production.  As noted above in section 1.3, the advantage of 

supply functions as strategies—as opposed to fixed prices or quantities—is that such 

functions permit suppliers to adjust output optimally as a function of price in the face of 

changing or uncertain conditions, for example, uncertainty in demand.  KM prove the 

existence of a Nash equilibrium in SFs for a symmetric oligopoly.  If the support of the 

stochastic demand parameter in this model is unbounded above,33 there exists a unique, 

linear SFE.   

                                                 

33 And marginal cost and demand are affine for sufficiently large quantity and price, respectively; 
see Klemperer and Meyer (1989, 1261).   
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 Green and Newbery (1992) and Bolle (1992) were the first authors to apply KM’s 

SFE framework to model (single-settlement) electricity markets.  Green and Newbery 

analyze the British electricity supply industry which, for several years following the 1990 

privatization of the Central Electricity Generating Board, primarily comprised two 

dominant generating firms.  They find, like KM, a range of SFEs when the possible 

variation in demand is bounded.  This range is narrowed, however, when they further 

assume the firms to be capacity-constrained.  The authors simulate the British spot 

market, and include some scenarios that allow for competitive entry.  They find, 

disconcertingly, that even the lower-priced equilibria result in considerable welfare 

losses.  Entry does cause incumbents to bid somewhat lower prices, although the cost in 

welfare terms of the additional investment is excessive.34  Bolle (1992) similarly 

considers SF competition in an electricity spot market, although he does so for a 

hypothetical market setting.  Like the previous authors, he finds a continuum of SF 

solutions.  In contrast to Green and Newbery, Bolle imposes no non-decreasing constraint 

on the equilibrium SFs which he derives.  In some of Bolle’s scenarios, the equilibrium 

SFs are indeed downward-sloping.  This suggests that such a non-decreasing constraint—

a common feature in real-world electricity markets—may indeed be binding on SFE 

solutions.35  A later paper by Bolle (2001) introduces price-sensitive bid functions for 

both supply- and (some) demand-side market participants competing in a single spot 

market.  He models the remainder of the demand-side entities as non-strategic and having 

a stochastic level of demand.  Bolle finds that, if this non-strategic component of demand 
                                                 

34 See Mankiw and Whinston (1986) for a fuller exposition of this phenomenon.   

35 More recently, Baldick and Hogan (2001) have characterized the effect of non-decreasing 
constraints on SFEs.   
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is sufficiently large, equilibrium prices may be considerably above marginal cost.  In 

addition, under this condition, market participants might employ mixed strategies.   

 Rudkevich, Duckworth, and Rosen (1998) develop a useful extension of the 

single-settlement SFE models of KM and Green and Newbery (1992) discussed above.  

Namely, the authors relax KM’s convexity and differentiability assumptions on firms’ 

marginal cost functions, permitting these to be step functions.  For simplicity, the authors 

consider the case of identical firms.  The central analytical result of the investigation is an 

expression for the market price that results from a symmetric Nash equilibrium in SFs.  

This price depends on the (stepped) system marginal cost function, instantaneous 

demand, the maximum demand in the relevant period, and the number of firms.  

Rudkevich, Duckworth, and Rosen use electricity supply and demand data from 

Pennsylvania (in 1995) to investigate the properties of this model.  The authors compute 

the average price markups over short-run marginal cost that result from SF bidding in 

Nash equilibrium.  They observe that, while markups do decrease with the number of 

firms n, electricity prices in the model remain significantly higher than the short-run 

marginal cost of generation, even for relatively large n.  As an example, letting 10n = , 

average markup over marginal cost is still 11%.  For fixed n, the authors also investigate 

how markups vary with (1) the level of capacity non-availability, and (2) the relative 

error in the day-ahead demand forecast, finding that markups increase monotonically 

with both of these factors.  They conclude that current Commission policies and U.S. 

antitrust guidelines may not be adequate to mitigate market power in bid-based, 

competitive electricity markets.   

 A commonly-cited difficulty in applying SFE models to electricity markets is 



 

  28 

their computational intractability, particularly when attempting to model transmission 

network interactions.  To overcome this problem, some authors have designed electricity 

market models that are readily computable.  Day, Hobbs, and Pang (2002), for example, 

introduce a “conjectured supply function (CSF)” approach which, while it resembles an 

SFE model in some respects, is more closely akin to a general conjectural variations 

model.  A CSF for a given generating firm represents its subjective beliefs concerning the 

aggregate reaction of its rivals to a change in the market price.  Based on a thirteen-bus 

model of the England and Wales transmission system, the authors find that the CSF 

approach yields market prices that are “generally more consistent” (p. 8) with those 

actually observed in England and Wales, compared to the Cournot model.  The CSF 

model, however, is subject to the same criticisms as other conjectural variations models.  

First among these is an inconsistency between conjectures and firms’ actual strategies, 

absent an explicit requirement of “consistent conjectures” (see, e.g., Bresnahan 1981), 

which Day, Hobbs, and Pang do not impose.  Other shortcomings include restrictive 

functional form assumptions (the authors use affine CSFs), and arbitrariness in the choice 

of conjectural parameter (i.e., either the slope or intercept of the affine CSFs) as well as 

in the conjectured value of the chosen parameter.   

 Day and Bunn (2001) offer another computational modeling and simulation 

approach to understanding strategic behavior among SF bidders in electricity markets.  

Rather than using SFs that are everywhere differentiable, the authors use a grid of 

discrete price and capacity levels for each competitor over which they define piecewise 
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linear SFs.36  Since fully flexible SFs of this form produce a nonconvergent cycling of 

solutions,37 they impose a bounded rationality constraint on generators’ behavior, under 

which a firm changes the price of only one or two of its plants each day.  Day and Bunn 

apply their methodology to analyze the 1999 generating capacity divestitures in England 

and Wales.  In simulating competition among the three incumbent generating companies 

and two hypothetical purchasers of varying portions of the incumbents’ capacity, the 

authors find that the increase in the number of competitors from three to five has a 

marked impact on bid-cost margins.  Interestingly, whether incumbents divest 25% or 

50% of generating capacity to the two new competitors is of secondary importance in 

terms of the effect on bid prices.  The authors also emphasize the effect of varying 

degrees of demand elasticity, concluding that at low elasticities of demand (e.g., in the 

short run), the divestiture of 40% of incumbents’ capacity that occurred in 1999 in 

England and Wales would not mitigate incumbents’ market power.  Specifically, they 

find prices in this case in excess of 20% above short-run marginal cost.  In the longer run, 

naturally, they expect higher demand elasticities and market entry to exert downward 

pressure on these bid-cost margins.   

 Recently, the California ISO and London Economics International LLC (2003) 

have developed a comprehensive methodology and computer model for evaluating 

transmission investments that incorporate strategic SF bidding within a transmission 

network.  The central conceptual problem that the model addresses is the interdependence 

                                                 

36 This discretization facilitates the application of an optimization procedure to derive generators’ 
SFs, updating each firm’s SF in successive periods to maximize profits based on its rivals’ current actions.   

37 Day and Bunn conjecture that this phenomenon is indicative of the existence of mixed-strategy, 
rather than pure-strategy, Nash equilibria.   
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of optimal paths for generation and transmission investment (temporally and spatially), 

given a competitive environment characterized by decentralized, market-based decision 

making.  The main elements of the authors’ methodology are simulating imports and 

exports of power; modeling availability, commitment, and dispatch of hydroelectric and 

thermal generation; characterizing the entry of new generators over time; and modeling 

market power.  Regarding market power, the authors incorporate two complementary 

approaches to modeling generators’ strategic behavior:  

1. A game-theoretic model of strategic bidding (in a discrete strategy space) in 

which firms conjecture that rivals’ current bids are functions of profit-maximizing 

bids from previous iterations   

2. An empirical approach that estimates the historical relationships between data 

characterizing the state of the market38 and observed price-cost markups   

The authors propose to apply the methodology to evaluate the benefits of a proposed 

expansion of transmission capacity on “Path 26,” the transmission link connecting 

Southern and Central California.   

 While the present work is not yet computationally solvable in a network setting, 

the multi-settlement SFE model compares equilibrium strategies that are mutually 

consistent in all states of the world.  That is, in the equilibria we study, a firm’s 

conjectures concerning its rival’s strategy coincide precisely with the rival’s actual 

strategy.  We do restrict the numerical analysis of chapter 7 to the case of affine spot 

                                                 

38 These data include—for each hour and zone—the residual supply index, the total uncommitted 
capacity of the largest supplier, the system load, and seasonal and zonal dummy variables (California 
Independent System Operator and LLC 2003).   
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market demand functions, affine marginal costs, and affine spot market SFs.   

1.5.2 Multi-settlement models 

Multi-settlement models can capture the potential for firms to take advantage of 

interactions between the forward and spot markets.  The present work proposes an 

extension of the supply function equilibrium (“SFE”) framework developed by KM to a 

multi-settlement market, whereby demand in each market is uncertain.  To the author’s 

knowledge, the present work is the first attempt to use the SF behavioral assumption in a 

sequential market framework.  As intuition would suggest, the resulting SFE in this 

setting is no longer characterized by a single SF for each supplier, as in KM’s model; 

rather, a sequence of SFs—one in each market—constitutes a supplier’s subgame perfect 

Nash equilibrium (SPNE) strategy in this multi-market framework.39   

 Other authors (e.g., Allaz 1987; Allaz and Vila 1993) consider how the 

introduction of one or more forward markets, cleared in advance of the spot market, 

affects competitors’ behavior and market outcomes.  Of particular interest is the effect on 

the spot market equilibrium: namely, do forward transactions make the spot market more 

or less competitive?  Allaz and Vila (1993) find that forward market trading is 

detrimental for firms and beneficial for consumers.  Moreover, as the number of forward 

markets40 gets large, the outcome in their model approaches the competitive solution.  

More recently, Ferreira (2003) derives a contrasting result for the case of an infinite 

number of forward markets.  Namely, he finds a set of subgame perfect equilibria that 

                                                 

39 Accordingly, unless otherwise specified, the modifier “equilibrium” denotes, throughout this 
work, the equilibrium concept of subgame perfection (see subsection 3.1.2).   

40 That is, the number of periods in which there is forward trading.   
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can sustain any outcome between perfect competition and the Cournot outcome.   

 Looking at how forward markets shape behavioral incentives, Allaz (1987, 18) 

argues that there are multiple rationales for taking a forward market position.  

Specifically, he identifies three different motives—speculative, hedging and strategic 

motives—for forward market participation:  

•  Speculative motives arise from an attempt to profit from price differences 

between various markets, for example, between a forward market and the spot 

market.  A special case of speculation is pure financial speculation, in which firms 

do not assume a position in the spot market; instead, they settle any forward 

obligations financially based on the spot market outcome.   

•  Hedging motives come about from risk aversion in the face of uncertainty.  

Hedging amounts to purchasing insurance, in other words, accepting a lower 

expected return in order to achieve a reduction in the variance of returns.   

•  Strategic motives lead market participants to assume forward positions in order to 

influence the spot market equilibrium.   

Allaz (1987, 42 (n. 43)) observes that, under uncertainty, these motives can partly 

“overlap” in the sense that, for example, “the total position taken [in equilibrium] in the 

futures market is less than the sum of the strategic and hedging positions if taken 

separately.”  Allaz’s focus is primarily on strategic considerations, noting that in an 

oligopolistic setting with perfect foresight (no uncertainty), the strategic motive becomes 

the only rationale for forward trading.  This is because in an equilibrium under perfect 

foresight, the futures price will be equal to the spot price.  Thus, no profits will be made 

between the forward and spot markets, eliminating any speculative motive.  Furthermore, 
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because there is no uncertainty in Allaz’ model, there is also no need to hedge.   

 Allaz (and Vila) rely primarily on an assumption of Cournot conjectures rather 

than the SFs we focus on in this work.41  In the present work, we consider SFE 

competition in a multi-settlement market.  We derive a system of ordinary differential 

equations implicitly characterizing firms’ optimal forward market bids, given 

expectations concerning the spot market.  These bids will not, in general, be ex post 

optimal given the realization of spot market demand.  Rather, we will find an ex post 

forward market optimum assuming an ex ante expected optimum in the spot market.42  

We would thus expect that for the multi-settlement market with SFE bidding, strategic 

motives for forward market participation will be present.  In equilibrium, our suppliers 

also have speculative motives43 for participating in both the forward and spot markets.  

Under our assumption that suppliers are risk neutral, however, suppliers have no motive 

to hedge.  Chapter 8 continues this discussion, comparing the results obtained from the 

present model with Allaz’s previous work cited above.   

 Later work by Newbery (1998) examines a similar—but distinct—sequential 

market setting of forward (or “contract,” in his terminology) and spot markets for 

electricity in England.  His principal findings concern the effect of contracts on entry.  

Namely, contestable entry and a liquid contract market can enhance efficiency by 

reducing welfare losses due to the market power of incumbents.  Also, capacity 

                                                 

41 In his 1987 thesis, Allaz does examine several other behavioral assumptions for spot market 
competition, though not including SFE.   

42 See subsection 3.4.3 for a more precise statement of this notion of optimality.   

43 They are not purely financial speculators, however, since they produce and sell output in the 
spot market.   
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constraints tend to attract entry and will increase competition to the extent that new 

entrants can set prices.  Newbery considers general (i.e., nonlinear) SFs and has all 

demand passing through the spot market; that is, the contracts in his model are purely 

financial in nature, as are those we study here.   

 With respect to the present work, it is Newbery’s modeling of competition in the 

forward contract market that is of particular interest.  In this market, Newbery has 

generating firms making “take-it-or-leave-it” offers of a fixed contract quantity at a 

specified price to consumers.  That is, rather than an SF in the forward market, firms 

offer a point in price-quantity space.  Newbery analyzes rational expectations equilibria 

assuming risk-neutral traders, which together imply that the forward contract price is an 

unbiased estimate of the subsequent spot market price.44  Newbery acknowledges that 

more complex contractual forms are possible which could serve to reduce risk for (risk-

averse) marketers who have committed themselves to selling at fixed prices and are thus 

exposed to input price risk.  He concludes, however (p. 734, n. 14), that “[l]ittle would be 

added to the equilibrium-selection story by considering more complex contracts.”45  A 

more complex contractual environment—that is, contracts based on SF bidding in the 

forward market—is indeed apposite for modeling multi-settlement electricity markets, 

although this entails addressing the issue of equilibrium selection to which Newbery 

alludes.  Demand for forward contracts in the present model is uncertain, implying that 

                                                 

44 In equilibrium, he finds that the terms offered by suppliers will be such that consumers are 
indifferent between buying and not buying the contracts; he resolves this knife-edge case in favor of 
consumers purchasing the offered contract.   

45 Many non-cooperative games—including the one developed here—have multiple equilibria.  
Equilibrium selection refers to the process of winnowing down the set of these equilibria—perhaps to a 
unique equilibrium—by invoking plausible (if sometimes ad hoc) criteria such as a Pareto ranking of 
equilibria, Schelling’s (1960) “focal points,” stability considerations, etc.   
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suppliers must submit SF bids in order to respond optimally to this uncertainty.  

Moreover, the rational expectations assumption—that is, the forward market price equal 

to the expected spot price—will not hold, absent “sufficient” risk-neutral agents in the 

model.   

 Like Newbery (1998), Green (1999a) also examines forward (contract) and spot 

markets for electricity in England and Wales.  In his paper, duopoly electricity generators 

each choose a quantity of contracts in a forward market while holding a conjectural 

variation concerning the competitor’s forward market response, itself a contract quantity.  

In the subsequent spot market, each firm bids an SF.  Green does not fully motivate his 

choice of asymmetric behavioral assumptions between the forward and spot markets: the 

assumption of SFE in the spot market reflects institutional bidding rules for the (now 

defunct) Electricity Pool, while the assumption of quantity choice in the forward market 

appears arbitrary.  It may be that electricity contracts in England and Wales tend to 

specify fixed quantities over a wide range of prices, but Green is silent on whether this is 

so.  In the spot market, Green restricts attention to linear SFs, and as in Newbery (1998) 

above, has all demand passing through the spot market.  He considers uncertainty in an 

appendix to the paper (Green 1999b) in which the intercept of a linear demand function is 

stochastic when suppliers choose contract quantities, but this uncertainty is resolved 

before suppliers choose their spot market SFs.   

 The present framework differs in several important respects from Newbery (1998) 

and Green (1999a):  

1. Here, we assume that firms bid SFs in both the forward and spot markets.  The 

assumption of SF bidding in the forward market reflects actual bidding 
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protocols46 in centrally-cleared competitive electricity markets, and thus is 

arguably a more realistic treatment of forward contracting in actual electricity 

markets.  We observe that, given the opportunity in such markets, firms choose to 

bid an SF rather than a fixed quantity or price.47  Accordingly, our behavioral 

model needs, at the least, to accommodate—and indeed, justify—such a choice.  

 Newbery’s concern with equilibrium selection noted above is relevant to 

the present work as well, as we will also encounter multiple equilibria in the 

general case studied here.48  A simplified example (see chapter 5) in which we 

restrict the analysis to consider only affine spot market SFs has a unique solution 

in the spot market.  In the forward market, a numerical approach to equilibrium 

selection appears to yield unique optima.  We cannot ultimately guarantee, 

however, that the forward market SFs that we compute constitute globally optimal 

actions for each firm, rather than merely local optima.   

2. There is a demand function in both the forward and the spot markets; each of 

these demand functions, in turn, is subject to exogenous uncertainty as firms 

submit their SF bids.  Forward market demand is endogenous to the expected spot 

                                                 

46 These protocols (e.g., California Power Exchange Corporation (2000), Schedule 4, “Bidding 
and Bid Evaluation Schedule,” Section 3.4) commonly specify that participating traders or suppliers must 
submit a strictly increasing, piecewise linear bid function in the hourly forward energy market.  This 
function gives the quantity of energy that the bidder is willing to supply as a function of the market-
clearing price.   

47 In addition, to the extent that bilateral contracts have the character of SFs—that is, a contract 
quantity that increases with price—such contracts would also lend themselves to being modeled via the 
SFE framework.   

48 Indeed, the problem of multiple equilibria will be aggravated by our assumption of SF bidding 
in the forward as well as the spot markets.  As Newbery (1998, 733) writes, “it would seem natural to 
model each market as a supply function equilibrium, but not only is there typically a continuum of such 
equilibria, to each spot market equilibrium there is typically a continuum of contract market equilibria, 
creating a double infinity of solutions.”   
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market equilibrium and to consumers’ private signals concerning the level of spot 

market demand.  Spot market demand also arises endogenously given the 

technological attributes of consumers and their utility functions.   

3. We do not entirely restrict ourselves to affine SFs, as Green does (though we only 

solve the aforementioned affine example numerically).   

 More recently, Batstone’s (2002) dissertation examines the effects of storage, 

forward markets, and strategic behavior on competitive electricity markets.  The author 

focuses on characterizing and assessing the risk to which market participants are exposed, 

and forward contracts’ role in hedging this risk.  In a two-period model comprising a 

forward and a spot market, Batstone finds that by exercising market power, strategic 

suppliers can increase risk for consumers while increasing profits.  Similar to the 

approach in chapter 6 of the present investigation, Batstone derives an endogenous, 

downward-sloping, forward market demand function, assuming that consumers are risk 

averse and that they know the distribution of spot market outcomes.49  The author’s 

“long-run equilibrium” concept50 (Batstone 2002, subsec. 10.2.2) together with his 

allowance for “market destabilisation” (ch. 11) amount to a closed-loop51 (or “feedback”) 

model of the forward and spot markets, an information structure which we invoke in the 

                                                 

49 The author distinguishes between the behavior of consumers whose load is unresponsive to 
price from those whose load is price-sensitive.  Given a spot market price distribution, a consumer in the 
former class maximizes the utility of her total cost of electricity, while a consumer in the latter class 
maximizes the utility of her net benefit given a spot market demand function.  In the present work, we 
abstract from this distinction among consumers.   

50 This equilibrium provides for a consistency condition to close the model, under which 
generators and consumers compute distributional moments of spot prices that are consistent with (1) the 
distribution of hydrological uncertainty and (2) the market equilibrium process of price formation.   

51 See subsection 3.1.1 below for further discussion of the closed-loop concept.   
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present work, as well.  The present investigation is distinct from Batstone’s model, 

however, in some fundamental respects.  First, we allow for demand uncertainty in both 

the forward and spot markets, while Batstone takes demand in each of these markets to be 

deterministic.  The sole source of risk facing suppliers—hydroelectric generators—in 

Batstone’s model is input price risk in the form of marginal water values, which are 

modeled as stochastic due to uncertain future hydrological conditions.  In the present 

work, in contrast, we assume that cost functions are deterministic.  Second, consistent 

with the assumption of uncertain demand, the present investigation posits competition in 

SFs in each of the two markets, while Batstone assumes Nash-Cournot conjectures in 

both markets.   

 As illustrated by the literature beginning with Green and Newbery (1992) and 

Bolle (1992), the SFE framework developed here is naturally suited to model bid-based, 

multi-settlement electricity markets.  In the present work, we focus on theoretical 

foundations, suppressing all but the essential institutional details of actual electricity 

markets.  The central results of this investigation are the derivation and computation of  

1. strategic suppliers’ optimal bidding strategies and  

2. the optimal behavior for a price-taking consumer  

within the multi-settlement market setting described above.   

1.6 Outline of the thesis  

The next chapter, chapter 2, provides a concise overview of the evolution of regulatory 

policy toward market power in the U.S. electricity sector.  Chapter 3 then develops the 

multi-settlement SFE model.  After introducing key concepts used in the model and some 

notation, this chapter poses the forward market optimization problem for a duopoly 
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supplier bidding SFs in both the forward and spot markets.  In chapter 4, we solve this 

optimization problem analytically for the general case.  The sequential nature of the 

problem suggests backward induction as a solution algorithm.  This chapter derives 

conditions that implicitly characterize the firm’s spot and forward market SFs.  To obtain 

an explicit solution for the respective markets’ SFs, chapter 5 introduces a number of 

simplifying assumptions within the model: affine marginal cost and spot market demand 

functions and affine spot market SF bids.  While these simplifications entail some loss of 

generality, they serve to sharpen the model’s results.  Next, chapter 6 specifies the 

characteristics and behavior of consumers.  In particular, given risk-averse consumers, it 

describes how (stochastic) forward and spot market demand functions might arise 

endogenously.  Relying on the simplifying assumptions of chapter 5, chapter 7 derives a 

singular quasilinear system of ordinary differential equations characterizing the forward 

market problem and examines the qualitative properties of solutions.  For a specific 

numerical example, this chapter then performs comparative statics analysis with respect 

to the model’s exogenous parameters, and compares welfare results of the multi-

settlement SFE model with those of alternative competitive assumptions and market 

architectures.  Based on these results, chapter 8 argues that we might usefully view 

forward market positions as strategic commitments.  It decomposes the motive for 

forward market activity by suppliers in the multi-settlement SFE model into three distinct 

effects: a direct effect, a settlement effect, and a strategic effect.  This chapter also 

outlines some extensions that would enhance the model’s realism and highlights avenues 

for further research.  Numerous appendices to the thesis collect proofs and other 

mathematical results.   
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The work I have set before me is this . . . how to get rid of the evils of competition while 
retaining its advantages.   

—Alfred Marshall 
 

We legislate against forestalling and monopoly; we would have a common granary for 
the poor; but the selfishness which hoards the corn for high prices, is the preventative of 
famine; and the law of self-preservation is surer policy than any legislation can be.   

—Emerson, Nature: addresses, and lectures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 The U.S. policy response to horizontal market power in 

electricity generation  

THIS CHAPTER analyzes how public policy—particularly on the federal level—has 

responded to horizontal market power as electricity industry restructuring has 

progressed.52  Section 2.1 reviews the historical evolution of public policy toward 

mergers and market-based rates in the electricity industry.  Next, section 2.2 focuses on 

the comparatively recent developments of market power monitoring and mitigation 

activities, and examines current policies in the various regional markets across the United 

                                                 

52 Bushnell (2003b); Hieronymus, Henderson, and Berry (2002); and Roach (2002) each provide a 
useful review and critique of policies to address market power in the various contexts considered in this 
chapter.   
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States.  Section 2.3 concludes.   

2.1 Historical development 

As early as Weiss (1975), studies of electricity industry structure and regulation remarked 

on the potential for the exercise of market power, in the event that regulation of 

generation were relaxed.53  In their seminal 1983 book, Markets for Power: An Analysis 

of Electric Utility Deregulation, Paul Joskow and Richard Schmalensee devote an entire 

chapter (ch. 12) to the subject, examining short- and long-run competition in generation 

and related antitrust issues.  They note (p. 198) that “long-run prospects for market forces 

to reduce existing levels of concentration seem dim,” and, regarding remedies for 

potential competitive problems in generation, observe that “[e]xisting antitrust rules may 

not be well-suited to the problems posed by deregulation in this sector; the features of 

better rules are not apparent.  But the need to create better rules before deregulation is 

clear.”  These observations foreshadow the extensive conceptual and policy debates on 

market power and on the appropriate policy responses in the latter half of the 1990s as the 

restructuring process unfolded.   

 Historically, public policy toward market power in the U.S. electricity industry 

took shape in two distinct arenas: (1) regulatory review of utility mergers and 

acquisitions, and (2) the use of market-based (as opposed to regulated) rates by utilities.  

We outline below the evolution of policy and the associated analytical methodologies in 

both of these arenas.   

                                                 

53 Weiss notes (p. 165) that “horizontal acquisitions by the largest utilities . . . could have serious 
anticompetitive effects,” although he is cautiously optimistic, on the whole, about potential economies from 
restructuring and from vertical unbundling, in particular.   
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2.1.1 Mergers  

Pursuant to federal and state antitrust statues, a variety of regulators require firms to 

demonstrate that proposed mergers or acquisitions would not significantly increase the 

likelihood of exercise of market power.  On the federal level, the Commission assumes 

the “leading role” in reviewing electric utilities’ merger applications; it must approve 

those that are consistent with the public interest (Pierce 1996, 30).  In addition, the 

Antitrust Division of the U.S. Department of Justice (DOJ) and the U.S. Federal Trade 

Commission (FTC) may conduct independent reviews to determine whether a proposed 

merger is consistent with U.S. antitrust laws.  Customarily, it has been the Antitrust 

Division that undertakes such assessments.  Rather than conducting its own review, 

however, the Antitrust Division has in practice limited its activity in the electricity sector 

to occasional participation in the FERC’s investigations (Frankena and Owen 1994, 13).  

In most states, public utility commissions or state attorneys general review proposed 

mergers’ effects on retail consumers and state utility regulation (Dismukes and Dismukes 

1996).  Although the domains of institutional responsibility for merger reviews are well-

defined by statute and reasonably settled in practice, the associated analytical framework 

for assessing market power in merger proceedings has evolved over the years along with 

electricity market architecture and structure (Federal Energy Regulatory Commission 

1996f, 1998).   

 The opinion of the Federal Power Commission (FPC), the FERC’s predecessor, in 

the Commonwealth Edison Company case of 1966 (Commonwealth)54 was an early 

                                                 

54 Federal Power Commission (1966, 926), aff’d sub nom. Utility Users League v. FPC, 394 F.2d 
16 (7th Cir. 1968), cert. denied, 393 U.S. 953 (1969).   
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landmark in the application of antitrust principles to electric utilities.  In Commonwealth, 

the FPC set forth six criteria that would guide its evaluation of proposed utility mergers:  

1. The effect of the proposed action on the applicants’ operating costs and rate levels  

2. The contemplated accounting treatment  

3. Reasonableness of the purchase price  

4. Whether the acquiring utility has coerced the to be acquired utility into acceptance 

of the merger  

5. The effect the proposed action may have on the existing competitive situation  

6. Whether the consolidation will impair effective regulation either by . . . [the 

Federal Power] Commission or the appropriate state regulatory authority  

For many years afterward, these six so-called “Commonwealth criteria” were influential 

in the FPC’s (and, after 1977, the FERC’s55) treatment of mergers.   

 The FERC’s approach began to change in the 1980s (see Pierce 1996, 31) with 

the recognition that greater competition in wholesale electricity generation would be both 

possible and socially desirable.56  The primary obstacle to such competition was utilities’ 

ability to exclude potential competitors (other utilities and “independent [i.e., non-utility] 

power producers (IPPs)”) from their markets by denying them equal access to their 

electricity transmission lines.  Having no statutory authority to dismantle this competitive 

                                                 

55 The FERC was created through the Department of Energy Organization Act on October 1, 1977.  
It inherited most of the functions of the Federal Power Commission which was eliminated by this Act.   

56 Competitive and regulatory developments in the natural gas industry (in which wholesale sales 
and interstate pipelines were also under Commission jurisdiction) were further advanced (Natural Gas 
Policy Act of 1978 1978; Federal Energy Regulatory Commission 1985, 1992a; Natural Gas Wellhead 
Decontrol Act of 1989 1989).  Increasingly, industry observers cited the accumulating experience and 
lessons from natural gas as a promising model for electricity industry restructuring (Pierce 1991).   
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obstacle directly, the Commission resorted to requiring merger applicants to provide open 

access to their transmission systems under Commission-approved terms (“open access 

transmission tariffs”).  In this way, the Commission began to address vertical constraints 

to competition by exercising its conditioning authority on a case-by-case basis.57  These 

merger proceedings naturally raised horizontal competitive issues, as well, which focused 

attention on mergers’ competitive effects (recall item 5 in the Commonwealth criteria 

above).   

 In the wake of the EPAct, utilities began to undertake mergers and acquisitions at 

unprecedented rates as they reacted to economic and institutional changes within the 

industry.  It was only in 1996 with its “Inquiry Concerning the Commission’s Merger 

Policy Under the Federal Power Act” and its subsequent “Merger Policy Statement” that 

the Commission explicitly reconsidered its application of the Commonwealth criteria 

(Federal Energy Regulatory Commission 1996a, 1996f).  In its Merger Policy Statement, 

the Commission asserted that it “will generally take into account three factors in 

analyzing proposed mergers: the effect on competition, the effect on rates, and the effect 

on regulation. [Further, the Commission’s] analysis of the effect on competition will 

more precisely identify geographic and product markets and will adopt the Department of 

                                                 

57 See Surratt (1998), Moot (1996, 141–42), and Pierce (1996, 30–33) for concise reviews of 
merger proceedings and the substantive issues involved during the late 1980s and early 1990s.  Later, 
pursuant to the 1992 EPAct, the Commission’s Order 888 (Federal Energy Regulatory Commission 1996d) 
required utilities under the Commission’s jurisdiction to file open access transmission tariffs.   
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Justice/Federal Trade Commission Merger Guidelines [DOJ/FTC Guidelines58] . . . as the 

analytical framework for analyzing the effect on competition [p. 3].”59   

 Appendix A of the Merger Policy Statement sets forth the Commission’s 

“Competitive Analysis Screen,” which details “a standard analytic method and data 

specification to allow the Commission to quickly determine whether a proposed merger 

presents market power concerns.”60  The methodology for evaluating a proposed merger 

under the Competitive Analysis Screen centers on comparing empirical measures of 

market concentration61 with threshold values drawn from the DOJ/FTC Guidelines.  The 

first step in the analysis is to define relevant geographic and product markets and to 

measure concentration in those markets.  The next step is to evaluate post-merger 

concentration levels and the (pre- to post-merger) change in concentration using the 

DOJ/FTC Guidelines’ concentration thresholds to indicate problematic mergers.   

 Numerous analysts have taken issue with the Commission’s contention that its 

Merger Policy Statement is consistent with the DOJ/FTC Guidelines.  Cox (1999, 28) 

notes, for example, that the Merger Policy Statement has been criticized for not following 

the DOJ/FTC Guidelines closely enough, particularly with respect to the method for 

defining the relevant market.  Frankena (1998a, 30–31) goes further, outlining five 

                                                 

58 Department of Justice and Federal Trade Commission (1992). 

59 Echoes of Commonwealth criteria 1, 5, and 6 from page 43 are apparent in this excerpt from the 
Commission’s Merger Policy Statement.   

60 Federal Energy Regulatory Commission (1996a, App. A, 1).   

61 Like the DOJ/FTC Guidelines, the Commission’s Competitive Analysis Screen proposes to 
measure market concentration by computing the so-called “Herfindahl-Hirschman Index (HHI)” for the 
relevant geographic and product markets.  For any market, the HHI is equal to the sum of firms’ squared 
market shares.  The HHI has two appealing properties: (1) it accounts for all firms in a given relevant 
market, and (2) it gives greater than proportional weight to larger firms’ market shares.  Stoft (2002, 344) 
explains the relationship between the HHI and the Cournot competitive model.   
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respects in which the Commission’s Appendix A methodology diverges from the 

DOJ/FTC Guidelines.  Because of these discrepancies, he concludes, the Commission’s 

Appendix A analysis does not constitute a reliable basis for determining the need for 

antitrust hearings or for fashioning appropriate remedies.  Frankena claims elsewhere 

(1998b, 2), moreover, that “[t]he Appendix A methodology for defining geographic 

markets leads to substantial violations of the competitive analysis screen standards for 

some mergers that would not create or enhance market power, and the Appendix A 

methodology produces no violation for some other potential mergers that would in fact 

create or enhance market power.”62  Finally, Morris (2000, 176) contends that the 

Commission’s Appendix A methodology appears to overstate a merger’s potential 

anticompetitive effects.  Compared with the results of a market simulation model63 using 

the same data set, Morris finds that the Appendix A methodology “identifies potential 

competitive concerns that appear not to exist.”  The author argues that the discrepancy 

arises because—unlike the simulation model—the Commission’s methodology for 

market power analysis in the merger context is inherently unrelated to the economic 

realities of the marketplace.   

 Moreover, several prominent officials have opined that existing laws and 

regulations are inadequate to address market power, should it arise in the course of 

                                                 

62 In particular, Frankena argues (1998b, 2) that the Appendix A analysis could easily produce 
misleading results with respect to situations involving (1) transmission constraints that limit purchases from 
multiple sellers and (2) sellers that face opportunity costs.  The issue of opportunity costs is central to 
understanding competition in multi-settlement markets, as explained in subsection 1.4.2 of the present 
investigation.   

63 Morris uses a standard production cost model for an electricity system: namely, a linear program 
that computes the production cost-minimizing dispatch to satisfy exogenous demands, with an explicit 
representation of the transmission network’s physical properties included in the constraint set.   
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electricity restructuring.  For example, Joel Klein, a recent head of the DOJ’s Antitrust 

Division (under the Clinton Administration), noted that “[t]he antitrust laws provide 

ample authority for the Justice Department to challenge anticompetitive conduct of 

various sorts, but we cannot challenge market structure itself.  In other words, to 

whatever extent restructured electric power markets are too highly concentrated to yield 

pricing at or near competitive levels, the antitrust laws provide no remedy” (Klein 1998).  

Klein’s deputy, A. Douglas Melamed, later observed that “[t]he antitrust laws do not 

outlaw the mere possession of monopoly power that is the result of skill, accident, or a 

previous regulatory regime.  Antitrust remedies are thus not well-suited to address 

problems of market power in the electric power industry that result from existing high 

levels of concentration in generation or vertical integration” (Melamed 1999).64  Thus, 

apart from remedying any shortcomings in analytical methodology, the Commission may 

require new enforcement authority to mitigate some instances of electricity sector market 

power outside the context of merger reviews.  Failure to create such authority may 

jeopardize the efficiency gains from electricity sector restructuring while creating 

oligopoly rents to suppliers with market power.   

 The comprehensive energy bill introduced in the Senate in February 2004 (Senate 

2004) would reform and clarify the Commission’s merger authority in several ways, but 

does not provide explicit guidance on the conduct of market power analysis in merger 

cases.  First, the bill raises the monetary thresholds for mergers and acquisitions to be 

                                                 

64 Melamed’s words echo the U.S. Supreme Court’s opinion in a seminal antitrust case, United 
States v. Grinnell Corp. (384 U.S. 563 (1966)), which established that market power (“monopoly power,” 
in the Court’s language) attained only “from growth or development as a consequence of a superior 
product, business acumen, or historical accident” is not objectionable under the U.S. antitrust statutes.   
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subject to Commission review.  Next, in evaluating whether a merger or acquisition is in 

the public interest, the Commission is to consider adequate protection of consumer 

interests, consistency of the transaction with competitive wholesale markets, and the 

effects on the financial integrity of the transacting parties (among other criteria that the 

Commission may deem consistent with the public interest).  In addition, the Commission 

is to develop procedures for expedited review of mergers and acquisitions, identifying 

classes of these transactions that normally meet these public interest standards.  The 

Commission is required to report annually to Congress any conditions imposed in the 

preceding year on utility mergers and acquisitions, and justify these under a public 

interest standard.  Finally, the Secretary of Energy is charged with studying the extent to 

which the Commission’s authority under section 203 of the Federal Power Act to review 

utility mergers and acquisitions is duplicated elsewhere, and with making 

recommendations to eliminate any unnecessary duplication or delays in such reviews.   

2.1.2 Market-based rates 

A combination of deregulatory legislation65 and technical advances in natural gas-fired 

generating technologies facilitated the growth of a competitive threat to incumbent 

utilities’ customer base from IPPs and “exempt wholesale generators (EWGs).”66  While 

the EPAct provided only that IPPs and EWGs could sell wholesale power to utilities, 

these producers along with large consumers (e.g., industrial plants) had natural incentives 

                                                 

65 In particular, the Public Utility Regulatory Policies Act of 1978, the Natural Gas Policy Act of 
1978, the Natural Gas Wellhead Decontrol Act of 1989, and the EPAct.   

66 Surratt (1998, 24).  Under the EPAct (U.S. Code, vol. 15, sec. 79z-5a), an exempt wholesale 
generator denotes an electric power producer (a utility affiliate or an independent) that sells electricity at 
wholesale and that the Commission has exempted from the provisions of the Public Utility Holding 
Company Act of 1935.   
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to pursue direct retail sales arrangements with each other.  Known as “retail wheeling,” 

realizing these transactions usually required access to utilities’ transmission lines.  Under 

the EPAct, the right to compel utilities to provide such (retail) access was reserved to the 

states.  By mid-1993—less than one year after passage of the EPAct—at least eight states 

had legislative or regulatory proceedings underway examining the merits of retail 

wheeling (Anderson 1993, 16–18).   

 One avenue that utilities pursued to meet this competitive threat was to seek 

authority from the Commission to use market-based rates (i.e., unregulated rates) for 

wholesale power sales.  Market-based rates give utilities flexibility with respect to rate 

levels and structure, which would be essential in retaining customers that were able, 

increasingly, to choose their electricity supplier.  As it noted in the Ocean State Power 

case (Federal Energy Regulatory Commission 1988, 61979), the Commission has 

discretion to depart from cost-based ratemaking “when necessary or appropriate to serve 

a legitimate statutory objective of the Federal Power Act.”  Ocean State Power also 

documents the historical evolution of the Commission’s market-based rate policy and 

outlines in general terms the Commission’s threshold test for permitting market-based 

rates (or, as characterized below, “market-oriented pricing”): “Generally, the 

Commission can rely on market-oriented pricing for determining whether a rate is just 

and reasonable when a workably competitive market exists, . . . or when the seller does 

not possess significant market power. . . .  A seller lacks significant market power if the 

seller is unable to increase prices by restricting supply or by denying the customer access 

to alternative sellers.  Lack of market power is the key prerequisite for allowing market-

oriented pricing” (p. 61979 (references omitted)).   
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 The Doswell Limited Partnership proceeding (Federal Energy Regulatory 

Commission 1990) (“Doswell”) helped to define further the substance of the 

Commission’s market power test for market-based rate cases.  The background of 

Doswell was a competitive solicitation of bids for electrical generating capacity in 1987 

by Virginia Electric and Power Company (“Virginia Power”).  Based on the solicitation, 

Virginia Power agreed to purchase capacity from the Intercontinental Energy Corporation 

(“Intercontinental”), among other suppliers.  Intercontinental later assigned its purchase 

agreements to the Doswell Limited Partnership (“Doswell”), and Doswell filed the 

market-based rates proposed in these agreements in late 1989 with the Commission.  In 

its Doswell Order, the Commission held that  

[t]here are several factors that lead us to conclude that both Intercontinental and its 
successor, Doswell, lacked market power over Virginia Power.  First, Intercontinental did 
not own or control, and was not affiliated with any entity that owned or controlled, 
transmission facilities within or around the Virginia Power service area, other than those 
necessary to interconnect with Virginia Power for this sale.  Therefore, Intercontinental 
was not in a position to prevent Virginia Power from reaching competing suppliers. . . .  
Second, there is no evidence that Intercontinental or Doswell was a dominant firm in any 
generating market that might be relevant to providing capacity and energy to Virginia 
Power. . . .  Third, there is no evidence that either Intercontinental or Doswell controlled 
resources that allowed it to erect any other barrier to potential competing generation 
suppliers (Federal Energy Regulatory Commission 1990, 61757–58).   

 Throughout the 1990s67—indeed, until the Order in Federal Energy Regulatory 

Commission (2001c), the Commission would grant market-based rates to an applicant “if 

the seller [i.e., the applicant] and its affiliates do not have, or have adequately mitigated, 

market power in generation and transmission and cannot erect other barriers to entry” (p. 

61969), echoing the structure of the Commission’s market power test in Doswell.  Only 

the second component of the market power test, that for generation market power, has 

                                                 

67 Surratt (1998, 24–27) and Raskin (1998b, 17–18) trace the evolution of the Commission’s 
market power analysis through its various decisions in market-based rate proceedings focusing, in 
particular, on generation market power.   
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required that the applicant perform an analytical test.68  This analytical test for generation 

market power has come to be known as the “hub-and-spoke” test.   

 The hub-and-spoke test begins—as do the DOJ/FTC Guidelines, discussed 

above—by defining relevant geographic and product markets.  As Bohn, Celebi, and 

Hanser explain (2002, 53–54), “The hub-and-spoke test defines relevant geographic 

market as the combination of applicant’s destination market (the hub) plus the set of all 

markets that are directly connected to the destination market (the spokes).[69]  Product 

markets are generally defined as installed and uncommitted capacity.  The test involves a 

comparison of the share of generation resources controlled by the applicant and its 

affiliates to that of all owners of generation within the relevant geographic markets. . . .  

The Commission has generally interpreted a market share of less than 20% as evidence of 

a lack of horizontal market power.”   

 The Commission’s own Merger Policy Statement (Federal Energy Regulatory 

Commission 1996f, 20–21) described the shortcomings of the hub-and-spoke analysis:  

[The hub-and-spoke method] defines geographic markets in a manner that does not 
always reflect accurately the economic and physical ability of potential suppliers to 
access buyers in the market. . . .    
 . . . [I]t does not account for the range of parameters that affect the scope of 
trade: relative generation prices, transmission prices, losses, and transmission constraints.  
Taking these factors into account, markets could be broader or narrower than the first- or 
second-tier entities identified under the hub-and-spoke analysis. . . .  In other words, mere 
proximity is not always indicative of whether a supplier is an economic alternative.   

                                                 

68 As for the other two components of the market power test, if the market-based rate applicant and 
its affiliates have filed an open access transmission tariff with the Commission, this has been sufficient to 
demonstrate the absence (or mitigation) of transmission market power.  Regarding barriers to entry, the 
Commission “relies on an applicant’s representation and public policing” (Federal Energy Regulatory 
Commission 2001c, 61969).   

69 Generation market power analyses sometimes refer to the suppliers connected to the destination 
market by these “spokes” as “first-tier” (or “tier one”) suppliers.  “Second-tier” (or “tier two”) suppliers are 
those suppliers directly interconnected with the applicant and which the customer in the destination market 
can reach via the applicant’s open access transmission tariff.  See Federal Energy Regulatory Commission 
(1992b, 61757) and Dalton (1997, 35).   
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The Commission did not elaborate its reasoning why, despite the deficiencies that it noted 

in the merger context, the hub-and-spoke analysis continued to be suitable for market-

based rate cases.   

 In a concurring opinion some years later, FERC Commissioner William L. 

Massey offered his perspective on the deficiencies of the hub-and-spoke analysis (Federal 

Energy Regulatory Commission 2000, 2):  

I have come to believe that [hub-and-spoke analysis] is an anachronism.  This method 
focuses solely on the market share of the individual seller instead of the conditions in the 
market.  It assumes that all sellers that are directly interconnected with the customer, and 
all sellers directly interconnected with the applicant for market-based rates, can reach the 
market, and market shares are evaluated on that basis.    
 This is a back of the envelope approach, more or less.  It takes little or no 
account of the important factors that determine the scope of electricity markets, such as 
physical limitations on market size including transmission constraints, prices, costs, 
transmission rates, and the variance of supply and demand over time.  The hub and spoke 
is much too primitive for these times.  Clearly, the Commission must develop a more 
sophisticated approach to market analysis, and I would recommend that we proceed 
generically to do so.   

Speaking to the Energy Bar Association one year later (Massey 2001, 6), Massey’s 

impatience with the Commission was palpable: “Any market participant that cannot pass 

[the hub-and-spoke] test needs a new lawyer.  How accurate can this test be?  How much 

faith can state commissioners have in our market based pricing policy if we still use this 

horse and buggy analytical approach?  Relying on the hub and spoke is sheer folly.”   

 Industry analysts outside of the Commission have also weighed in regarding the 

flaws in the hub-and-spoke approach.  For example, Bohn, Celebi, and Hanser (2002, 54) 

share Massey’s misgivings.  They note that the Commission has generally construed a 

market share of less than 20% in the hub-and-spoke test as a lack of evidence of market 

power, though this figure has not served as a “bright line” standard.  The authors argue 

that this threshold concentration level is fundamentally arbitrary.  Critically, it fails to 

identify electricity suppliers having lower market shares that, when markets are “tight,” 
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may be able to exercise market power.  Perhaps the most detailed and vociferous critique 

of the hub-and-spoke approach is Stoft (2001, 1).  He demonstrates that the hub-and-

spoke test is flawed in the following respects:  

•  Its geographical market definition accounts only for a factor that is no longer 

relevant and for none of the factors that matter in a competitive market.   

•  Its use of uncommitted-capacity shares registers more market power when the 

market itself is more competitive and less market power when it is less 

competitive.  Thus it often reads in reverse the impact of the market on the 

applicant. 

•  It takes no account of the central market-power problem of electricity markets: the 

inelasticity of demand. 

•  It takes no account of the thousand-fold fluctuations in supply elasticity that 

concentrate and intensify market power during a few crucial hours. 

•  It takes no account of suppliers becoming pivotal to the market. 

•  It would allow a single supplier to pass its screen although it possessed enough 

market power to single-handedly double the average year-round price in a market 

as well behaved as PJM’s.   

•  It would allow multiple suppliers to pass although they would be capable of 

destroying any current power market.   

Stoft concludes that “[s]uch a ‘screen’ misinforms, serves no useful purpose and should 

be immediately discontinued” (p. 1).   

 Responding to the growing dissatisfaction with and criticism of its hub-and-spoke 

analysis of generation market power in market-based rate cases, the Commission 
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concluded in a November 2001 order (Federal Energy Regulatory Commission 2001c, 

61969) that “because of significant structural changes and corporate realignments that 

have occurred and continue to occur in the electric industry, our hub-and-spoke analysis 

no longer adequately protects customers against generation market power in all 

circumstances.  The hub-and-spoke analysis worked reasonably well for almost a decade 

when the markets were essentially vertical monopolies trading on the margin and retail 

loads were only partially exposed to the market.”  This order also introduced a new 

analytical screen—the “Supply Margin Assessment (SMA)”—to replace the hub-and-

spoke analysis.  In essence, the SMA screen evaluates whether a market-based rate 

applicant is “pivotal” in the market, that is, whether at least some of the applicant’s 

capacity is needed to satisfy the market’s peak demand.  If an applicant is deemed 

pivotal, it does not pass the screen and its spot market energy sales will be priced using 

cost-based rates; moreover, the applicant must publicize projected incremental cost data 

to help buyers make rational purchasing decisions.  The SMA screen applies to market-

based rate applications and triennial reviews of market-based pricing authority on an 

interim basis pending a re-examination of the Commission’s methods of market power 

analysis.70  Sales of energy in FERC-approved ISOs or RTOs, however, are exempt from 

the SMA screen.   

 While generally acknowledging its improvements over the hub-and-spoke test, a 

few authors have called attention to potential drawbacks of the SMA screen.  Rohrbach, 

                                                 

70 According to the Commission (Federal Energy Regulatory Commission 2001c, 61969), the 
SMA screen improves upon the Commission’s former hub-and-spoke analysis in two respects.  First, the 
SMA screen considers the effect of transmission constraints on geographic market definition.  Second, the 
screen establishes a threshold based on whether a firm is pivotal in its market.   
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Kleit, and Nelson (2002), for example, contend that “the SMA [screen] does not 

adequately resolve a number of critical issues and raises new ones” (p. 11).  They observe 

that the SMA screen does not require that the potential exercise of market power be 

profitable (p. 12); hence, firms that would not profit if they were to exercise market 

power would still not pass the SMA screen.  Bohn, Celebi, and Hanser (2002, 54) note 

that the SMA screen improves on the hub-and-spoke test by modeling relevant 

transmission constraints via “total transfer capability (TTC).”71  Nonetheless, the use of 

TTC has its own drawbacks: the deficiencies of TTC and related metrics based on 

“transfer capability”—due to the reality of loop flow in the transmission system and its 

associated economic effects—are by now well-known (see, e.g., Hogan 1992, 215–16; 

Harvey, Hogan and Pope 1997, 8–21).  Bohn, Celebi, and Hanser suggest several 

refinements to the SMA test to account for factors that it currently ignores, including the 

following: diurnal and seasonal demand variations, import capability when the applicant 

controls capacity outside of the market under study, simultaneous import limits (which 

are not accounted for by TTC), collusive exercise of market power, derating installed 

capacity for unit outages, flexibility in generating plant operations (i.e., distinguishing 

plants that may readily vary their output from inflexible—e.g., nuclear—plants), retail 

                                                 

71 The North American Electric Reliability Council(NERC)’s (1996) definition of total transfer 
capability (TTC) is, in essence, as follows:  

The amount of electric power that can be transferred over the interconnected transmission 
network in a reliable manner based on . . . the following conditions:  

1. For the existing or planned system configuration, and with normal 
(precontingency) operating procedures in effect, all facility loadings are within 
normal ratings and all voltages are within normal limits. 

2. The electric systems are capable of absorbing the dynamic power swings, and 
remaining stable, following a disturbance that results in the loss of any single 
electric system element, such as a transmission line, transformer, or generating 
unit.   

. . . [See the cited source for additional details].   
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load obligations, and compatibility with the Commission’s Appendix A methodology 

applied in merger proceedings.   

 To provide a venue for discussion of the merits of the SMA screen, the 

Commission convened a Technical Conference in January 2004 (Federal Energy 

Regulatory Commission 2004f).  The Conference’s agenda included geographic market 

definition, accounting for transmission limitations, the appropriate interim screen for 

generation dominance, and appropriate mitigation measures for utilities that fail the 

generation dominance screen.   

 A companion FERC Order to the November 2001 SMA Order proposes revising 

existing market-based rate tariffs by explicitly proscribing anticompetitive behavior and 

the exercise of market power (Federal Energy Regulatory Commission 2001b, 1).  The 

proposed tariff provision is as follows: “As a condition of obtaining and retaining market-

based rate authority, the seller is prohibited from engaging in anticompetitive behavior or 

the exercise of market power” (p. 4).  The Order continues, defining these terms: 

“Anticompetitive behavior or exercises of market power include behavior that raises the 

market price through physical or economic withholding of supplies.  Such behavior may 

involve an individual supplier withholding supplies, or a group of suppliers jointly 

colluding to do so.  Physical withholding occurs when a supplier fails to offer its output 

to the market during periods when the market price exceeds the supplier’s full 

incremental costs. . . .  Economic withholding occurs when a supplier offers output to the 

market at a price that is above both its full incremental costs and the market price (and 
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thus, the output is not sold)” (p. 4).72   

 Various commenters criticized the above tariff provision for vague definitions of 

economic and physical withholding,73 arguing that “full incremental costs,” in the 

Commission’s parlance, would need to account for opportunity costs due to multiple 

markets across time, space, and various products (e.g., energy vs. generation reserves), 

and voiced fears that this new measure would create increased regulatory risk, deterring 

needed investment and entry in the industry.  Informed by intervenors’ comments, 

behavior observed in the Western markets of the United States (see, e.g., Federal Energy 

Regulatory Commission 2003a), accumulating experience with other U.S. electricity 

markets (particularly in the East), and FERC public conferences, the Commission issued 

an Order in November 2003 (Federal Energy Regulatory Commission 2003b) (“MBR 

Tariff Order”) conditioning new and existing market-based rate tariffs on sellers’ 

compliance with six “Market Behavior Rules,”74 summarized below:  

1. Generation unit scheduling, bidding, operation, and maintenance in compliance 

with Commission-approved rules and regulations  

2. Prohibition on market manipulation, that is, transactions without a legitimate 

business purpose that are intended to or foreseeably could manipulate market 

                                                 

72 In response to several procedural motions shortly after this order, however, the Commission 
deferred the effective date of the proposed tariff provision (Federal Energy Regulatory Commission 2001a) 
and granted rehearing of the order for further consideration (Federal Energy Regulatory Commission 
2002b).   

73 A common assertion made by commenters was that, due to various technical and institutional 
features of the industry, price-taking behavior would likely be mis-classified under the tariff provision as 
economic and physical withholding, thus inviting the charge that the firm in question had exercised market 
power.   

74 Appendix A to Federal Energy Regulatory Commission (2003b), pp. 65–66. 
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prices, conditions, or rules  

3. Provision of accurate, factual information in communication with the 

Commission, market monitors, RTOs, ISOs, and transmission providers 

4. Accurate and factual reporting of information to publishers of electricity or 

natural gas price indices (to the extent that a seller engages in such reporting)  

5. Retention of data and information that explains prices charged for electric energy 

and related products for a three-year period  

6. No violation or collusion with another party in violation of a seller’s market-based 

rate code of conduct   

The Commission received numerous requests for rehearing of its MBR Tariff Order, and 

in January 2004, it granted rehearing of this Order for further consideration (Federal 

Energy Regulatory Commission 2004d).   

2.1.3 Discussion  

Bushnell (2003b, 12) has noted that typically, regulatory decisions to grant market-based 

rate authority had a greater impact on the progress of electricity restructuring in the 

United States than did merger approvals.  In the former instance, many entities applying 

for market-based rates—power marketers, for example—were and are not subject to 

state-level regulation of retail sales.  Granting authority to these market participants to 

charge market-based rates for wholesale sales amounted to the removal of the only 

constraint on such firms’ pricing behavior.  As for mergers, these have been between 

regulated utilities, for the most part, so that both merging parties as well as the new post-

merger entity are subject to retail rate regulation.   

 This is not to say that merger approvals are inconsequential as a matter of policy.  



 

  59 

Undoing a utility merger once it has been consummated would likely be simply 

infeasible.  On the other hand, revoking a utility’s market-based rate authority would be a 

relatively straightforward matter, entailing only an administrative order.  Pursuant to 

Federal Energy Regulatory Commission (1996c), sellers with market-based rate authority 

are required every three years to update the market power analysis underlying the grant of 

such authority.   

2.2 Market power monitoring and mitigation  

2.2.1 Origins 

In response to the California Public Utilities Commission’s restructuring order in 

December 1995,75 California’s three investor-owned utilities (IOUs) filed applications 

with the FERC for market-based pricing authority.  Citing the FERC’s growing concern 

with the implications of transmission constraints for geographic market definition in the 

context of market power analysis, the three utilities proposed in their joint filing76 to 

account for such constraints in their (forthcoming) market power analyses.  In the event, 

one of the three California IOUs, Pacific Gas & Electric (PG&E) Co., submitted a 

separate market power analysis, while the other two, Southern California Edison (SCE) 

and San Diego Gas and Electric (SDG&E), conducted a joint study.77  Significantly, apart 

from market power analysis and some recommended market power mitigation measures, 

                                                 

75 California Public Utilities Commission (1995), as corrected by California Public Utilities 
Commission (1996).   

76 Pacific Gas and Electric Company (1996).  Federal Energy Regulatory Commission (1996b) 
elaborates the Commission’s concerns regarding transmission constraints.   

77 These analyses are Pacific Gas & Electric Co. (1996), and Southern California Edison and San 
Diego Gas and Electric (1996).   
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these two filings each contained a proposed “monitoring” program for market power.  

PG&E’s proposal (1996, 24) recommended that a monitoring program be “administered 

and run by a Compliance Division of the [California] PX, similar to the compliance 

divisions that exist within the stock exchanges, as well as the New York Mercantile 

Exchange.”78  Similarly, SCE and SDG&E recommended that the Commission require 

that “[a] three-year monitoring program, administered by the [California] ISO, be put in 

place at the time the PX begins operating.  The monitoring program would be designed to 

collect information on market behavior and performance that the Commission could rely 

upon to evaluate complaints, analyze proposals to fine tune operating details, and come to 

a final conclusion that the market’s performance meets the Commission’s standards for 

just and reasonable rates” (1996).   

 In its December 18 order (Federal Energy Regulatory Commission 1996e, 27–28), 

the Commission required that the three utilities file additional information on their market 

power mitigation plans, agreed with SCE and SDG&E’s earlier suggestion (1996, 

transmittal letter 6–7) to convene a technical conference on market power mitigation 

options, and directed the California ISO to file a detailed “monitoring plan,” addressing 

the following considerations:  

•  Who is responsible for the monitoring;  

•  What information would be collected;  

•  What the criteria for identifying the exercise of market power would be;  

•  What reports and information would be submitted to the Commission; and  

                                                 

78 The California Power Exchange (PX) was an independent, non-profit entity designed to manage 
the forward energy markets in California in conjunction with the ISO.  The PX suspended operation of its 
day-ahead and day-of markets on January 31, 2001 and filed for bankruptcy protection on March 9, 2001.   
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•  What mitigation actions would be taken if the exercise of market power is identified.   

With this policy decision, the function of “market monitoring” was born.79  One industry 

observer saw two primary motivations underlying the Commission’s charge to the 

California ISO to institutionalize a market monitoring capacity in its emerging 

competitive market (Lock 1998a).  First, early deregulatory reforms in Chile and in 

England and Wales notwithstanding, the Commission recognized how little experience 

had been gained, to date, with the proposed auction-based markets.  Second, the 

Commission was cognizant that—as argued in subsection 2.1.1 above—the antitrust 

agencies lacked the statutory authority to address many market power concerns, while the 

Commission itself did not have the technical capacity to perform effective monitoring.  

Another analyst has argued that the Commission’s order of December 18, 1996 (Federal 

Energy Regulatory Commission 1996e) signaled a significant change in the 

Commission’s policy toward market power, in that the Commission “intended to shift its 

focus from an analysis of market structure to reliance on mitigation measures to ensure 

that generation owners would not exercise market power” (Raskin 1998a).  In the years 

following that order, the Commission imposed a similar market monitoring requirement 

for the three ISOs in the northeastern United States—ISO-NE, NYISO, and PJM—as 

they developed their market architectures.   

                                                 

79 While this represented the first incarnation of market monitoring in the United States, Lock 
(1998b, 18) notes that Alberta, Canada required as part of the Alberta Electric Utilities Act (Alberta 
Electric Utilities Act of 1995 1995, section 9(1)(d)) that “[t]he Power Pool Council [of Alberta] 
shall . . . monitor the performance of the power pool and change the rules of the power pool, if necessary, 
to promote an efficient, fair and openly competitive market for electricity.”  The inception of and early 
experience with Alberta’s “market surveillance” system is discussed in Barker, Tenenbaum, and Woolf 
(1997, 40–45).   
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 The Commission placed market monitoring on a more secure institutional footing 

with Order 2000 on Regional Transmission Organizations (1999) which proposed, among 

many other provisions regarding management of the transmission grid, that RTOs 

perform market monitoring as one of their “core functions”:80 “Specifically, RTOs would 

be required to: (1) monitor markets for transmission service and the behavior of 

transmission owners and propose appropriate action; (2) monitor ancillary services and 

bulk power markets that the RTO operates; (3) periodically assess how behavior in 

markets operated by others affects RTO operations and how RTO operations affect those 

markets; and (4) provide reports on market power abuses and market design flaws to the 

Commission and affected regulatory authorities, including specific recommendations 

(Federal Energy Regulatory Commission 1999, 435).”  Each of the five FERC-

jurisdictional U.S. ISOs (see note 2) created a specialized entity to perform the market 

monitoring function81 as the ISOs—along with all FERC-jurisdictional public utilities—

undertook to comply with Order 2000.   

 The authority and responsibilities of these market monitoring organizations are 

similar—though not identical—across the ISOs.  In general, ISO tariffs empower the 

market monitoring organizations to perform the following tasks:  

•  The objective of market monitoring is to identify any exercises of market power, 

abuse of market rules, or market design flaws.  To this end, monitoring 

organizations collect data on the operation of all product markets (e.g., energy, 

                                                 

80 Whereby either the RTO itself or an independent entity created by or under contract with the 
RTO may carry out the monitoring activities.   

81 We refer to these entities generically as “market monitoring organizations” and identify the 
particular organizations within the various ISOs in the next subsection below.   
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reserves of various kinds, capacity) administered by the respective ISOs—and in 

some cases, bilateral markets—on an ongoing basis.  Market competitiveness and 

economic efficiency are the overarching standards of interest to monitoring 

organizations, for which they have developed a variety of indicators (see PJM 

Interconnection 2001 for an example of a comprehensive list).  While specific 

methodologies and analytical procedures vary among the ISOs, common 

indicators include assessments of generation ownership concentration—where the 

“relevant” market accounts for transmission constraints—using HHIs (see note 

61), comparisons of bids and market prices to unit-specific cost data (accounting 

for the prices of fuel and other inputs, and sometimes using cost-based dispatch 

simulation models), changes in bidding behavior over time, and declarations of 

generation unit availability.   

•  Take corrective actions, for example, some monitoring organizations can make 

price corrections resulting from software or data entry errors.   

•  Recommend changes in market rules or in market monitoring procedures to the 

governing board or stakeholder committee which, if approved, are then filed with 

the Commission for regulatory approval.   

•  Assist the Commission or antitrust enforcement agencies in investigations that 

they may undertake.   

 With its Standard Market Design Notice of Proposed Rulemaking (“SMD 

NOPR”) (Federal Energy Regulatory Commission 2002a), the Commission proposed 

three mandatory market power mitigation measures and one such voluntary measure as 

components of all jurisdictional utilities’ (and RTOs’) open-access transmission tariffs (p. 
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222).  The first measure targets local market power possessed, in particular, by generating 

units that must run to support reliability of the transmission network.  At times when such 

units have market power, their bids should be capped.  The second monitoring provision 

of the SMD NOPR is a “safety-net” bid cap of $1,000/MWh to apply at all times and 

locations, serving as a check on the degree of generators’ economic withholding.  Third, 

the SMD NOPR envisions a resource adequacy requirement on a regional basis to ensure 

reliability.  This requirement does not address withholding directly; rather, it is designed 

to diminish “the ability and incentive of suppliers to practice and profit from either 

physical or economic withholding” (p. 223).  The fourth, voluntary, measure is intended 

to apply at times when non-competitive conditions exist.  Market operators would 

examine suppliers’ bids and, if withholding—rather than scarcity—is responsible for the 

level of such bids, possibly mitigate these bids.  Certain predetermined conditions or 

triggers, or infrastructural constraints82 could prompt the imposition of such a mitigation 

measure.  Responding to extensive comments on its SMD NOPR, the Commission issued 

in April 2003 a White Paper on a “Wholesale Power Market Platform” (Federal Energy 

Regulatory Commission 2003d) outlining its vision for further electricity industry 

restructuring and sketching proposed changes to the SMD NOPR.  In this White Paper, 

the Commission emphasized the fundamental balance that market power mitigation 

measures must strike, namely, to “protect against the exercise of market power without 

suppressing prices below the level necessary to attract needed investment in new 

infrastructure . . .” (Federal Energy Regulatory Commission 2003d, 8).  Specifically, 

                                                 

82 Such as drought in a system relying significantly on hydropower resources (p. 223).   
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RTO tariffs would be required, at a minimum, to limit bidding flexibility in the presence 

of local market power and to prevent market manipulation strategies (p. 8).   

 Together with the monitoring and mitigation provisions of Standard Market 

Design noted above, a recent institutional innovation at the Commission may encourage 

the development and application of a coherent analytical framework for curbing market 

power.  Namely, in January 2002, the Commission created the Office of Market 

Oversight and Investigation (OMOI), a new monitoring unit at the federal level for 

energy markets.  The OMOI has as its mission to “to protect customers through 

understanding markets and their regulation, identifying and fixing market problems, and 

assuring compliance with Commission rules and regulations” (Federal Energy Regulatory 

Commission 2004b).  Among the OMOI’s functions are (Federal Energy Regulatory 

Commission 2004a):  

•  Undertaking market research, modeling, and simulation; maintaining data 

resources in support of oversight and investigatory activities 

•  Conducting analyses of energy markets, providing early warning of vulnerable 

market conditions, and proposing appropriate policies  

•  Investigating possible violations of Commission rules and regulations, 

recommending remedies to address violations and, where authorized, pursuing 

these remedies  

•  Maintaining a forum for resolving disputes informally and advising the 

Commission on questions of enforcement and compliance  

2.2.2 Monitoring and mitigation in regional markets  

ISO staffs and budgets devoted to market power monitoring and mitigation have grown 
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markedly over time as the extent and complexity of monitoring has increased (Peterson et 

al. 2001, 20).  Table 2.1 below provides an overview of market power monitoring and 

mitigation organizations and the protocols or plans that they implement in each of the six 

ISOs in the United States.83   

                                                 

83 See also Goldman, Lesieutre, and Bartholomew (2004), Kinzelman (2002), Power Pool of 
Alberta (2002, 42), Peterson et al. (2001), and Energy Regulators Regional Association (2001) for a more 
detailed discussion and comparisons of individual ISOs’ monitoring activities and experiences.   
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TABLE 2.1: OVERVIEW OF ISO MARKET POWER MONITORING AND MITIGATION 
PLANS  

Monitoring organizations 
 

Date that 
operations 
commenced Internal External 

Monitoring protocol(s) 

CAISO March 31, 
1998 

Market 
Surveillance 
Unit (MSU)  

(1998–1999), 
Department of 

Market Analysis 
(DMA) (1999–) 

Market 
Surveillance 
Committee 

(MSC)a 
Electricity 
Oversight 

Board (EOB)b 

ISO Market Monitoring & 
Information Protocol (MMIP) 

(California Independent System 
Operator 2003b);  

ISO Enforcement Protocol 
(proposed)f (Att. B of California 

Independent System Operator 
2003a) 

ERCOT July 31,  
2001 None 

Public Utility 
Commission 

of Texas 
(PUCT) 
Market 

Oversight 
Division 

ERCOT Protocols, Section 17: 
Market Data Collection and Use 

(ERCOT 2001);  
Order Adopting New §§25.90, 

25.91 and 25.401 (Public Utility 
Commission of Texas 2000)  

ISO-NE May 1,  
1999 

Market 
Monitoring and 
Market Power 

Mitigation 
Section 

Independent 
Market 
Advisor 
(IMA)c 

New England Power Pool and ISO 
New England, Inc. (2003) 

MISO February 1, 
2002 None 

Independent 
Market 
Monitor 
(IMM)d 

Module D: Market Monitoring and 
Mitigation Measures (proposed) 

(Midwest ISO 2004);g 
Attachment S-1: Independent 

Market Monitor Retention 
Agreement (Midwest ISO 2002b) 

NYISO December 1, 
1999 

Market 
Monitoring Unit 

(MMU) 

Market 
Advisore 

ISO Market Power Mitigation 
Measures (New York Independent 

System Operator 2004b)h 

PJM April 1,  
1997 

Market 
Monitoring Unit 

(MMU) 
None PJM Market Monitoring Plan 

(PJM Interconnection 2003) 

Notes:  
 a The MSC is an external, independent market advisory body consisting of three (later increased to 
four) experts in antitrust economics and industrial organization as well as utility law, regulation, and 
operations.   
 b California’s Electricity Oversight Board (EOB) was established by Chapter 854, Statutes of 1996 
(AB 1890), comprising state legislators and appointees of California’s governor.  The EOB’s initial task 
was to select the Boards of Directors for the CAISO and PX.  In addition, the EOB oversees the activities 
of the CAISO, and conducts analysis and drafts recommendations regarding market operation, system 
reliability, and infrastructure planning.   
 c The ISO-NE Board of Directors retains an Independent Market Advisor (IMA) to provide market 
analysis and advice directly to the Board on making the ISO-NE markets more competitive and efficient.  
ISO New England ([n.d.]) describes the circumstances in which the ISO’s Market Monitoring and Market 
Power Mitigation Section typically uses the services of the IMA.   
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Notes to Table 2.1 (cont’d):  
 d The MISO’s Independent Market Monitor (IMM) has “experience and expertise appropriate to 
the analysis of competitive conditions in markets for energy, ancillary services, and transmission 
rights. . . .”  The IMM advises the MISO and reports to the Commission regarding “the nature and extent 
of, and any impediments to, competition in and the economic efficiency of the Midwest ISO’s Markets and 
Services; . . . ” (Midwest ISO 2002a, secs. 4.1 and 4.3).   
 e The Market Advisor in the NYISO has “experience and expertise appropriate to the analysis of 
competitive conditions in markets for electric capacity, energy and ancillary services, and financial 
instruments such as TCCs. . . .”  The Market Advisor reports to the NYISO Board of Directors on the 
“nature and extent of, and any impediments to, competition in and the economic efficiency of the New 
York electric Markets . . .” (New York Independent System Operator 1999, secs. 4.1 and 4.3).   
 f In Federal Energy Regulatory Commission (2004e), the Commission ordered the CAISO to 
modify this proposed Protocol.  The CAISO objected to the required modifications, however, and requested 
rehearing and clarification of the Commission’s Order (California Independent System Operator 2004).   
 g Filed on March 31, 2004 with effective date of December 1, 2004, pending Commission 
approval.   
 h This version of the Market Power Mitigation Measures for the NYISO was submitted as part of a 
compliance filing to the Commission (New York Independent System Operator 2004a), pursuant to Federal 
Energy Regulatory Commission (2004c).  It has an effective date of May 1, 2004, contingent on its 
acceptance by the Commission.   

2.3 Assessment  

The evolving standards for merger and market-based rate cases reviewed in subsection 

2.1 suggest not only a dynamic electricity industry, but also a lack of consensus—both 

within the industry or between the industry and the Commission—regarding appropriate 

criteria and methodology for market power analysis.  At this writing, methods for market 

power assessment in market-based rate proceedings remain subject to rehearing some 

two-and-a-half years after the Commission first proposed revising these methods (Federal 

Energy Regulatory Commission 2004d).  Commissioner Brownell’s concurring opinion 

in Federal Energy Regulatory Commission (2003c) emphasized that basic theoretical 

questions persist in this regard: “I . . . have a fundamental concern that we’ve allowed 

markets to form without a full appreciation of what constitutes a market let alone the 

market dynamics that foster a truly competitive market.  For example, what defines a 

competitive market and what constitutes scarcity pricing?  These questions remain 

largely unanswered (p. 26).”  The SMD proceeding has arguably sharpened the focus of 



 

  69 

the debate on market power and a host of other market design issues while also 

highlighting the significance of regional differences in economic structure, market 

development, and timing of reforms (Federal Energy Regulatory Commission 2003d, 3).  

The unresolved problems in this proceeding include, for example, so-called “seams 

issues” between regional markets with respect to market power mitigation,84 among other 

matters.   

 As for monitoring and mitigation measures in the various regional markets, in 

Federal Energy Regulatory Commission (2004e), the Commission directed the CAISO to 

modify its recently-proposed “Enforcement Protocol” (see Table 2.1)—intended to 

complement the existing MMIP—to conform it to the Commission’s earlier MBR Tariff 

Order (Federal Energy Regulatory Commission 2003b).  In response, the CAISO has 

requested rehearing and clarification (California Independent System Operator 2004) of 

the Commission’s Order.  In the Midwest, the MISO’s Market Monitoring and Mitigation 

Measures are one component of a recent tariff filing (Midwest ISO 2004), on which the 

Commission has yet to rule.   

 The model developed in the following chapters is motivated by the gaps in the 

theoretical foundations for market power assessment cited above, emphasizing the 

importance of electricity market architecture.  Ultimately, this research should contribute 

insights to help clarify the ongoing market power debates reflected in the various 

administrative proceedings discussed here.   

                                                 

84 “[M]itigation tools which vary by region across market seams have the potential to create 
enforcement problems and undesirable behavioral incentives” (Federal Energy Regulatory Commission 
2003d, 9).   
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The sciences do not try to explain, they hardly even try to interpret, they mainly make 
models.  By a model is meant a mathematical construct which, with the addition of 
certain verbal interpretations, describes observed phenomena.  The justification of such a 
mathematical construct is solely and precisely that it is expected to work.   

—John von Neumann 
 

Electricity cannot be made fast, mortared up and ended, like London Monument, or the 
Tower, so that you shall know where to find it, and keep it fixed, as the English do with 
their things, forevermore; it is passing, glancing, gesticular; it is a traveller, a newness, a 
surprise, a secret, which perplexes them, and puts them out.   

—Emerson, Essays and English Traits 
 
 
 
 
 
 
 
 
 
 
 

3 A supplier’s forward market problem with financial 

contracts  

THIS CHAPTER introduces the SF bidding model.  We begin in section 3.1 below by 

introducing essential notation and terminology to develop the model of supplier behavior.  

Section 3.2 examines the nature of financial forward contracts and the cashflows that they 

introduce in market participants’ optimization problems.  Next, section 3.3 poses 

suppliers’ forward market problem.  Section 3.4 concludes by describing the backward 

induction solution algorithm for this problem.   

3.1 The supply function bidding model: Notation and terminology  

This section introduces nomenclature that we use to define the SF bidding model in the 

forward market; we develop this problem formally in section 3.3.   
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3.1.1 Timing and information structure of sequential markets  

We interpret the multi-settlement SFE model as a two-stage game of complete85 but 

imperfect information.  In period 1, firms simultaneously formulate their forward market 

strategies—that is, their SF bids; this market clears at t = 1 with the revelation of the 

uncertain forward market demand function.  Subsequently, in period 2, firms observe 

forward market outcomes and (again, simultaneously) formulate their SF bids for the spot 

market, which clears when the uncertain spot market demand function is revealed at t = 2.  

Finally, production takes place in period 3.86  Figure 3.1 below highlights these features 

of the model:  

Period 1:  Formulate 
forward market SF bid 

(First stage game) 

Period 2:  Formulate 
spot market SF bid 

(Second stage game) 

Period 3:  Production 
takes place 

t  
   

 

t = 1: 
Demand uncertainty in forward 
market resolved, clearing this 
market.  Forward market price 
and SFs revealed, from which 
forward market quantities may 

be computed. 

 

t = 2: 
Demand uncertainty in spot 

market resolved, clearing this 
market.  Spot market price 

and SFs revealed, from which 
spot market quantities may 

be computed. 

 

FIGURE 3.1: CONVENTIONS FOR THE TIMING OF FORWARD AND SPOT MARKET 
BIDDING IN A SINGLE ROUND OF THE MULTI-SETTLEMENT SFE MODEL  

We consider only a single “round” of play, consisting of the following sequence of events 

(see Figure 3.1 above):  

1. In period 1, supply-side market participants formulate an SF bid for the forward 

                                                 

85 Although—as explained below—demand in both the forward and spot markets is uncertain, 
firms’ use of SFs as strategies and the existence of common prior probability distributions effectively 
offsets these two sources of uncertainty.  See subsection 3.1.2 below on “Equilibrium concept” for further 
explanation.   

86 Since we assume that firms’ commitments in the forward and spot markets are binding, firms do 
not face any additional decisions associated with production in period 3.  Thus, we may neglect period 3 for 
the purposes of our analysis.   
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market.  At the end of the period (t = 1), the market clears with the revelation of 

the forward demand function, which sets the forward market price.  Also, firms’ 

forward market SFs are revealed at this point, from which firms’ forward market 

quantities may be computed.   

2. The analogous sequence of events occurs in period 2 for the spot market.   

3. Production occurs in period 3.   

We assume that, as firms face forward market competition in Period 1, they begin the 

round with no contractual positions ex ante.  Finally, if (in either market) a market-

clearing price does not exist or is not unique, we assume that every firm then earns zero 

profits in that market.87   

 Although the single round of the game depicted in Figure 3.1 would in a typical 

competitive electricity market be repeated hourly, we abstract in this thesis—for 

simplicity—from what is, in reality, a repeated game.  This is a strong simplification, as 

we thereby dispense with fundamental features of repeated games that are generally 

competitively significant.  These include threat and punishment strategies and 

evolutionary phenomena such as learning and reputational effects.  Nonetheless, the 

analysis of the static (two-stage) game is an essential first step toward more realistic 

models of behavior in what is, in reality, a dynamic setting.   

 The timing of the multi-settlement market game in Figure 3.1 reflects our 

assumption that firms can observe period 1 actions and outcomes before committing to 

                                                 

87 We make this assumption following KM (Klemperer and Meyer 1989, 1247 (n. 8)), who note 
that it ensures, in the single-market SFE model, that such outcomes do not arise in equilibrium.  It is not a 
critical assumption, since the equilibria that they consider remain equilibria for reasonable alternative 
assumptions regarding firms’ payoffs in the face of multiple equilibria.  We expect that this will be the 
case, as well, for the multi-settlement SFE model examined here.   
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period 2 actions.  This feature of observable actions and outcomes in a multi-stage game 

implies a closed-loop information structure (see Fudenberg and Tirole 1991, 130), in 

which players can condition their period 2 (spot market) play on period 1 (forward 

market) actions and outcomes; we call the corresponding strategies closed-loop 

strategies.  In any closed-loop equilibrium,88 firms’ spot market bids given any forward 

market bids and outcomes must be a Nash equilibrium of the spot market stage game.  

When choosing their forward market bids, firms naturally recognize that optimal spot 

market bids will depend on forward market bids and outcomes (see Fudenberg and Tirole 

1991, 132).  Identifying the form of this dependence and its implications for the multi-

settlement SFE model is a significant part of this chapter’s analysis of the multi-stage 

game.  Indeed, the closed-loop assumption is the natural information structure to 

associate with the multi-settlement SFE model.  In this model (all the more so since in 

reality, this is a repeated game setting), firms will recognize that optimal spot market 

actions—for themselves and for their rivals—will depend on those in the forward market.   

 The (polar) alternative to the assumption of closed-loop strategies would be to 

assume open-loop strategies, which presuppose that players observe only their own 

history of play; accordingly, open-loop strategies depend only on time.  Open-loop 

strategies are generally easier to analyze since they produce simpler optimality conditions 

(without intertemporal feedback terms) and since the open-loop strategy space is often 

much smaller.  Open loop strategies are also often computed as benchmarks for 

examining strategic effects, that is, incentives to influence a rival’s future actions through 

                                                 

88 Adapting Fudenberg and Tirole’s definition (1991, 131), we take a closed-loop equilibrium to 
mean a SPNE of a game in which players can (1) observe opponents’ actions and realizations of uncertain 
parameters after each period, and (2) respond to these revelations in their future play.  
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one’s own current actions (Fudenberg and Tirole 1991, 131).  The open-loop assumption 

is less realistic in this information-rich environment, however, so that we use the closed-

loop assumption exclusively in the present work.89   

 Assuming that firms’ forward market SFs are perfectly observable may seem like 

a strong assumption; indeed, system operators do not simply announce these SFs in the 

course of market operation.  There are several reasons, however, why observability may 

indeed be a plausible assumption within the context of competitive electricity markets: 

(1) the long history of economic regulation within the industry has generated a rich array 

of data and analyses concerning production technologies (specifically, costs) and demand 

forecasting; (2) the periodic nature of these markets provides an ideal environment for 

learning about competitors’ short- and long-run strategies; and (3) market authorities 

customarily make market data publicly available (albeit with a few months’ delay and 

usually in aggregate form) from which at least approximate models of the behavior of 

one’s rivals might be inferred.   

3.1.2 Equilibrium concept 

Our use of subgame perfection as an equilibrium concept arises because of the sequential 

nature of the game depicted in Figure 3.1.  In period 1, firms anticipate that the respective 

spot market SFs chosen later in period 2 will be in Nash equilibrium90 with each other; 

                                                 

89 Beyond the extremes of open- and closed-loop strategies, a more flexible and arguably more 
realistic assumption regarding information structure would be imperfect observability.  We save this case 
for future work, however, and focus in the present model on the benchmark case of perfectly observable 
actions.  On the relationship between observability and strategic incentives in dynamic games, see the 
discussion of subsection 8.2.3.   

90 For now, assume that if there are multiple Nash equilibria in the spot market subgame, firms 
successfully coordinate on the particular spot market equilibrium to be anticipated (see n. 123).  We 
address questions of equilibrium existence and uniqueness later in chapters 5 and 7.   
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maintaining this supposition, firms construct their forward market SFs.  In a forward 

market equilibrium, these forward market SFs will themselves be in Nash equilibrium 

with each other (conditioned on the aforementioned spot market equilibrium).  In period 

2, firms choose their spot market SFs which will, in fact—as anticipated—constitute a 

Nash equilibrium in the spot market subgame.  Finally, for simplicity, we consider only 

pure strategy equilibria.   

 As the solution of the forward market problem (see chapter 4) shows, firms’ 

strategies depend, in general, on the probability distribution of spot market outcomes91 

and also on the relative profits associated with these outcomes.  In contrast, firms’ 

forward market actions are independent of the probability distribution of forward market 

outcomes.  That is, as with the SFs in KM’s single-market SFE model, forward market 

actions in the multi-settlement SFE model are ex post optimal in every state of the 

forward market.  Since we will assume that all information is public (including, in 

particular, firms’ costs and the aforementioned probability distributions), there is no 

incomplete information.  Because we assume the use of closed-loop strategies with 

observable actions and outcomes, firms will respond optimally both to the realizations of 

random variables as well as to others’ actions in previous periods.  This condition is 

sufficient to permit the use of subgame perfection—in lieu of perfect Bayesian 

equilibrium (PBE)—as our equilibrium concept.92  If, in contrast to this setting, firms’ 

                                                 

91 See subsection 3.1.10 on “Demand functions” below for more on how uncertainty enters this 
problem.   

92 The equilibrium concept of PBE typically applies to multi-stage games of incomplete 
information.  Because of incomplete information, the beliefs of players need to be characterized in 
equilibrium in addition to players’ strategies.  The PBE concept (Fudenberg and Tirole 1991, 326) consists, 
then, of a set of strategies and beliefs such that, at all times, (1) strategies are optimal given the beliefs and 
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actions were not perfectly observable or probability distributions of the uncertain 

parameters depended on subjective beliefs, then PBE might be the appropriate 

equilibrium concept.   

3.1.3 Industry structure and risk preferences 

We assume that the industry is a duopoly (n = 2), and that both producers are risk neutral.  

We index producers by 1, 2;i =  unless otherwise specified, the index i ranges over these 

two values.   

3.1.4 Prices 

Let mp  be an arbitrary price in market m, where m = f, s (for the forward and spot 

markets, respectively).93  Denote an ex post actual (or realized) price in market m by a 

caret: ˆ mp .   

3.1.5 Supply functions 

The SFs that we consider for each market will map price (possibly together with other 

parameters, as will be discussed below) into quantity supplied by the firm in question.  

As in Klemperer and Meyer’s (1989, 1250) analysis, we may intuitively characterize a 

firm’s SF in a given market as the set of the firm’s optimal94 price-quantity points as its 

                                                                                                                                                 

(2) the beliefs are obtained from equilibrium strategies and observed actions in accordance with Bayes’ 
Rule.   

93 We use a superscript ,m f s=  as an index on several market-specific variables and parameters 

to associate these with the forward and spot markets, respectively.  The variable mp  is a scalar; later, using 

asterisks “*” to denote optimality, we will introduce optimal price functions *mp  (see chapter 4).   

94 As we will see below, we employ a distinct notion of optimality in each of the two markets in 
the model.  Section 3.4—especially subsection 3.4.3—elaborates.  For now, it suffices to interpret the 
quantities resulting from SFs simply as “optimal” in some meaningful sense.   
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residual demand function varies—due, say, to exogenous uncertainty in demand—

assuming that its competitor’s strategy is fixed.  This property of SFs implies that, 

independent of the state of the world that is ultimately realized (we take mp  as a 

convenient state variable in the present discussion), the firm is guaranteed to supply the 

optimal quantity given this price, if, in the stage game in question, it chooses its SF as its 

action.  By construction, therefore, SFs are invariant to the state of the world, and 

represent ex-post optimal actions in every state of the world.   

 The multi-settlement market framework, together with the SPNE concept, 

requires that we introduce some additional terminology to distinguish the various SF 

constructs that arise in this problem.  The following discussion distinguishes SFs along 

various dimensions:  

•  provisional vs. admissible supply functions  

•  imputed vs. optimal supply functions  

•  equilibrium supply functions (applied only to optimal supply functions)   

We next motivate and define each of these terms, and explain how these various types of 

SFs arise in the multi-settlement SFE model.   

 Provisional vs. admissible supply functions.  This distinction arises in the multi-

settlement SFE model due to our assumption of closed-loop strategies in SFs, but does 

not appear in the analogous single-market model of KM.  For our two-market game, this 

distinction between provisional and admissible SFs applies only to spot market SFs.  That 

is, for the spot market we have both “provisional” and “admissible” SFs, while for the 

forward market we have only “admissible” SFs.   
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 Each firm conceives of its provisional spot market SF contemporaneously (in 

period 1) with the construction of its forward market SF.  Conceptually, we may 

construct the provisional spot market SF for firm i via the following two-step process:  

1. Fix a state of the world in the forward market and impute a spot market action to 

j.   

2. Compute the (optimal) spot market SF for i.   

Then, we repeat steps 1 and 2 above for every possible state of the world in the forward 

market.  Each element of the set of i’s spot market SFs so computed is then a projection 

of firm i’s provisional spot market SF into the spot market price-quantity plane, indexed 

by the corresponding state of the world that generated it.  We now denote firm i’s 

provisional spot market SF as ( );s s
i pΣ i .  In this notation, the subscript i = 1, 2 indexes 

firms and the superscripts s denote the spot market.  The list of arguments for s
iΣ , 

“ ( );sp i ,” indicates that these arguments will include sp  in addition to other arguments 

characterizing the forward market outcome that remain to be determined.  Thus, by this 

(incomplete) specification, the dimension of the domain of s
iΣ  will be greater than one.  

This fact is a reflection of the closed-loop property, discussed above, with which we have 

endowed these strategies.  In order for period 2 actions to depend optimally on events in 

period 1, we must permit the arguments of s
iΣ  to reflect these period 1 events.  Section 

3.3 below will complete the specification of the arguments of ( );s s
i pΣ i  appropriately for 

the closed-loop SPNE of the multi-settlement SFE model.   

 As Figure 3.1 depicts, in periods 1 and 2 firms formulate and submit to the 

market-clearing authority their forward and spot market SFs, respectively.  In contrast to 
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the provisional SFs discussed above, we define an admissible SF for firm i (or, 

equivalently, firm i’s “bid”) as any SF—in either market—that is consistent with 

exogenously specified market rules that determine the allowable form of bids.  In game-

theoretic terms, these market rules establish the action space that firms may use to 

participate in each market.  Firms submit admissible SFs to the market-clearing authority; 

we denote such an admissible SF simply as ( )m m
iS p .95  Here, the subscript i again 

indexes firms, while the superscript m = f, s now denotes the forward and spot markets, 

respectively.  We assume that these market rules require firms’ SF submitted bids to be 

twice continuously differentiable,96 strictly increasing functions :m
iS →\ \ , so that 

( ) 0m m
iS p′ > .  These functions map market m’s clearing price mp  into the quantity 

( )m m
iS p  that the firm is willing to supply (or, in principle, purchase) at this price in 

market m.97   

                                                 

95 To preview the argument in subsection 3.4.3, given a parameterization and actual parameter 
values for optimal provisional spot market SFs ( );s s

i pΣ i , optimal admissible and optimal provisional spot 

market SFs are related to each other, ex post, as ( ) ( );s s s s s

i iS p p p= Σ ∀i .   

96 Piecewise differentiability (e.g., a piecewise linear spline, as in the (former) California PX; see 
note 46) or piecewise continuity (e.g., a step function) is a more likely bid restriction in actual electricity 
markets.  We can, of course, approximate such functions arbitrarily closely almost everywhere with a 
continuously differentiable function, so we use the latter as an approximation of what “realistic” bids might 
look like.   

97 Whereby negative quantities would imply a net purchase, rather than a sale, by suppliers.  As 
Klemperer and Meyer (1989, n. 12) explain, restricting firms in their model to choosing nonnegative 
quantities at all prices would yield the same results, but would complicate the analysis by permitting 
residual demand functions that are not everywhere differentiable.  We similarly permit negative quantities 
in either market, in principle.  In the specific numerical examples of chapter 7 (see, in particular, problems 
(7.58) and (7.61)), however, we exogenously restrict spot market equilibrium quantities s

iq  to be 
nonnegative, for simplicity.  In contrast, forward market equilibrium quantities are not so restricted.  
Because the forward market is purely financial in nature (see section 3.2), negative forward market 
quantities are unproblematic and are not precluded in the multi-settlement SFE model.  We will see in 
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 The multi-settlement SFE model uses provisional spot market SFs before 

resolution of forward market uncertainty, and admissible spot market SFs after resolution 

of this uncertainty.  To derive the provisional spot market SFs in Period 1, we use 

mathematical expectations to accommodate spot market uncertainty,98 while we 

optimally account for forward market uncertainty via the forward market SFs.  Later, in 

Period 2, forward market uncertainty has been resolved and we then derive admissible 

spot market SFs that are optimal given forward market actions and outcomes.  Note that 

firms do not actually submit the optimal provisional spot market SFs to the market-

clearing authority; we compute them solely because, as we argue in section 3.3 below, 

optimal admissible forward market SFs depend on them.   

 Imputed vs. optimal supply functions.  This distinction arises in the multi-

settlement market SFE model, and also in the single-market SFE model (e.g., that of 

KM).  In determining the Nash equilibrium in SFs in each stage game of the multi-

settlement SFE model, we posit that each firm assumes an SF—an imputed SF—on the 

part of its competitor, and then determines its own optimal SF given this assumption.  

This sequence of steps of imputation and optimization occurs once for each of our two 

markets: for the forward market in period 1, and for the spot market in period 2 (see 

Figure 3.1).  So, for each firm and in each market, we will have both imputed and optimal 

                                                                                                                                                 

chapter 7 that, given the slope restrictions ( ) 0f f

iS p′ >  noted above for the forward market, forward 
market SFs over reasonable price ranges tend, in any event, to produce positive forward market quantities.    
 In principle, market institutions define the criteria for admissible SFs, imposing additional 
restrictions apart from increasingness—for example, piecewise linearity, minimum and maximum price 
levels, etc.—on their form.  Beyond the above definition of m

iS , we do not impose any such restrictions ex 
ante, but expect—as KM find—that certain properties characterizing equilibrium SFs will emerge 
endogenously.   

98 Eq. (3.35) in section 3.3 will make this notion more precise.   
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SFs.  We denote imputed SFs with tildes “ � ,” and so write ( )m m
iS p� , ,m f s= , for firm 

i’s imputed admissible SFs in market m.  Similarly, ( );s s
i pΣ� i  denotes firm i’s imputed 

provisional spot market SF.  For consistency with our assumed market rules, we assume 

here that the SFs that firms impute to their rivals will be strictly increasing in sp , that is, 

( ) 0m m
iS p′ >�  ( ,m f s= ) and ( ); 0s s

i p′Σ >� i .99   

 Equilibrium supply functions.  We apply the modifier “equilibrium” to optimal 

SFs in either market that also constitute a Nash equilibrium—that is, a pair of optimal 

SFs, each of which is a best response to the other in all possible states of the world.  We 

add an upper bar “  ” to the notation for an optimal SF to denote an equilibrium optimal 

SF.  Thus in period 1, we may derive firm i’s equilibrium optimal provisional spot 

market SF, ( );s s
i pΣ i , and its equilibrium optimal admissible forward market SF, 

( )f f
iS p  (assuming that such equilibria exist).  Analogously, in period 2, we may derive 

firm i’s “equilibrium optimal admissible spot market SF,” ( )s s
iS p  (again assuming 

existence).  Finally, firm i’s SPNE strategy for the multi-settlement market SFE model 

consists of a set of SFs, one for each market, namely,  

1. an equilibrium optimal admissible forward market SF, ( )f f
iS p   

2. an equilibrium optimal provisional spot market SF, ( );s s
i pΣ i   

                                                 

99 In the expression ( );s s

i p′Σ� i , the prime (“ ′ ”) denotes differentiation with respect to the 

argument sp .   
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That is, for the time being, we define (for now) the SPNE as follows:100  

 ( ) ( ){ } SPNE for the two-player,
, ; , 1, 2

multi-settlement market SFE game.
f f s s

i iS p p iΣ = ⇔i  (3.1) 

 In solving the multi-settlement SFE model, the natural focus is on the constituent 

strategies of the SPNE (3.1).  Thus, where we may economize on terminology without 

ambiguity, we suppress the descriptive modifiers “equilibrium,” “optimal,” and 

“admissible” applied to SFs.  That is, we consider SFs to be “equilibrium and optimal 

SFs” unless otherwise specified.  Accordingly, in the forward market, we generally refer 

to an  

“equilibrium optimal admissible forward market SF” 

as simply a  

“forward market SF.” 

In the spot market, in contrast, we refer to an  

“equilibrium optimal (provisional or admissible) spot market SF” 

as simply a  

“spot market SF.” 

Here, the provisional-admissible distinction should be clear from the context in which the 

spot market SF appears, and from the notation used.  Nonetheless, for clarity in what 

                                                 

100 We will revisit the SPNE’s definition (3.1) in section 3.3 below, once the specification of 
( );s s

i pΣ i  is complete.   
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follows, we add the modifiers “provisional” or “admissible” to describe spot market SFs 

where appropriate.   

 Table 3.1 below summarizes all of the distinctions among the various SF 

constructs introduced above.   

TABLE 3.1: A TAXONOMY OF SUPPLY FUNCTIONS IN THE MULTI-SETTLEMENT SFE 
MODEL FOR FIRM i  

Period 
1 

Forward market stage game problem: 
Each firm i formulates its forward market SF bid 

 

Assumed exogenously: 
•  Imputed provisional spot 

market SFs ( );s s
i pΣ� i  

•  Imputed admissible forward 
market SFs ( )f f

iS p�  

Computed endogenously: 
•  Optimal provisional spot market 

SFs ( );s s
i pΣ i  

•  Optimal admissible forward 
market SFs ( )f f

iS p  

 

Forward market stage game equilibrium actions: 
•  Equilibrium optimal admissible forward market SFs ( )f f

iS p
(“forward market SFs”), assuming equilibrium optimal provisional spot 
market SFs ( );s s

i pΣ i  (“provisional spot market SFs”)  

Period 
2 

Spot market stage game problem: 
Each firm i formulates its spot market SF bid 

 
Assumed exogenously: 

•  Imputed admissible spot 
market SFs ( )s s

iS p�  

Computed endogenously: 
•  Optimal admissible spot market 

SFs ( )s s
iS p  

 
Spot market stage game equilibrium actions: 

•  Equilibrium optimal admissible spot market SFs ( )s s
iS p

(“admissible spot market SFs”) 
SPNE for the two-period game (multi-settlement market SFE): 

Sequence of equilibrium optimal SFs, one for each market: ( ) ( ){ }, ;f f s s
i iS p pΣ i  

3.1.6 Quantities  

Define m
iq  as a quantity supplied by firm i in market m.  This quantity is simply the 

firm’s SF evaluated at some price in market m, that is, ( )m m m
i iq S p≡ .  Using the imputed 
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admissible SF for market m, we define a corresponding imputed quantity for firm i in 

market m, ( )m m m
i iq S p≡ �� .  Similarly, define from market m’s equilibrium optimal 

admissible SF the equilibrium quantity, ( )m m m
i iq S p≡ .  Finally, we denote the ex post 

actual (or realized) quantity awarded to firm i in market m (not necessarily an 

equilibrium quantity) with a caret: ˆm
iq .   

3.1.7 Revenues  

Let revenues of firm i in market m be m
iR , so that  

 m m m
i iR p q= . (3.2) 

3.1.8 Cost functions  

Let the cost function for firm i’s production be ( )s
i iC q  for 0s

iq ≥  (whereby producers’ 

cost functions may differ).  We let this cost function pass through the origin, so that we 

consider only variable costs.  Let ( )s
i iC q  be twice differentiable (except perhaps at the 

origin) and be common knowledge.  We assume that marginal cost ( )s
i iC q′  is strictly 

increasing for positive quantities, that is, ( ) 0s
i iC q′′ >  for 0s

iq > .  We assume further that 

there are no capacity constraints on firm i’s productive capacity; in other words, ( )s
i iC q  

remains finite for arbitrarily large s
iq .  Note that for simplicity, this formulation abstracts 

from the non-convexities introduced by start-up costs, no-load costs, and ramp rate 

limitations.   

 For any state of the world, the argument of firm i’s cost function, s
iq , is equal to 
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firm i’s spot market residual demand function evaluated at the spot market clearing price, 

sp .   

3.1.9 Profits  

We take profits in either market to mean operating profits, that is, short-term revenue less 

variable production costs.  This convention treats all fixed costs as sunk and thus 

irrelevant to the present analysis.   

3.1.10 Demand functions  

This subsection considers first the spot market demand function, and then the forward 

market demand function.   

 We denote the spot market demand function as ( ),s s sD p ε , where we assume 

s sε Ε∈ ⊆ \  to be an additive stochastic shock to demand in the spot market.101  That is, 

we may write ( ),s s sD p ε  in additively separable form as  

 ( ) ( )0,s s s s s sD p D pε ε= + , (3.3) 

where we refer to ( )0
s sD p  as the shape component of spot market demand.  Given 

( ),s s sD p ε , define ( )0
s sD p  as  

 ( ) ( ) ( )0 , 0,s s s s s s sD p D p Dε ε≡ −  (3.4) 

such that ( )0 0 0sD = .  That is, ( )0
s sD p  passes through the origin of the -s sp q  plane.102  

Combining eqs. (3.3) and (3.4), we also have that  
                                                 

101 KM also rely upon this assumption, but relax it for some of their comparative statics analysis.   
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 ( )0,s s sD ε ε≡ , (3.5) 

implying that sε  is the quantity-axis intercept of ( ),s s sD p ε .  Let the support of sε , sΕ , 

be an interval on the real line, ,s s sΕ ε ε ≡  
�

� , s sε ε< �� .  The upper limit of sε ’s support, 

sε� , may be infinite, in which case ),s sΕ ε= ∞� .  As with prices and quantities, let a 

caret “  ̂ ” denote the ex post actual (or realized) value of the shock sε , ˆsε .  Figure 3.2 

below illustrates the relationships in eqs. (3.3)–(3.5).   

sp

( )
( )0

, ,
,

s s s

s s s

D p
D p

ε
ε

Spot market

0
ˆ sε

( ) ( )0ˆ ˆ,s s s s s sD p D pε ε= +
( )0

s sD p

 

FIGURE 3.2: THE SPOT MARKET DEMAND FUNCTION ( ),s s sD p ε  FOR ˆs sε ε= , AND 

THE SHAPE COMPONENT OF SPOT MARKET DEMAND, ( )0
s sD p   

                                                                                                                                                 

102 The shock sε  also shares this origin.   
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As an example, suppose that ( ), 0.01s s s s sD p pε ε= − + .  Then, we would have that 

( )0 0.01s s sD p p≡ − , and as required, ( )0 0 0sD = .   

 The assumed functional form (3.3) for ( ),s s sD p ε  has important implications for 

the analysis.  First, following KM, the additive shock sε  shifts—but does not rotate—the 

spot market demand function ( ),s s sD p ε , and so we have that its cross-partial derivative 

is zero, that is,  

 
( )2 ,

0
s s s

s s

D p
p

ε
ε

∂
=

∂ ∂
. (3.6) 

Second, it also follows from eq. (3.3) that103  

 ( ) ( ) ( )0

,
, ,

s s s
s s s s s s s

s

D p
D p D p p

p
ε

ε ε
∂′ ′≡ = ∀

∂
, (3.7) 

so that the derivatives ( ),s s sD p ε′  and ( )0
s sD p′  are interchangeable.  In chapter 6, we 

will show endogenously that spot market demand is downward-sloping, that is, 

( ) ( ), , 0s s s s s s sD p D p pε ε′ ≡ ∂ ∂ < .   

 The spot market demand function, ( ),s s sD p ε , arises because of final consumers’ 

willingness to pay for energy-related services (e.g., for either consumptive or productive 

purposes) that electricity can provide.  Subsection 6.6.1 explains how consumers’ utility 

                                                 

103 With a slight abuse of notation, we use a prime (“ ′ ”) on the spot market demand function to 
indicate partial differentiation with respect to price.  As we do not need to refer to the partial derivative 
with respect to the stochastic shock sε , there is no ambiguity.   
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functions give rise endogenously to ( ),s s sD p ε .  We also assume ( )0
s sD p  to be common 

knowledge and that the shock sε  (due, for example, to varying weather conditions, 

economic activity or other effects on consumption) is drawn from an exogenous, 

common knowledge distribution.  From chapter 5 onward, we restrict the analysis and 

consider a simplified affine example, in which we assume that the spot market demand 

function is affine.   

 Consider now the forward market demand function, which we denote as 

( )0,f f fD p ε .  Similar to the spot market analysis, we assume 0
f fε Ε∈ ⊆ \  to be an 

additive stochastic shock to demand in the forward market.  That is, we may write 

( )0,f f fD p ε  in additively separable form as  

 ( ) ( )0 0 0,f f f f f fD p D pε ε= + , (3.8) 

where we refer to ( )0
f fD p  as the shape component of forward market demand (which 

we define in eq. (3.9) below).  As we show in chapter 6, in contrast to the situation in the 

spot market, the forward market demand function ( )0,f f fD p ε  is endogenous to the 

forward market SFs ( )f f
iS p .  The properties of ( )0,f f fD p ε  therefore depend on the 

properties of ( )f f
iS p ; moreover, the definition of ( )0,f f fD p ε  is somewhat more 

involved than the definition of ( ),s s sD p ε  above.   

 Before discussing further the properties of the functions in eq. (3.8), consider the 

forward market SFs, ( )f f
iS p .  For a variety of reasons, it may be the case that, 

beginning from a given initial condition, we cannot define a forward market SF ( )f f
iS p  
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over all prices fp ∈ \ .  Rather, the SF may have a restricted domain of definition, say, 

from some minimum price fp�  to a maximum price f fp p>�
� .  In this case, the domain of 

firm i’s equilibrium forward market SF ( )f f
iS p  is the interval ,f fp p  

�
� ; we refer to 

this interval as a domain restriction on the function ( )f f
iS p .104  Because it is 

endogenous, the forward market demand function ( )0,f f fD p ε  inherits ( )f f
iS p ’s 

domain restrictions.  Assume, therefore, that both SFs ( )f f
iS p —and hence also 

( )0,f f fD p ε —are defined over the interval ,f fp p  
�

� .   

 Now assume some reference price 0 ,f f fp p p ∈  
�

�  contained in the interval over 

which demand is defined.  In the following, we define the demand shock 0
fε  in eq. (3.8) 

so that it is equal to the demand function evaluated at the reference price 0
fp .  To do this, 

assume a function ( )0,f f fD p ε  as in eq. (3.8), and define the shape component of the 

forward market demand function ( )0
f fD p  as  

 ( ) ( ) ( )0 0 0 0, ,f f f f f f f fD p D p D pε ε≡ −  (3.9) 

                                                 

104 Such domain restrictions may arise for a variety of theoretical or practical reasons as the 
analysis of chapter 7 makes clear.  As an example of the former, it may be the case that, as we move along 
a specific SF for a particular firm, that firm’s second-order condition (SOC) for profit maximization may be 
violated for prices above or below a certain level.  The SF may not be continued into the region in which 
the SOC does not hold; to prevent this, the domain of the SF must be restricted accordingly.  Alternatively, 
it may be that the firms’ SF becomes downward-sloping in fp  over certain price ranges.  An example of a 
practical reason for a domain restriction arises in chapter 7.  There, we see that the presence of singularities 
may limit the range of prices over which we are able to successfully numerically integrate the conditions 
characterizing the forward market SFs.   
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such that ( )0 0 0f fD p = .  That is, ( )0
f fD p  passes through the point ( ) ( )0, , 0f f fp q p= .105  

Combining eqs. (3.8) and (3.9), we also have that  

 ( )0 0 0,f f f fD p ε ε≡ . (3.10) 

Let the support of 0
fε , fΕ , be an interval on the real line, 0 0,f f fΕ ε ε ≡  

�
� , 0 0

f fε ε< �� .  The 

upper limit of 0
fε ’s support, 0

fε� , may be infinite, in which case )0 ,f fΕ ε= ∞� .  Again, let 

a caret “  ̂ ” denote the ex post actual (or realized) value of the shock 0
fε , 0ˆ

fε .106  Figure 

3.3 below illustrates the relationships in eqs. (3.8)–(3.10) where, for concreteness and 

ease of exposition, the figure assumes that  

 0
f fp p= � , (3.11) 

though as noted above, any 0 ,f f fp p p ∈  
�

�  is a suitable choice.   

                                                 

105 The shock 0

fε  also has its origin at 0fq = .   

106 The use in the forward market of an arbitrary reference price 0

fp  is a generalization of the 
approach used for the spot market analysis above.  There, the spot market reference price is simply zero, for 
simplicity (compare, for example, eqs. (3.5) and (3.10)).  The affine functional form of ( ),s s sD p ε  

assures us that for finitely-sloped functions ( ),s s sD p ε , this function will intersect the quantity axis (at 
sε ).   

The subscript “ 0 ” on 0

fε  indicates that the forward market demand shock is defined relative to the 

reference price 0

fp .   
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0
f fp p= �

( )0
f fD p ( ) ( )0 0 0ˆ ˆ,f f f f f fD p D pε ε= +

0ˆ
fε

 

FIGURE 3.3: THE FORWARD MARKET DEMAND FUNCTION ( )0,f f fD p ε  DEFINED ON 

,f fp p  
�

�  FOR 0 0ˆ
f fε ε=  AND THE SHAPE COMPONENT OF SPOT MARKET 

DEMAND ( )0
f fD p , TAKING REFERENCE PRICE 0

fp  TO BE EQUAL TO fp�   

We may give an example analogous to that used in the discussion of spot market demand.  

Namely, suppose that ( ) ( )0

0 0, 1
ffp pf f f fD p eε ε− −

= − + .  Then, we would have that 

( ) ( )0

0 1
ffp pf fD p e− −≡ − , and as required, ( ) ( )0 0

0 0 1 0
f fp pf fD p e− −= − = .   

 The assumed functional form (3.8) for ( )0,f f fD p ε  has important implications 

for the analysis.  First, following KM, the additive shock 0
fε  shifts—but does not 

rotate—the forward market demand function ( )0,f f fD p ε , and so we have that its cross-

partial derivative is zero, that is,  
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( )2

0

0

,
0

f f f

f f

D p
p

ε
ε

∂
=

∂ ∂
. (3.12) 

Second, it also follows from eq. (3.8) that107  

 ( ) ( ) ( )0
0 0 0

,
, ,

f f f
f f f f f f f

f

D p
D p D p p

p
ε

ε ε
∂′ ′≡ = ∀

∂
, (3.13) 

so that the derivatives ( )0,f f fD p ε′  and ( )0
f fD p′  are interchangeable.  In chapter 6, we 

will show endogenously that forward market demand is downward-sloping under our 

assumptions, that is, ( ) ( )0 0, , 0f f f f f f fD p D p pε ε′ ≡ ∂ ∂ < .   

 As noted above, the forward market demand function, ( )0,f f fD p ε , is 

endogenous in the multi-settlement SFE model.  Forward market demand arises due to 

the market activity of risk-averse consumers in an uncertain environment, who seek to 

buy forward contracts for electricity given spot market demand ( ),s s sD p ε .  We assume 

that ( )0
f fD p  is common knowledge.  Later, chapter 6 provides a systematic analysis of 

the provenance of the forward market demand function in the multi-settlement SFE 

model (including the distribution of 0
fε ), and confirms that ( )0,f f fD p ε  indeed has the 

properties discussed here.   

                                                 

107 Similar to the notation in the spot market, we use a prime (“ ′ ”) on the forward market demand 
function to indicate partial differentiation with respect to price.  As we do not need to refer to the partial 
derivative with respect to the stochastic shock 0

fε , there is no ambiguity.   
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3.2 The nature of financial forward contracts  

The forward contracts considered in the multi-settlement SFE model are purely financial 

in the sense that forward market positions neither commit firms to a particular physical 

production schedule, nor commit purchasers to consume electricity.  Rather, these 

financial contracts represent property rights to a cash flow based on (1) contract quantity 

and (2) relative prices in the forward and spot markets.108  Firms may liquidate their 

forward contract positions partially or completely in the spot market by repurchasing the 

desired level of output at the spot market price.109  Consistent with this definition, in the 

analytical model developed in this section, forward contract positions ˆ f
iq  do not directly 

enters firms’ cost functions.  Rather, as the multi-settlement SFE model will make clear, 

firm i’s spot market quantity produced, ˆ s
iq , depends, through s

iΣ , on the forward market 

quantities 1̂
fq  and 2ˆ fq .   

 In a given round of the multi-settlement market, we define the net cash flow iCF  

to firm i from a financial forward contract sold by firm i as  

 ( )f s f
i iCF p p q= − . (3.14) 

In eq. (3.14), each factor ( )f sp p−  and f
iq  in iCF —and hence iCF  itself—may be 

positive, negative, or zero.  Thus, if 0iCF >  in a given round of the multi-settlement 

                                                 

108 We assume these property rights to be perfectly and costlessly enforceable.   

109 Many electricity forward markets reflect this property: at least at trading “hubs,” these markets 
tend to be liquid, offering reliable resale opportunities.   
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market, then contract holders pay iCF  to firm i.  If, in contrast, 0iCF < , then firm i pays 

iCF  to contract holders.   

 The literature on electricity markets commonly refers to this form of contract as a 

two-way contract for differences, or CFD, where the term “differences” denotes, 

naturally, the difference between the contract (or forward market) price, fp , and the spot 

price, sp .  A CFD is a simple financial instrument designed to enable market participants 

to lock in a certain price in the forward market for a quantity of electricity.  If exactly the 

forward contract quantity is transacted in the spot market, then the financial outcome of 

that market round is independent of a (usually more volatile) spot market price.110  The 

bid-based forward market examined in this investigation is essentially a double auction 

for CFDs, with (in principle) both demand111 and supply bidding to transact different 

quantities, depending on price.   

To focus attention on this essential feature of the CFD, it is helpful to consider 

separately the three possible outcomes from firm i’s perspective: (1) firm i is under-

contracted ( f s
i iq q< ), (2) firm i is fully contracted ( f s

i iq q= ), and (3) firm i is over-

contracted ( f s
i iq q> ).  We examine, in turn, each of these outcomes below, offering an 

intuitive interpretation of each transaction:  

                                                 

110 On this point, see paragraph 2 below and also Borenstein et al. (2000, 4ff.).   

111 Although development of an active bid-based demand side within competitive electricity 
markets has historically lagged behind that of the supply side, provisions for price-sensitive bids by 
demand-side agents are in place in many markets around the world (see, e.g., International Energy Agency 
2001, 83).   
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1. If 0 f s
i iq q< < , we may interpret the CFD as a fixed-price contract under which 

firm i and consumers transact the first f
iq  of i’s output at fp .  Market participants 

then transact the remaining portion of i’s spot market output, s f
i iq q− , at sp .112   

2. If f s
i iq q= , we may interpret the CFD as a fixed-price contract under which firm i 

and consumers transact i’s entire output of s
iq  at fp .   

3. If f s
i iq q> , we may interpret the CFD as a fixed-price contract under which firm i 

and consumers transact i’s output of s
iq  at fp .  Consumers then buy out of their 

remaining contractual commitment of f s
i iq q−  at a price of f sp p− , that is, the 

demand side makes a buy-out payment of ( )( )f s f s
i ip p q q− −  to firm i.113   

Alternatively, we may view this buy-out payment as two separate transactions.  

Under this interpretation, the demand side first takes title to its remaining 

contractual commitment of f s
i iq q−  through a payment of ( )f f s

i ip q q−  (thereby 

fulfilling the forward contract).  The demand side then resells this unwanted 

quantity on the spot market at the market-clearing price, thereby receiving a 

payment ( )s f s
i ip q q− .   

                                                 

112 If, instead, we have that 0f s

i iq q< < , the interpretation of the associated transaction (though 
not the basic arithmetic) changes somewhat.  Namely, in this case, we may interpret the CFD as a fixed-
price contract under which firm i purchases f

iq  forward contracts from consumers at fp .  Market 

participants then transact the quantity s f

i iq q−  ( s

iq> ) at sp .   

113 In this scenario, if ( ) 0f sp p− < , firm i will pay demand side participants to reduce their 
consumption below the contracted quantity.  That is, the “buy-out” payment to firm i given by the product 
( )( )f s f s

i ip p q q− −  will be negative.   
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In practice, because the forward and spot markets clear at distinct points in time, a 

supplying firm i perceives the cash flow iCF  (see eq. (3.14)) from the forward contract as 

comprising two separate components.  Namely, firm i first experiences an inflow 

(assuming 0fp > ) of f f
ip q  once the forward market clears at 1t = .  Equation (3.2) 

denoted this term as firm i’s forward market revenue, f
iR , given by  

 f f f
i iR p q= , (3.15) 

which is firm i’s cash flow in the forward market.  Next, once the spot market clears at 

2t = , firm i incurs a contract settlement payment of  

 s f
ip q . (3.16) 

This settlement payment is one component of firm i’s cash flows in the spot market (see 

the following section for more details).  Together, the difference of f
iR  in eq. (3.15) and 

s f
ip q  in (3.16) is equal to iCF  from eq. (3.14).   

 We refer hereinafter to “(financial) forward contracts,” “forward contracting,” etc. 

with the understanding that such contracts have the structure of CFDs as detailed in this 

section.   

3.3 Posing the forward market problem  

To pose firm i’s forward market problem in the multi-settlement market SFE model with 

forward contracting, it will be useful to begin by considering firm i’s action in the spot 

market, and work backward from there.  This approach reflects the solution algorithm of 

backward induction which we employ later in section 3.4.   

 Recall from subsection 3.1.1 that the closed-loop information structure posited for 
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our problem implies that firms are able to condition their spot market play on forward 

market actions and outcomes.  Accordingly, firms recognize when choosing their forward 

market bids that, ultimately, spot market bids will depend on those in the forward market.  

This observation motivated the definition of firm i’s provisional spot market SF, 

( );s s
i pΣ i , as its period 1 characterization of its later spot market action.114   

 In the multi-settlement SFE model, firm i is aware that the closed-loop 

information structure applies, as well, to its competitor, firm j.  Therefore, the particular 

spot market SF that firm i imputes in period 1 to firm j when solving its (firm i’s) own 

forward market problem will likewise be a provisional spot market SF.  In subsection 

3.1.5, we denoted this SF as ( );s s
j pΣ� i  and assume it to be strictly increasing in sp .  

Given this imputation, firm i will conceive of its spot market residual demand function as 

spot market demand, ( ),s s sD p ε , less firm j’s imputed provisional SF, ( );s s
j pΣ� i .  In any 

spot market-clearing equilibrium, then, firm i’s spot market quantity s
iq  will lie on this 

residual demand function at the market-clearing price sp .  Therefore, we may define, for 

any arbitrary sε  and corresponding market-clearing sp ,115  

 ( ) ( ), ;s s s s s s
i jq D p pε≡ −Σ� i . (3.17) 

                                                 

114 In that discussion, the placeholder “ i ” in the argument list of s

iΣ  represented the (as-yet-
unspecified) influence of the forward market outcome on firm i’s spot market action.  Later in this section, 
we will be able to identify these unknown arguments from the specification of the problem’s objective 
function.   

115 Note that we have defined s

iq , for our present purposes, as a point, not as a function.  In section 
4.1 below, we use a refinement of eq. (3.17) to construct a provisional spot market SF for firm i.   
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 Now consider firm i’s profits in the spot market, in the presence of financial 

forward contracts.116  Section 3.2’s discussion concerning these contracts highlighted one 

component of these profits, namely, the contract settlement payment, s f
ip q  (see 

expression (3.16)), paid by supplier firms (for 0s f
ip q > ) to consumers.  There are two 

more contributions to firm i’s spot market profits, namely, revenues from sales of spot 

market output, and the production cost of spot market output itself.  In subsection 3.1.7, 

we defined firm i’s spot market revenues, s
iR , as (see eq. (3.2))  

 s s s
i iR p q= , (3.18) 

and in subsection 3.1.8, denoted firm i’s production cost as  

 ( )s
i iC q  (3.19) 

for its spot market quantity, s
iq .   

 Before bringing together the three constituent terms of firm i’s profits in the spot 

market— s
iR , s f

ip q , and ( )s
i iC q  from expressions (3.18), (3.16), and (3.19), 

respectively—consider again the above definition of firm i’s equilibrium spot market 

quantity, s
iq , that enters eqs. (3.18) and (3.19).  Recall that eq. (3.17) defined the quantity 

s
iq  in terms of firm j’s imputed provisional spot market SF, ( );s s

j pΣ� i .  The spot market 

profits computed using this expression for s
iq  is—like the optimal admissible spot market 

SF—necessarily contingent on the realized forward market outcome.  Until we observe 

                                                 

116 Green (1999a) studies the interaction of contract and spot markets (as subsection 1.5.2 
discusses).   
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this realized forward market outcome, we may only express firm i’s spot market profits 

on a “provisional” basis, as well.  For this reason, we refer to this notion of spot market 

profits for firm i as firm i’s provisional spot market profits given an imputed provisional 

spot market SF for firm j, s
jΣ� , and denote this as s

iπ� , which we may write from 

expressions (3.18), (3.16), and (3.19) as117  

 ( )s s s f s
i i i i iR p q C qπ = − −� . (3.20) 

In other words, s
iπ�  in eq. (3.20) is firm i’s period 1 conception—that is, as it formulates 

its forward market bid—of its spot market profits.   

 Substituting for s
iR  from eq. (3.18), eq. (3.20) becomes  

 ( )s s s s f s
i i i i ip q p q C qπ = − −� . (3.21) 

Using eq. (3.17) to substitute for s
iq  in eq. (3.21) and including the functional arguments 

of s
iπ�  yields  

 
( ){ }

( ) ( ) ( ) ( )
, ; , ,

, ; , ; .

s s s s f s
i j i

s s s s s s s f s s s s s
j i i j

p p q

p D p p p q C D p p

π ε

ε ε

Σ

   = ⋅ −Σ − − −Σ   

�� i

� �i i
 (3.22) 

The SF ( );s s
j pΣ� i  is arbitrary at this point and is therefore included as an argument of s

iπ�  

in eq. (3.22).  The cost function and the spot market demand function are exogenously 

                                                 

117 The tilde “  � ” on s

iπ�  signifies that this profits expression is a function of the imputed SF s

jΣ� , 
which also bears a tilde.   
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fixed118 throughout the analysis, and hence are not explicitly represented as arguments of 

s
iπ� .   

 We may now characterize firm i’s spot market optimum given firm j’s imputed 

provisional spot market SF.  Equation (3.22) gives an expression for firm i’s provisional 

spot market profits.  For a Nash equilibrium in the spot market subgame in any state of 

the world, a necessary condition is that for any given demand shock sε , forward market 

quantity f
iq , and imputed provisional spot market SF ( );s s

j pΣ� i  for firm j, firm i will 

choose an optimal—that is, “provisional spot market profit-maximizing”—price, 

*s s
ip p= , in the spot market.119  Let the optimal provisional spot market profits for firm i, 

*s
iπ� , be the maximized value of s

iπ�  at *s
ip , that is,  

 ( ){ } ( ){ }* ; , , max , ; , ,
s

s s f s s s s s f s
i j i i j i

p
q p p qπ ε π εΣ = Σ� �� �i i i ,  

or, substituting from eq. (3.22) for s
iπ�  in the above equation,  

    
( ){ }

( ) ( ) ( ) ( ){ }
* ; , ,

max , ; , ; .
s

s s f s
i j i

s s s s s s s f s s s s s
j i i j

p

q

p D p p p q C D p p

π ε

ε ε

Σ =

   ⋅ −Σ − − −Σ   

�� i i

� �i i
 (3.23) 

 Let us now specify the arguments of the SFs ( );s s
j pΣ� i , 1, 2j = .  Recall that we 

wrote eq. (3.23) for a generic firm i’s spot market optimum, given a provisional spot 

                                                 

118 That is, the demand function ( ),s s sD p ε  is fixed up to the stochastic shock sε , which we do 

include as an argument of s

iπ� .   

119 For now, we simply assume the existence of a unique equilibrium price *s

ip  for each sε ; we 
consider this issue more formally in section 4.1.   
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market SF for firm j, s
jΣ�  ( , 1, 2;i j i j= ≠ ).  While we provide a more precise argument 

in section 3.4 and chapter 4 below, we argue—intuitively, at this point—as follows.  A 

necessary condition for the SFs ( )1 ;s spΣ� i  and ( )2 ;s spΣ� i  to constitute a Nash equilibrium 

in the spot market subgame will be to satisfy eq. (3.23) for firms , 1, 2i j =  ( i j≠ ), given 

any forward market outcomes f
iq  and for any realization of the spot market demand 

shock sε .  We are now in a position to ask, on what additional variables or parameters, 

apart from sp , does j’s imputed provisional spot market SF, s
jΣ� , depend?  By inspection 

of the right-hand side of eq. (3.23), there are two possibilities: the demand shock, sε , and 

the forward quantity, f
iq ; we consider both of these parameters below.   

 Looking first at sε , we may rule this parameter out as a candidate for inclusion as 

an argument of s
jΣ�  with the following reasoning.  From the taxonomy of SFs in 

subsection 3.1.5, the projection of ( );s s
j pΣ� i  into the -s sp q  plane is ( )s s

jS p� , which has 

only sp , and not sε , as an argument (that is, ( )s s
jS p�  is simply a continuous function in 

the -s sp q  plane).  The property that equilibrium SFs yield ex post optimal quantities in 

all states of the world120 implies that s
jS� —and hence s

jΣ� —must be optimal for all sε  and 

for all forward market outcomes.  Thus, while *s
ip  will be (as argued above) a function of 

sε , s
jS� —and hence s

jΣ� —will not be functions of sε .  We conclude that we must not 

include sε  as an argument of s
jΣ� .   

                                                 

120 See Klemperer and Meyer (1989, 1250), and section 4.1 of the present investigation.   
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 The forward quantity, f
iq , also appears as a parameter on the right-hand side of 

eq. (3.23).  The quantities f
iq  incorporate information about both (1) firms’ forward 

market actions (i.e., their SF bids) and (2) the realization of forward market uncertainty, 

0
fε , while containing no definitive information about the spot market outcome, sε .  

Under our assumption of a closed-loop information structure in the multi-settlement SFE 

model (see subsection 3.1.1), firms can—and indeed, to ensure ex post optimality in the 

spot market, must—condition their spot market play on forward market actions and 

outcomes.  They do so by incorporating the appropriate parameters from the forward 

market as arguments of their spot market SFs.  From eq. (3.23), the appropriate forward 

market parameters are precisely the forward market quantities f
iq .  Because we impose 

eq. (3.23) for , 1, 2i j =  ( i j≠ ) in equilibrium, we must include both firms’ forward 

market quantities121 in each function ( )1 ;s spΣ� i  and ( )2 ;s spΣ� i .  In general, therefore, we 

write ( );s s
j pΣ� i  with its complete list of arguments as  

 ( ); , , , 1, 2;s s f f
j j ip q q i j i jΣ = ≠� � , (3.24) 

                                                 

121 For consistency, note in firm i’s problem that, just as firm i imputes ( );s s

j pΣ� i  to firm j for the 

spot market, firm i will also impute ( )f f

jS p�  (as we argue below) to firm j in the forward market.  In 
analyzing the provisional spot market equilibrium, however, we do not require firm j’s imputed forward 
market SF, but simply firm j’s forward market quantity, as imputed by firm i.  We denote this quantity, 
which we have called firm j’s imputed forward market quantity (imputed by firm i) as f

jq� , given by 

( )f f f

j jq S p= �� .  It is this quantity, f

jq� , that we include as one of the additional arguments of ( );s s

j pΣ� i , 

along with firm i’s own optimal forward market quantity f

iq .   
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from now on, that is, 3:s
jΣ →� \ \ .  Having specified the arguments of s

jΣ� , we restate eq. 

(3.23) using the parameterization of expression (3.24),  

 
( ){ } ( ) ( ){

( ) ( ) }
* ; , , , max , ; ,

, ; , ,

s

s s f f f s s s s s s s f f s f
i j j i i j j i i

p

s s s s s f f
i j j i

q q q p D p p q q p q

C D p p q q

π ε ε

ε

 Σ = ⋅ −Σ − 

 − −Σ 

� �� � �i

� �
 (3.25) 

and continue with the construction of firm i’s forward market problem.   

 Given that both firms 1 and 2 maximize their provisional spot market profits (i.e., 

solve eq. (3.25)), we may state jointly necessary and sufficient conditions for a (pure 

strategy) Nash equilibrium in provisional spot market SFs:122  

 1 1 1
s s sΣ = Σ ≡ Σ�  (3.26) 

 2 2 2
s s sΣ = Σ ≡ Σ�  (3.27) 

For any spot market Nash equilibrium, equations (3.26) and (3.27) state that the optimal 

SF s
jΣ  will coincide with the imputed SF s

jΣ� , and we may define such an equilibrium 

optimal provisional spot market SF for firm j as s
jΣ .  These equations must hold at all 

values of the arguments of s
jΣ� , so that we may also write s

jΣ  and s
jΣ  as ( ); ,s s f f

j j ip q qΣ �  

and ( ); ,s s f f
j j ip q qΣ �  respectively ( , 1, 2;i j i j= ≠ ).  If there exist multiple Nash equilibria 

in spot market SFs, we assume that firms successfully coordinate on a single equilibrium, 

denoted as s
jΣ  ( 1, 2j = ).123   

                                                 

122 We assume for now that such an equilibrium exists and examine later a simplified example (see 
chapter 5) for which we may prove existence.   

123 This is admittedly a strong assumption.  We could appeal instead to refinements of Nash 
equilibrium such as “rationalizable strategies”; these are strategies that are best responses to beliefs that a 
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 Replacing ( ); ,s s f f
j j ip q qΣ� �  with ( ); ,s s f f

j j ip q qΣ �  in eq. (3.25) at this Nash 

equilibrium, we define firm 1’s equilibrium optimal provisional spot market profits, *s
iπ , 

as  

 
( ){ } ( ) ( ){

( ) ( ) }
* ; , , , max , ; ,

, ; , .

s

s s f f f s s s s s s s f f s f
i j j i i j j i i

p

s s s s s f f
i j j i

q q q p D p p q q p q

C D p p q q

π ε ε

ε

 Σ = ⋅ −Σ − 

 − −Σ 

� �i

�
 (3.28) 

By our assumption, firms coordinate on a Nash equilibrium SF ( ); ,s s f f
j j ip q qΣ � .  This 

function is no longer the arbitrary imputation ( ); ,s s f f
j j ip q qΣ� � , but a specific function.  We 

may thus re-express ( ){ }* ; , , ,s s f f f s
i j j i iq q qπ εΣ ⋅ �  more succinctly as { }* , ,s f f s

i i jq qπ ε� ,124 and 

hence eq. (3.28) becomes  

 { } ( ){ }* , , max , ; , , ,
s

s f f s s s s s f f f s
i i j i j j i i

p
q q p p q q qπ ε π ε= Σ� �  (3.29) 

where 

 
( ){ } ( ) ( )

( ) ( )
, ; , , , , ; ,

, ; , .

s s s s f f f s s s s s s s f f s f
i j j i i j j i i

s s s s s f f
i j j i

p p q q q p D p p q q p q

C D p p q q

π ε ε

ε

 Σ = ⋅ − Σ − 
 − − Σ 

� �

�
 (3.30) 

                                                                                                                                                 

firm might have about its rivals’ strategies (Fudenberg and Tirole 1991, 49).  These solution concepts tend 
to have little predictive power, however, and given the repeated interaction present in real-world electricity 
markets (not modeled here, as subsection 3.1.1 explains), the emergence of some degree of coordination on 
equilibria is certainly plausible.    
 In any event, in the simplified affine example that we solve in chapter 5, we will demonstrate the 
existence of a unique equilibrium in spot market SFs, so that the coordination problem among multiple 
equilibria does not arise.   

124 Redefining the arguments of *s

iπ  (with a slight abuse of notation) and allowing the dependence 

of s

jΣ  on f

iq  to be incorporated into this redefined function *s

iπ .   
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 Let the expected equilibrium optimal provisional spot market profits for firm i be  

 { }( )*
0E , ,s f f s f

i i jq qπ ε ε� , (3.31) 

where eqs. (3.29) and (3.30) give an expression for { }* , ,s f f s
i i jq qπ ε� , and the expectation 

in the expression (3.31) is taken with respect to sε , conditional on 0
fε .  The rationale for 

introducing this expectation is as follows.  Firm i faces spot market uncertainty—

embodied here in the demand shock sε —as it constructs its forward market bid in period 

1.  We assume that, being risk neutral, the firm accommodates this uncertainty via 

mathematical expectations as in the expression (3.31).  After forward market 

uncertainty—represented here by 0
fε —is revealed, firm i accommodates the remaining 

spot market uncertainty via its spot market SF bid, which is then ex post optimal for all 

realized values of sε  given a forward market outcome 0
fε .   

Now let total profits for firm i in the multi-settlement SFE model, tot
iπ� —given an 

imputed forward market quantity for firm j of f
jq� —be the sum of forward market 

revenue f
iR  and expected equilibrium optimal provisional spot market profits from the 

expression (3.31), that is,  

 { }( )*
0E , ,tot f s f f s f

i i i i jR q qπ π ε ε= +� � . 

Using eq. (3.2), we may rewrite the above equation substituting f f
ip q  for f

iR  (and 

including the arguments of tot
iπ� ):  

 { } { }( )*
0 0, , , E , ,tot f f f f f f s f f s f

i i j i i i jp q q p q q qπ ε π ε ε= +� � � . (3.32) 
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In eq. (3.32), firm i’s forward market quantity, f
iq , is equal to firm i’s forward market 

residual demand function evaluated at fp .  The appropriate residual demand function to 

use here is that based on firm j’s imputed admissible forward market SF, ( )f f
jS p� .  

Namely, we define125  

 ( ) ( )0,f f f f f f
i jq D p S pε≡ − � , (3.33) 

at an arbitrary 0
fε .  Substituting eq. (3.33) into eq. (3.32) for f

iq  and using ( )f f
jS p�  in 

place of f
jq�  as an argument in eq. (3.32) yields  

 

( ) ( ) ( ){ }
( ) ( )

( ) ( ) ( ){ }( )

0 0

0

*
0 0

, , , ,

,

E , , , ,

tot f f f f f f f f f
i j j

f f f f f f
j

s f f f f f f f s f
i j j

p D p S p S p

p D p S p

D p S p S p

π ε ε

ε

π ε ε ε

 − 

 = − 

 + − 

� ��

�

� �

 (3.34) 

where eq. (3.29) gives an expression for { }* , ,s f f s
i i jq qπ ε� .  Maximizing eq. (3.34) with 

respect to fp  will constitute firm i’s forward market objective, given 0
fε .   

 We now characterize firm i’s forward market optimum given an imputed 

admissible forward market SF for firm j, ( )f f
jS p� .  Eq. (3.34) gives an expression for 

firm i’s total profits.  For a subgame perfect Nash equilibrium in the forward market 

problem in any state of the world 0
fε , a necessary condition will be that, given ( )f f

jS p� , 

                                                 

125 In eq. (3.33), we refer to the forward market demand function ( )0,f f fD p ε , which, though we 

introduced it in section 3.1.10, we have not yet defined explicitly.  As noted in that section, ( )0,f f fD p ε  is 
endogenous to the multi-settlement SFE model.  Chapter 6 explains in detail how consumers’ actions give 
rise to ( )0,f f fD p ε , and also characterizes its properties.   
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firm i will choose an optimal—that is, “total profit-maximizing”—price *f f
ip p=  in the 

forward market.126  Let the optimal total profits for firm i, *tot
iπ� , be the maximized value 

of tot
iπ�  at *f

ip , that is,  

 ( ){ } ( ) ( ) ( ){ }*
0 0 0, max , , , , .

f

tot f f tot f f f f f f f f f
i j i j j

p
S p D p S p S pπ ε π ε ε = − 
� � �� �i  

Substituting from eq. (3.34) for ( ) ( ) ( ){ }0 0, , , ,tot f f f f f f f f f
i j jp D p S p S pπ ε ε − 

� ��  in the 

above equation, we get  

   
( ){ } ( ) ( )

( ) ( ) ( ){ }( )
*

0 0

*
0 0

, max ,

E , , , ,

f

tot f f f f f f f f
i j j

p

s f f f f f f f s f
i j j

S p D p S p

D p S p S p

π ε ε

π ε ε ε

  = − 

 + −  

� �� i

� �
 (3.35) 

where, recalling eqs. (3.29) and (3.30),  

 { } ( ){ }* , , max , ; , , ,
s

s f f s s s s s f f f s
i i j i j j i i

p
q q p p q q qπ ε π ε= Σ� �  (3.36) 

and where  

 
( ){ } ( ) ( )

( ) ( )
, ; , , , , ; ,

, ; , .

s s s s f f f s s s s s s s f f s f
i j j i i j j i i

s s s s s f f
i j j i

p p q q q p D p p q q p q

C D p p q q

π ε ε

ε

 Σ = ⋅ − Σ − 
 − − Σ 

� �

�
 (3.37) 

We defer consideration of equilibrium existence and uniqueness in the forward market 

subgame and hence of the existence and uniqueness of subgame perfect Nash 

                                                 

126 For now, we simply assume the existence of a unique equilibrium price *f

ip  for each 0

fε ; we 
consider this issue more formally in section 4.2.   
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equilibrium.  Accordingly, we solve eqs. (3.35)–(3.37) given an arbitrary imputation, 

( )f f
jS p� , for firm j.   

 Equations (3.35)–(3.37) comprise the forward market problem statement for firm 

i.  Before discussing the solution strategy for this problem, we briefly review and 

summarize the foregoing derivation of these equations.  As above, we start before the 

imposition of equilibrium in the spot market—namely, with eq. (3.22) for s
iπ� —and 

review the steps involved in developing eqs. (3.35)–(3.37).   

 Examining the three additive terms in eq. (3.22), we see that the first term 

represents spot market revenue, the product of spot market price and the residual demand 

(given sε ) met by firm i at that price.  The second term is firm i’s contract settlement 

payment at the spot market price, sp , with holders of forward contracts for f
iq  of output.  

The third term is the cost of production incurred by firm i for producing its spot market 

quantity, determined from the firm’s residual demand function, given sε  and evaluated at 

sp .  We maximize s
iπ�  with respect to sp  to obtain *s

iπ� , as on the left-hand side of eq. 

(3.25).  Then, we impose a Nash equilibrium in spot market SFs ( ); ,s s f f
j j ip q qΣ �  in eq. 

(3.28), which yield profits *s
iπ  as given by eq. (3.29).  Next, eq. (3.34) takes the 

conditional expectation ( )*
0E s f

iπ ε , and computes tot
iπ�  as the sum of forward market 

revenue—the product of forward market price and (given 0
fε ) the residual demand met 

by firm i at that price—and ( )*
0E s f

iπ ε .  Finally, we maximize tot
iπ�  with respect to fp  to 

yield *tot
iπ�  on the left-hand side of eq. (3.35).   
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 To conclude this section, we restate the SPNE (expression (3.1)) in light of the 

specification of ( );s s
i pΣ i  as ( ); ,s s f f

i i jp q qΣ � , as follows:  

     ( ) ( ){ } SPNE for the two-player,
, ; , , 1, 2

multi-settlement market SFE game.
f f s s f f

i i i jS p p q q iΣ = ⇔�  (3.38) 

In the next section below, for concreteness, we rewrite eqs. (3.35)–(3.37) for firm 1i = , 

explain why the backward induction solution algorithm is appropriate, and show how it 

gives rise to firm 1’s optimal SF, ( )1
f fS p .  Then, in chapter 4, we solve firm 1’s forward 

market problem.   

3.4 Solving firm 1’s forward market problem via backward induction 

Firm 1’s forward market problem in the multi-settlement market setting is to maximize 

its total profits, 1
totπ� , given ( )2

f fS p�  for firm 2, in any state of the world 0
fε .  We denote 

such maximized profits as *
1
totπ� , given by eqs. (3.35)–(3.37), rewritten below for 1i =  

and 2j = :  

   
( ){ } ( ) ( )

( ) ( ) ( ){ }( )
*

1 2 0 0 2

*
1 0 2 2 0

, max ,

E , , , ,

f

tot f f f f f f f f

p

s f f f f f f f s f

S p D p S p

D p S p S p

π ε ε

π ε ε ε

  = − 

 + −  

� �� i

� �
 (3.39) 

where  

 { } ( ){ }*
1 1 2 1 2 2 1 1, , max , ; , , ,

s

s f f s s s s s f f f s

p
q q p p q q qπ ε π ε= Σ� �  (3.40) 

and  
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( ){ } ( ) ( )

( ) ( )
1 2 2 1 1 2 2 1 1

1 2 2 1

, ; , , , , ; ,

, ; , ,

s s s s f f f s s s s s s s f f s f

s s s s s f f

p p q q q p D p p q q p q

C D p p q q

π ε ε

ε

 Σ = ⋅ − Σ − 
 − − Σ 

� �

�
 (3.41) 

and ( )2 2 1; ,s s f fp q qΣ �  in eqs. (3.40) and (3.41) is firm 2’s equilibrium optimal provisional 

spot market SF.127  Although not immediately evident from eqs. (3.39)–(3.41), firm 1’s 

decision variables in period 1 are its forward market supply quantities for all feasible 

prices fp ; the locus of such points, at an optimum, is the firm’s optimal SF, ( )1
f fS p .  

Since ( )1
f fS p  does not appear explicitly in the above equations, it is useful to describe 

how this problem formulation, in fact, ultimately yields a function ( )1
f fS p .  This is the 

goal of this section.   

 Note first that the relationships  

 ( )2 2
f f fq S p= ��  (3.42) 

and  

 ( ) ( )1 0 2,f f f f f fq D p S pε = − 
�  (3.43) 

are reflected implicitly in eqs. (3.40) and (3.41).  Equation (3.42) is due to the definition 

of firm 2’s imputed admissible forward market SF (see subsection 3.1.5).  Equation 

(3.43) is from the market-clearing condition: if fp  is a market-clearing price for the 

forward market, then firm 1’s forward market quantity, 1
fq , must be equal to the firm’s 

                                                 

127 As we demonstrate in chapter 5 below, the equilibrium SF 2

sΣ  is a function only of exogenous 

parameters that are common knowledge, so that firm 1 may compute 2

sΣ  in the course of solving its 
forward market problem.   
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residual demand function evaluated at fp .  Given an imputation ( )2
f fS p�  and for any 

0
fε , the forward quantities 2

fq�  and 1
fq  are functions of fp  from eqs. (3.42) and (3.43).  

Firm 1 computes from eqs. (3.39)–(3.41) (for the assumed 0
fε ) its optimal price 

( )*
1 0

f f fp p ε= , the argmax for its forward market problem.  Subsection 3.4.2 describes 

how, by repeating this computation of ( )*
1 0

f f fp p ε=  pointwise for all possible 0
fε , firm 

1 may construct its optimal SF, ( )1
f fS p .128   

 The sequential structure of firm 1’s forward market problem suggests backward 

induction as the appropriate solution algorithm.  Indeed, as described above, the first 

backward induction step begins by solving for firms’ optimal provisional spot market SFs 

(parameterized in terms of the realized forward market quantities, 1̂
fq  and 2ˆ fq ).  Then, we 

impose Nash equilibrium in the spot market, yielding equilibrium spot market SFs.  Next, 

in the second backward induction step, we construct firms’ optimal admissible forward 

market SFs, given the equilibrium spot market result from the first step.  The following 

two subsections describe these two backward induction steps in more detail.   

3.4.1 First stage: The spot market  

Consider first the spot market.129  Here, assuming a realization of the forward market 

demand shock 0ˆ
fε  and realized forward market quantities 1ˆ

fq  and 2ˆ fq , firm 1’s spot 

                                                 

128 Naturally, we will also assume that firm 2 computes its optimal SF, ( )2

f fS p  in an analogous 
fashion.  We then impose equilibrium in the forward market, given the assumed spot market Nash 
equilibrium.  The resulting strategies (i.e., the sequence of forward and spot market actions) for each firm 
constitute a subgame perfect Nash equilibrium for the multi-settlement SFE model.   

129 This subsection follows closely the presentation of Klemperer and Meyer (1989, 1251).   
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market residual demand at a price sp  is the difference between total demand in the spot 

market and the quantity that firm 2 is willing to supply there at that price.  Thus if firm 2 

is committed to a (strictly increasing) imputed provisional SF ( )2 2 1ˆ ˆ; ,s s f fp q qΣ�  

( )2 2 1ˆ ˆ; ,s s f fp q q= Σ , firm 1’s spot market residual demand function is ( ),s s sD p ε  

( )2 2 1ˆ ˆ; ,s s f fp q q− Σ .   

 Following KM, since sε  is a scalar, the set of points along firm 1’s spot market 

residual demand functions satisfying the first-order condition (FOC) corresponding to 

eqs. (3.40) and (3.41) (fixing 1 1̂
f fq q=  and 2 2ˆf fq q=� ), as sε  varies over all its possible 

values, is a one-dimensional function in -s sp q  space.  If this function can be described 

by an admissible SF ( ) ( )1 1 2 1 1 2ˆ ˆ ˆ ˆ, ; ,s f f s s f fq q q p q q≡ Σ  that intersects each realization of firm 

1’s spot market residual demand function once and only once, then by committing to 1
sΣ , 

firm 1 can achieve ex post optimal adjustment to the shock sε .  In this case, 1
sΣ  is firm 

1’s unique optimal provisional SF for the spot market in response to 2
sΣ .   

Firm 2 may also solve its version of the spot market problem, which we obtain 

from eqs. (3.39)–(3.41) by interchanging subscripts “1 ” and “ 2 ” throughout these 

equations.  Firm 2 solves its problem in the same manner as did firm 1, described above, 

given the imputed provisional spot market SF for firm 1, ( )1 1 2ˆ ˆ; ,s s f fp q qΣ .  Firm 2 obtains 

2
sΣ  as its unique optimal provisional SF for the spot market in response to 1

sΣ .  Our 

earlier assumption that each firm’s imputed and optimal provisional spot market SFs 
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coincide at each sp , 1̂
fq , and 2ˆ fq  satisfies the Nash equilibrium condition for the spot 

market; we denoted the equilibrium SFs as s
iΣ .   

For now, we assume that the set of points yielding equilibrium optimal 

provisional spot market profits *
1
sπ  for firm 1 (see eqs. (3.40) and (3.41)) can be 

described by the provisional SF 1
sΣ —and likewise for firm 2—and investigate later 

whether, under our hypotheses, there exist equilibria in which this is indeed the case.   

3.4.2 Second stage: The forward market  

In the second stage of firm 1’s backward induction algorithm, we move back in time to 

period 1, before the forward market clears and before revelation of the uncertain demand 

shock 0
fε .130  Accordingly, we revert to the notation for as-yet-unknown values of 0

fε  

and quantities 1
fq  and 2

fq�  (to indicate this, we write these parameters now without carets 

and use firm 2’s imputed forward market quantity, 2
fq� ).   

 Consider the expression for firm 1’s residual demand in the first term of eq.  

(3.39)’s objective function.  Analogous to the situation in the spot market, firm 1’s 

forward market residual demand at any price fp  is the difference between total demand 

in the forward market and the quantity that firm 2 is willing to supply there at that price.  

Thus if firm 2 is committed to a (strictly increasing) imputed admissible SF ( )2
f fS p� , 

firm 1’s forward market residual demand function is ( ) ( )0 2,f f f f fD p S pε − � .   

                                                 

130 Note 129 applies here, as well.   
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 Since 0
fε  is a scalar, the set of points satisfying the FOC corresponding to eq. 

(3.39) for maximum total profits (given ( )2
f fS p� ), as 0

fε  varies over all its possible 

values, is a one-dimensional function in -f fp q  space.  If this function can be described 

by an admissible SF ( )1 1
f f fq S p≡  that intersects each realization of firm 1’s forward 

market residual demand function once and only once, then by committing to 1
fS , firm 1 

can achieve ex post optimal (in the sense of eqs. (3.39)–(3.41)) adjustment to the shock 

0
fε .  In this case, 1

fS  is firm 1’s unique optimal admissible SF for the forward market in 

response to 2
fS� .   

Firm 2 may also solve its version of the forward market problem, which we obtain 

from eq. (3.39)–(3.41) by interchanging subscripts “1 ” and “ 2 ” throughout these 

equations.  Firm 2 solves its problem in the same manner as did firm 1, described above, 

given the imputed admissible forward market SF for firm 1, ( )1
f fS p� .  Firm 2 obtains 2

fS  

as its unique optimal admissible SF for the forward market in response to 1
fS� .  At this 

point, we impose the Nash equilibrium condition for the forward market, which is that 

f
iS�  and f

iS  coincide at each fp  for 1, 2i = ; we denote this equilibrium SF as f
iS .   

 For now, we assume that the set of points yielding maximum total profits for firm 

1 given ( )2
f fS p�  (see eq. (3.39) for *

1
totπ� ) can be described by the admissible SF 1

fS —

and likewise for firm 2—and investigate later whether, under our hypotheses, there exist 

equilibria in which this is indeed the case.   
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3.4.3 Discussion  

Each version of the first stage of the backward induction problem (the spot market—see 

subsection 3.4.1) assumes a fixed value of 0
fε .  This stage is nested within the problem’s 

second stage (the forward market—see subsection 3.4.2), in which we construct 1
fS  in 

pointwise fashion by solving the overall problem repeatedly for all feasible 0
fε , given 

2
fS� .   

This nested, hierarchical structure yields a forward market SF for firm 1 that 

maximizes its total profits 1
totπ�  for all feasible 0

fε .  Eq. (3.39) defines *
1
totπ�  in terms of the 

expected value of equilibrium optimal provisional spot market profits.  To highlight the 

distinct contributions of the spot and forward markets to *
1
totπ� , we could say that 1

fS  will 

yield firm 1’s ex post optimal total profits, *
1
totπ� , assuming ex ante expected equilibrium 

optimal provisional spot market profits, ( )*
1 0E s fπ ε .  This is the notion of optimality 

exhibited by forward market SFs in this thesis.  The firm’s actual (i.e., ex post optimal) 

spot market profits will be determined by spot market SF bidding in period 2.   

The relationship between the optimal provisional spot market SFs and the optimal 

admissible spot market SFs should now be clear.  The optimal provisional spot market 

SFs, ( )1 1 2; ,s s f fp q qΣ  and ( )2 2 1; ,s s f fp q qΣ , are functions of the form 3:s
iΣ →\ \  since the 

forward quantities are still unknown when constructing forward market bids.  Once these 

values of 1
fq  and 2

fq  have been revealed (as 1 1 1̂
f f fq q q= =�  and 2 2 2ˆf f fq q q= =� , say) in 

period 2, each firm may take these values 1ˆ
fq  and 2ˆ fq  into account in constructing and 

submitting its optimal admissible spot market SF which, as market rules stipulate, have 
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the form ( )1
s sS p  and ( )2

s sS p .  These admissible SFs are functions of the form 

:s
iS →\ \  (that is, they lie in the -s s

ip q  plane); by construction, they are also the 

projections (fixing firms’ forward quantities at 1ˆ
fq  and 2ˆ fq ) of ( )1 1 2; ,s s f fp q qΣ  and 

( )2 2 1; ,s s f fp q qΣ  onto these planes.  Algebraically, the relationship between these two 

types of spot market SF is, for realized ˆ f
iq  and ˆ f

jq ,  

 ( ) ( )ˆ ˆ; ,s s s s f f s
i i i jS p p q q p= Σ ∀  ( , 1,2;i j i j= ≠ ). (3.44) 

In this sense, then, the optimal provisional spot market SFs ( )ˆ ˆ; ,s s f f
i i jp q qΣ  are consistent 

with the optimal admissible spot market SFs ( )s s
iS p , reflecting subsection 3.1.1’s 

assumption of a closed-loop information structure.   
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Philosophy is perfectly right in saying that life must be understood backward.  But then 
one forgets the other clause—that it must be lived forward.   

—Kierkegaard, Journals and Papers 
 

Sell when you can; you are not for all markets.   
—Shakespeare, As You Like It 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Derivation of the optimal forward market SF   

THIS CHAPTER derives firm 1’s optimal forward market SF using the backward induction 

procedure sketched in section 3.4 above.  Accordingly, section 4.1 below analyzes the 

spot market in the first stage of the problem.  Section 4.2 is then devoted to the forward 

market in the second stage of the problem.  This chapter follows closely the presentation 

of Klemperer and Meyer (1989, 1251-2).   

4.1 First stage: The spot market 

We begin by recasting the expression for firm 1’s equilibrium optimal provisional spot 

market profits, *
1
sπ  (eq. (3.40)).  We solve this equation given a realized, arbitrary 

forward market shock 0 0ˆ
f fε ε=  and forward quantities 1 1̂

f fq q=  and 2 2ˆf fq q=�  for firms 1 
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and 2, respectively, and given an assumed (though not yet realized), arbitrary value of sε .  

As noted in subsection 3.4.1, we also assume that firm 2 is committed to a (strictly 

increasing) imputed provisional SF ( ) ( )2 2 1 2 2 1ˆ ˆ ˆ ˆ; , ; ,s s f f s s f fp q q p q qΣ = Σ� .  Firm 1’s spot 

market residual demand function is then ( ) ( )2 2 1ˆ ˆ, ; ,s s s s s f fD p p q qε − Σ .   

 Accordingly, firm 1’s provisional spot market profit maximization problem 

becomes  

 { } ( ){ }*
1 1 2 1 2 2 1 1ˆ ˆ ˆ ˆ ˆ, , max , ; , , ,

s

s f f s s s s s f f f s

p
q q p p q q qπ ε π ε= Σ  (4.1) 

and 

 
( ){ } ( ) ( )

( ) ( )
1 2 2 1 1 2 2 1 1

1 2 2 1

ˆ ˆ ˆ ˆ ˆ ˆ, ; , , , , ; ,

ˆ ˆ, ; , .

s s s s f f f s s s s s s s f f s f

s s s s s f f

p p q q q p D p p q q p q

C D p p q q

π ε ε

ε

 Σ = − Σ − 
 − − Σ 

 (4.2) 

The FOC of eq. (4.1) with respect to sp  (assuming an interior solution) is  

( ){ }

( ) ( )
( ) ( ){ } ( ) ( )

1 2 2 1 1

2 2 1 1

1 2 2 1 2 2 1

ˆ ˆ ˆ, ; , , ,

ˆ ˆ ˆ, ; ,

ˆ ˆ ˆ ˆ, ; , , ; ,

0,

s s s s f f f s

s

s s s s s f f f

s s s s s s f f s s s s s f f

d p p q q q

dp

D p p q q q

p C D p p q q D p p q q

π ε

ε

ε ε

Σ

 = −Σ − 
 ′ ′ ′ + − −Σ −Σ   

=

 (4.3) 

where primes on spot market demand and the SFs denote derivatives with respect to sp .   

 If the objective function in eq. (4.1) is globally strictly concave in sp  (Appendix 

B verifies the second-order condition), then eq. (4.3) implicitly determines, given 1̂
fq  and 
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2ˆ fq , firm 1’s unique provisional spot market profit-maximizing price, ( )*
1 1 2ˆ ˆ; ,s s f fp q qε , for 

the assumed value of sε .  The corresponding profit-maximizing quantity is  

 ( )( ) ( )( ) ( )* * *
1 1 2 2 1 1 2 2 1 1 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; , , ; , ; , ; ,s s s f f s s s s f f f f s s f fD p q q p q q q q q q qε ε ε ε− Σ ≡ .   

The functions ( )*
1 1 2ˆ ˆ; ,s s f fp q qε  and ( )*

1 1 2ˆ ˆ; ,s s f fq q qε  represent in parameterized form firm 

1’s set of ex post optimal points in the spot market (given 1̂
fq  and 2ˆ fq ) as the firm’s spot 

market residual demand function shifts.  If ( )*
1 1 2ˆ ˆ; ,s s f fp q qε  is partially invertible131 with 

respect to sε , this locus can be written as a function of spot market price to quantity as  

 ( ) ( ) ( )( )1* *
1 1 1 2 1 1 1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ; , ; , ; ,

s

s s s f f s s s f f f fq p q q q p p q q q q
ε

−
= Σ ≡ ,  (4.4) 

where ( ) ( )1*
1 1 2ˆ ˆ; ,

s

s s f fp p q q
ε

−
 denotes the partial inverse of ( )*

1 1 2ˆ ˆ; ,s s f fp q qε  with respect to 

sε .  Since ( ), 0s s s sD p ε ε∂ ∂ > , no two realizations of firm 1’s residual demand function 

can intersect; this condition, together with uniqueness of ( )*
1 1 2ˆ ˆ; ,s s f fp q qε  for each sε  

implies that ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  intersects firm 1’s residual demand function once and only 

once for each sε , at ( )*
1 1 2ˆ ˆ; ,s s f fp q qε .132  Hence, ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  is firm 1’s optimal 

provisional spot market SF in response to firm 2’s imputed provisional spot market SF, 

( )2 2 1ˆ ˆ; ,s s f fp q qΣ .   

                                                 

131 We demonstrate partial invertibility in the context of a simplified affine example below (see 
section 5.4).   

132 See Appendix A for a proof of these claims.   
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 Let us rewrite eq. (4.3) so that it implicitly defines the function ( )1 1 2ˆ ˆ; ,s s f fp q qΣ .  

First, however, we follow Klemperer and Meyer (1989, 1250) and invert the spot market 

demand function with respect to sε , noting that this inverse exists since 

( ), 0s s s sD p ε ε∂ ∂ > .  Let  

 ( ),s s se Q p    

denote the value of the shock sε  for which total spot market demand is sQ  at price sp , 

that is, ( ),s s se Q p  satisfies ( )( ), ,s s s s s sQ D p e Q p= .  To make explicit the relationship 

between sε  and the firms’ forward market positions 1̂
fq  and 2ˆ fq , we first write the spot 

market-clearing condition—given ( )2 2 1ˆ ˆ; ,s s f fp q qΣ  and, from eq. (4.4), ( )1 1 2ˆ ˆ; ,s s f fp q qΣ —

as133  

 ( ) ( )1 1 2 2 2 1ˆ ˆ ˆ ˆ; , ; ,s s f f s s f f sp q q p q q QΣ + Σ = .   (4.5) 

Hence, from the definition of the function ( ),s s se Q p  and eq. (4.5), we have  

 ( ) ( )1 1 2 2 2 1ˆ ˆ ˆ ˆ; , ; , ,s s s s f f s s f f se p q q p q q pε  = Σ + Σ  . (4.6) 

Now, in eq. (4.3), replace  

 ( ) ( )( ) ( )( )* * *
1 1 2 1 1 2 2 1 1 2 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ; , ; , , ; , ; ,s s f f s s s f f s s s s f f f fq q q D p q q p q q q qε ε ε ε≡ − Σ  (4.7) 

                                                 

133 Note that eq. (4.5) represents the spot market-clearing condition as firm 1 would conceive it, in 
terms of the SF that it imputes to firm 2, 2

sΣ , and its own optimal SF, 1

sΣ .  Firm 2’s conception of the spot 
market-clearing condition would be symmetric to eq. (4.5), and in any Nash equilibrium, these two 
conceptions of the spot market-clearing condition will coincide.   
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by ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  and use eq. (4.6) for sε  to replace ( )( )*
1 1 2ˆ ˆ; , ,s s s f f sD p q qε ε′  by 

( ) ( )( )1 1 2 2 2 1ˆ ˆ ˆ ˆ, ; , ; , ,s s s s s f f s s f f sD p e p q q p q q p′  Σ + Σ   so that eq. (4.3) becomes  

 

( ){ }

( )
( )

( ) ( )( )
( )

1 2 2 1 1

1 1 2 1

1 1 1 2

1 1 2 2 2 1

2 2 1

ˆ ˆ ˆ, ; , , ,

ˆ ˆ ˆ; ,

ˆ ˆ; ,

ˆ ˆ ˆ ˆ, ; , ; , ,

ˆ ˆ; ,

0.

s s s s f f f s

s

s s f f f

s s s f f

s s s s s f f s s f f s

s s f f

d p p q q q

dp

p q q q

p C p q q

D p e p q q p q q p

p q q

π εΣ

= Σ −

 ′  + − Σ  
 ′  ⋅ Σ +Σ 

′− Σ


=

 (4.8) 

We assumed earlier in eq. (3.6) that ( )2 , 0s s s s sD p pε ε∂ ∂ ∂ = , that is, the shock sε  

translates the spot market demand function horizontally.  We may therefore rewrite the 

term ( ) ( )( )1 1 2 2 2 1ˆ ˆ ˆ ˆ, ; , ; , ,s s s s s f f s s f f sD p e p q q p q q p′  Σ + Σ   in eq. (4.8) simply as ( )0
s sD p′ , 

recalling eq. (3.7).  Doing this and rearranging eq. (4.8), we have for firm 1 the implicit 

differential equation  

 ( ) ( ) ( ){ } ( )2 2 1 0 1 1 1 2 1 1 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ; , ; , ; ,s s f f s s s s s f f s s f f fp q q D p p C p q q p q q q ′ ′ ′  Σ − − Σ = Σ −  
. (4.9) 

Note that we could solve firm 2’s problem to obtain a result completely symmetric to eq. 

(4.9) with firms’ subscripts 1 and 2 interchanged.   

 The necessary Nash equilibrium condition in either stage game is that each firm’s 

optimal SF is identical to the SF that its rival imputes to it.  Given that each firm’s SF 

satisfies its optimality conditions (e.g., eq. (4.9) for firm 1 and likewise for firm 2), the 

Nash equilibrium condition becomes a necessary and sufficient condition for a (pure 
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strategy) Nash equilibrium in SFs.  In the present derivation of the spot market’s 

provisional solution in which each firm imputes to its rival the rival’s optimal SF, this 

Nash equilibrium condition is  

 ( ) ( )ˆ ˆ ˆ ˆ; , ; , ( , 1, 2; )s s f f s s f f
i i j i i jp q q p q q i j i jΣ ≡ Σ = ≠ , (4.10) 

where we have defined ( )ˆ ˆ; ,s s f f
i i jp q qΣ  (see subsection 3.1.5) as firm i’s equilibrium 

optimal provisional spot market SF.  Impose this Nash equilibrium condition by recasting 

eq. (4.9) in terms of these equilibrium SFs.134  That is, for each of the two firms, 

substitute into eq. (4.9) from eq. (4.10) letting, for firm 1, 1i =  and 2j = ,  

       ( ) ( ) ( ){ } ( )2 2 1 0 1 1 1 2 1 1 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ; , ; , ; ,s s f f s s s s s f f s s f f fp q q D p p C p q q p q q q ′ ′ ′  Σ − − Σ = Σ −  
 (4.11) 

and, for firm 2, 2i =  and 1j = ,  

       ( ) ( ) ( ){ } ( )1 1 2 0 2 2 2 1 2 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ; , ; , ; ,s s f f s s s s s f f s s f f fp q q D p p C p q q p q q q ′ ′ ′  Σ − − Σ = Σ −  
. (4.12) 

We call eq. (4.11) the equilibrium optimality condition for firm 1’s equilibrium optimal 

provisional spot market SF 1
sΣ , implicitly defining this function (and similarly for eq. 

(4.12) and 2
sΣ  for firm 2).  Finally, recall our assumption (see note 90) that if there are 

                                                 

134 For arbitrary values sε , 1
ˆ fq , and 2

ˆ fq , the firms’ respective optimal spot market price functions 

( )*

1 1 2
ˆ ˆ; ,s s f fp q qε  and ( )*

2 2 1
ˆ ˆ; ,s s f fp q qε  must coincide in any spot market Nash equilibrium, that is, 

( ) ( ) ( )* * *

1 1 2 2 2 1 1 2
ˆ ˆ ˆ ˆ ˆ ˆ; , ; , ; ,s s f f s s f f s s f fp q q p q q p q qε ε ε= ≡ .  We assumed in section 3.1—and will prove in 

section 5.4 for a simplified affine example—that ( )*

1 1 2
ˆ ˆ; ,s s f fp q qε  (and hence also ( )*

1 2
ˆ ˆ; ,s s f fp q qε ) is 

invertible.   



 

  123 

multiple Nash equilibria in the spot market subgame, firms successfully coordinate on a 

particular spot market equilibrium to be anticipated.   

 For purposes of comparison with previous work, we make the temporary 

assumption that the price-cost margins ( )ˆ ˆ; ,s s s f f
i i i jp C p q q′  − Σ   are nonzero.  This 

allows us to rearrange eqs. (4.11) and (4.12) as  

 ( ) ( )
( ) ( )1 1 2 1

2 2 1 0

1 1 1 2

ˆ ˆ ˆ; ,
ˆ ˆ; ,

ˆ ˆ; ,

s s f f f
s s f f s s

s s s f f

p q q q
p q q D p

p C p q q

Σ −′ ′Σ = +
′  − Σ 

, (4.13) 

and for firm 2,  

 ( ) ( )
( ) ( )2 2 1 2

1 1 2 0

2 2 2 1

ˆ ˆ ˆ; ,
ˆ ˆ; ,

ˆ ˆ; ,

s s f f f
s s f f s s

s s s f f

p q q q
p q q D p

p C p q q

Σ −′ ′Σ = +
′  − Σ 

. (4.14) 

 Comparing eq. (4.13) with Klemperer and Meyer’s (1989, 1252) optimality 

condition for the symmetric single-market SFE, namely,  

 ( ) ( )
( )( ) ( )S p

S p D p
p C S p

′′ = +
′−

, (4.15) 

we see that, with the exceptions of the arguments 1̂
fq  and 2ˆ fq  in eq. (4.13) and the 

assumption of symmetric firms (with symmetric costs) that underlies eq. (4.15), the 

structure of the two equations is identical.  We have already argued that we may treat the 

higher-dimensional SFs in eq. (4.13) as two-dimensional projections in the -s sp q  plane, 

since for any particular iteration of eq. (4.1), the arguments 1̂
fq  and 2ˆ fq  are fixed.  Thus, 

the functions 1
sΣ  and 2

sΣ  in eq. (4.13) are closely analogous to the supply function S in 

eq. (4.15).  We could view KM’s optimality condition (rewritten above as eq. (4.15)), 
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therefore, as simply a special case of eq. (4.13) in which 1 2ˆ ˆ 0f fq q= =  and firms are 

symmetric.  We will see later when solving explicitly a simplified version of eq. (4.13) 

that the SF solutions of the two equations are indeed closely related.   

 This completes the first backward induction stage to find the provisional solution 

for the spot market.  In the second stage considered in the next section, we seek the 

solution to firm 1’s forward market problem.   

4.2 Second stage: The forward market  

In confronting the second stage of the backward induction problem for firm 1, we move 

back in time to period 1, before the forward market clears and before revelation of the 

forward market parameters 0
fε , 1

fq , and 2
fq� .  Accordingly, we revert to the notation for 

the not-yet-revealed values of these parameters and write them now without carets.  We 

first recast the forward market problem by replacing the arguments 1
fq  and 2

fq�  in eqs. 

(3.40) and (3.41) with functions of fp  using eqs. (3.43) and (3.42).  Then, we solve this 

problem given an assumed (though not yet realized) arbitrary value of 0
fε .   

With these substitutions, eqs. (3.39)–(3.41) become  

     
( ){ } ( ) ( )

( ) ( ) ( ){ }( )
*

1 2 0 0 2

*
1 0 2 2 0

, max ,

E , , , ,

f

tot f f f f f f f f

p

s f f f f f f f s f

S p D p S p

D p S p S p

π ε ε

π ε ε ε

  = − 

 + −  

� �� i

� �
 (4.16) 

where  
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( ) ( ) ( ){ }
( ) ( ) ( ){ }{

( ) ( ) }

*
1 0 2 2

1 2 2 0 2

0 2

, , ,

max , ; , , ,

, ,

s

s f f f f f f f s

s s s s f f f f f f f

p

f f f f f s

D p S p S p

p p S p D p S p

D p S p

π ε ε

π ε

ε ε

 − 

 = Σ − 

 − 

� �

� �

�

 (4.17) 

and  

 

( ) ( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ) ( ){ }( )
( ) ( )
( ) ( ) ( ) ( ){ }( )

1 2 2 0 2 0 2

2 2 0 2

0 2

1 2 2 0 2

, ; , , , , ,

, ; , ,

,

, ; , , .

s s s s f f f f f f f f f f f f s

s s s s s s f f f f f f f

s f f f f f

s s s s s f f f f f f f

p p S p D p S p D p S p

p D p p S p D p S p

p D p S p

C D p p S p D p S p

π ε ε ε

ε ε

ε

ε ε

   Σ − −   

 = ⋅ −Σ − 

 − − 

 − −Σ − 

� � �

� �

�

� �

 (4.18) 

Together, eqs. (4.16)–(4.18) constitute firm 1’s forward market optimization problem: 

maximize total expected profits—given a value of the forward market demand shock, 

0
fε , and a (strictly increasing) imputed admissible forward market SF for firm 2, 

( )2
f fS p� —by choosing fp .   

The FOC of eqs. (4.16)–(4.18) with respect to fp —denoting135 the objective 

function of eq. (4.16) as ( ){ }1 2 0, ,tot f f f fp S pπ ε��  and assuming an interior solution—is  

                                                 

135 With a slight abuse of notation since we had earlier defined { }0, , ,tot tot f f f f

i i i jp q qπ π ε=� � �  (see eq. 
(3.32)) as a function of four arguments.   
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( ){ } ( ) ( ) ( ) ( )

( ) ( ) ( ){ }

1 2 0
0 2 0 2

*
1 0 2 2

0

, ,
, ,

, , ,
E

0,

tot f f f f
f f f f f f f f f f f

f

s f f f f f f f s

f
f

d p S p
D p S p p D p S p

dp

d D p S p S p

dp

π ε
ε ε

π ε ε
ε

 ′ ′ = − + −   

  −  +  
  

=

��
� �

� �
 (4.19) 

where the primes on forward market demand and SFs denote derivatives with respect to 

fp .  We may evaluate the derivative inside the expectation in eq. (4.19) by first applying 

the chain rule to the left-hand side of eq. (4.17):136  

 

( ) ( ) ( ){ }

( ) ( ) ( ){ }

( ) ( ) ( ){ }

*
1 0 2 2

0

*
1 0 2 2 1

1

*
1 0 2 2 2

0
2

, , ,

, , ,

, , ,
,

s f f f f f f f s

f
f

s f f f f f f f s f

f f

s f f f f f f f s f
f

f f

d D p S p S p

dp

D p S p S p dq
q dp

D p S p S p dq
q dp

π ε ε
ε

π ε ε

π ε ε
ε

 − 

  ∂ − = ⋅ ∂


 ∂ −  + ⋅ ∂ 


� �

� �

� � �
�

 (4.20) 

where we have used the fact that 0s fd dpε =  since (as we will see in chapter 6) sε  

depends only on Period 2 (spot market) uncertainty once 0
fε  is fixed.   

 To evaluate the partial derivatives of *
1
sπ  with respect to 1

fq  and 2
fq�  in eq. (4.20), 

we apply the envelope theorem to eq. (4.17).  This yields  

                                                 

136 Recalling eqs. (3.43) and (3.42), we see that the first and second arguments of *

1

sπ  are 1

fq  and 

2

fq� , respectively.  It will be useful shorthand in eq. (4.20) above to define derivatives of *

1

sπ  with respect 
to these forward market quantities.   
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( ) ( ) ( ){ }

( ) ( ) ( ){ }{
( ) ( ) }

*
1 0 2 2

1

1 2 2 0 2

0 2 1

, , ,

, ; , , ,

, ,

s f f f f f f f s

f

s s s s f f f f f f f

f f f f f s f

D p S p S p

q

p p S p D p S p

D p S p q

π ε ε

π ε

ε ε

 ∂ − 
∂

 = ∂ Σ − 

 − ∂ 

� �

� �

�

 (4.21) 

and 

 

( ) ( ) ( ){ }

( ) ( ) ( ){ }{
( ) ( ) }

*
1 0 2 2

2

1 2 2 0 2

0 2 2

, , ,

, ; , , ,

, , .

s f f f f f f f s

f

s s s s f f f f f f f

f f f f f s f

D p S p S p

q

p p S p D p S p

D p S p q

π ε ε

π ε

ε ε

 ∂ − 
∂

 = ∂ Σ − 

 − ∂ 

� �

�

� �

�

 (4.22) 

Suppressing the arguments of ( ) ( ) ( ){ }2 2 0 2; , ,s s f f f f f f fp S p D p S pε Σ − 
� �  as { }2

sΣ ⋅ ⋅ ⋅ , for 

brevity, the right-hand sides of eqs. (4.21) and (4.22) become, respectively (using eq. 

(4.18)),  

 

( ) ( ) ( ){ }{
( ) ( ) }

{ } ( ) { }( ) { }

1 2 2 0 2

0 2 1

2 2
1 2

1 1

, ; , , ,

, ,

,

s s s s f f f f f f f

f f f f f s f

s s
s s s s s s

f f

p p S p D p S p

D p S p q

p p C D p
q q

π ε

ε ε

ε

 ∂ Σ − 

 − ∂ 

   ∂Σ ⋅⋅⋅ ∂Σ ⋅⋅⋅′= − − − −Σ ⋅⋅⋅ −   ∂ ∂   

� �

�  (4.23) 

and  

 

( ) ( ) ( ){ }{
( ) ( ) }

{ } ( ) { }( ) { }

1 2 2 0 2

0 2 2

2 2
1 2

2 2

, ; , , ,

, ,

, .

s s s s f f f f f f f

f f f f f s f

s s
s s s s s

f f

p p S p D p S p

D p S p q

p C D p
q q

π ε

ε ε

ε

 ∂ Σ − 

 − ∂ 

   ∂Σ ⋅⋅⋅ ∂Σ ⋅⋅⋅′= − − −Σ ⋅⋅⋅ −   ∂ ∂   

� �

�

� �

 (4.24) 
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Combining eqs. (4.21) and (4.23) and simplifying, we get  

 

( ) ( ) ( ){ }

( ) { }( ) { }

*
1 0 2 2

1

2
1 2

1

, , ,

, .

s f f f f f f f s

f

s
s s s s s s

f

D p S p S p

q

p C D p p
q

π ε ε

ε

 ∂ − 
∂

∂Σ ⋅⋅⋅ ′= − − −Σ ⋅⋅⋅ ⋅ −
  ∂

� �

 (4.25) 

Combining eqs. (4.22) and (4.24) and simplifying, we get  

 

( ) ( ) ( ){ }

( ) { }( ) { }

*
1 0 2 2

2

2
1 2

2

, , ,

, .

s f f f f f f f s

f

s
s s s s s

f

D p S p S p

q

p C D p
q

π ε ε

ε

 ∂ − 
∂

∂Σ ⋅⋅⋅ ′= − − −Σ ⋅⋅⋅ ⋅
  ∂

� �

�

�

 (4.26) 

Recalling eqs. (4.4)–(4.7) above and the associated discussion, now that we have 

differentiated, we may replace the argument of the marginal cost functions in eqs. (4.25) 

and (4.26), ( ) { }2,s s s sD p ε − Σ ⋅ ⋅ ⋅ , with ( ) ( ) ( ){ }1 0 2 2; , ,s s f f f f f f fp D p S p S pε Σ − 
� �  

{ }1
s≡ Σ ⋅⋅⋅ .  Doing this, eqs. (4.25) and (4.26) become  

 

( ) ( ) ( ){ }

{ }( ) { }

*
1 0 2 2

1

2
1 1

1

, , ,

;

s f f f f f f f s

f

s
s s s

f

D p S p S p

q

p C p
q

π ε ε ∂ − 
∂

∂Σ ⋅⋅⋅ ′= − − Σ ⋅⋅⋅ ⋅ −
  ∂

� �

 (4.27) 

and  

 

( ) ( ) ( ){ }

{ }( ) { }

*
1 0 2 2

2

2
1 1

2

, , ,

.

s f f f f f f f s

f

s
s s

f

D p S p S p

q

p C
q

π ε ε ∂ − 
∂

∂Σ ⋅⋅⋅ ′= − − Σ ⋅⋅⋅ ⋅
  ∂

� �

�

�

 (4.28) 
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We may substitute into eq. (4.20) from eqs. (4.27) and (4.28) to obtain  

 

( ) ( ) ( ){ }

{ }( ) { } { }

*
1 0 2 2

0

2 21 2 1
1 1 0

1 2

, , ,

.

s f f f f f f f s

f
f

s sf f f
s s s f

f f f f f

d D p S p S p

dp

dq dq dqp C p
q dp q dp dp

π ε ε
ε

ε

 − 

  ∂Σ ⋅⋅⋅ ∂Σ ⋅⋅⋅  ′= − − Σ ⋅⋅⋅ ⋅ ⋅ + ⋅ + ⋅    ∂ ∂   

� �

�
�

 (4.29) 

Note that we may interpret the second bracketed term on the right-hand side of eq. (4.29) 

as  

 { } { } { }2 2 21 2

1 2

s s sf f

f f f f f

dq dq
q dp q dp p

 ∂Σ ⋅ ⋅ ⋅ ∂Σ ⋅ ⋅ ⋅ ∂Σ ⋅ ⋅ ⋅
⋅ + ⋅ = ∂ ∂ ∂ 

�
�

, (4.30) 

where the partial derivative { }2
s fp∂Σ ⋅ ⋅ ⋅ ∂  holds sp  constant.  Again using eqs. (3.43) 

and (3.42), we may express the derivatives 1
f fdq dp  and 2

f fdq dp�  in eq. (4.29) as:  

 ( ) ( ) ( ) ( )1
0 2 0 2, ,

f
f f f f f f f f f f

f f

dq d D p S p D p S p
dp dp

ε ε′ ′ = − = − 
� � ; (4.31) 

and  

 
( ) ( )22

2

f ff
f f

f f

dS pdq S p
dp dp

′= =
�� � . (4.32) 

Finally, we substitute eqs. (4.31) and (4.32) into eq. (4.29) and the result, in turn, into the 

forward market FOC (eq. (4.19)) to obtain  
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( )( )

( ) ( ) ( ) ( )
{ }( ){

{ } ( ) ( ) { } ( )

( ) ( ) }

1 2 0

0 2 0 2

1 1

2 2
0 2 2

1 2

0 2 0

, ,

, ,

E

,

,

0.

tot f f f f

f

f f f f f f f f f f f

s s

s s
f f f f f f f

f f

s f f f f f f

d p S p

dp

D p S p p D p S p

p C

D p S p S p
q q

p D p S p

π ε

ε ε

ε

ε ε

 ′ ′ = − + −   
  ′− − Σ ⋅⋅⋅  

 ∂Σ ⋅⋅⋅ ∂Σ ⋅⋅⋅ ′ ′ ′⋅ ⋅ − + ⋅  ∂ ∂ 
 ′ ′+ −   

=

��

� �

� �
�

�

 

Given 0
fε , the functions ( )0,f f fD p ε′  and ( )2

fS ′ ⋅�  are both constant as sε  varies.  

Hence, the slope of residual demand ( ) ( )0 2,f f f f fD p S pε ′ ′−
 

�  inside the expectation 

operator is itself constant with respect to sε  (though the expectation does act upon sp , 

which premultiplies this term).  Therefore, this term denoting the slope of residual 

demand may be treated as a constant in the above equation, and taken outside of the 

expectation.  Using this fact and again writing the arguments of { }1
sΣ ⋅⋅⋅  and { }2

sΣ ⋅ ⋅ ⋅  

explicitly, this FOC becomes  
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( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }( ){
( ) ( ) ( ){ }

( ) ( )

1 2 0

0 2 0 0 2

1 1 0 2 2

2 2 0 2

1

0 2

2

, ,

, E ,

E ; , ,

; , ,

,

;

tot f f f f

f

f f f f f f s f f f f f f

s s s f f f f f f f

s s f f f f f f f

f

f f f f f

s s

d p S p

dp

D p S p p p D p S p

p C p D p S p S p

p S p D p S p

q

D p S p

p

π ε

ε ε ε

ε

ε

ε

   ′ ′ = − + − −     
  ′  − − Σ −    

  ∂Σ − ⋅
 ∂

 ′ ′⋅ −
 

∂Σ
+

��

� �

� �

� �

�

( ) ( ) ( ){ } ( )2 0 2

2 0
2

, ,

0.

f f f f f f f

f f f
f

S p D p S p
S p

q

ε
ε

 −   ′⋅  ∂   
=

� �
�

�

  (4.33) 

 If the objective function in eq. (4.16) is globally strictly concave in fp  (Appendix 

B gives sufficient conditions for the second-order condition to hold), then eq. (4.33) 

implicitly determines firm 1’s unique profit-maximizing price, ( )*
1 0
f fp ε , for each value 

of 0
fε .  The corresponding profit-maximizing quantity is  

 ( )( ) ( )( ) ( )* * *
1 0 0 2 1 0 1 0,f f f f f f f f fD p S p qε ε ε ε− ≡� .   

The functions ( )*
1 0
f fp ε  and ( )*

1 0
f fq ε  represent in parameterized form firm 1’s set of ex 

post optimal points in the forward market as the firm’s forward market residual demand 

function shifts.  If ( )*
1 0
f fp ε  is invertible,137 this locus can be written as a function of 

forward market price to quantity:  

                                                 

137 We demonstrate the invertibility of ( )*

1

fp i  in section 5.4 below.   
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 ( ) ( ) ( )( )1* *
1 1 1 1
f f f f f fq S p q p p

−
= ≡ ,  (4.34) 

where ( ) ( )1*
1
f fp p

−
 denotes the inverse of ( )*

1 0
f fp ε .  Since ( )0 0, 0f f f fD p ε ε∂ ∂ > , no 

two realizations of firm 1’s residual demand function can intersect; this condition, 

together with uniqueness of ( )*
1 0
f fp ε  for each 0

fε  implies that ( )1
f fS p  intersects firm 

1’s residual demand function once and only once for each 0
fε , at ( )*

1 0
f fp ε .138  Hence 

( )1
f fS p  is firm 1’s optimal admissible forward market SF in response to firm 2’s 

imputed admissible forward market SF, ( )2
f fS p� .   

 Let us rewrite eq. (4.33) so that it implicitly defines the function ( )1
f fS p .  First, 

however, we follow Klemperer and Meyer (1989, 1250) and invert the forward market 

demand function with respect to 0
fε , noting that this inverse exists since 

( )0 0, 0f f f fD p ε ε∂ ∂ > .  Let  

 ( ),f f fe Q p  

denote the value of the shock 0
fε  for which total forward market demand is fQ  at price 

fp , that is, ( ),f f fe Q p  satisfies ( )( ), ,f f f f f fQ D p e Q p= .  Now, in eq. (4.33), replace  

 ( ) ( )( ) ( )( )* * *
1 0 1 0 0 2 1 0,f f f f f f f f fq D p S pε ε ε ε≡ − �   (4.35) 

                                                 

138 See Appendix A for a proof of these claims.   
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by ( )1
f fS p , and use ( ),f f fe Q p  as defined above with ( ) ( )1 2

f f f f fQ S p S p= + � 139 to 

replace ( )( )*
1 0 0,f f f fD p ε ε′  by ( ) ( )( )1 2, ,f f f f f f f fD p e S p S p p′  + 

� .  Then, the FOC 

(4.33) becomes  

    

( )( )

( )
( ) ( ) ( )( ) ( )

( ) ( ){ }( ){
( ) ( ){ }

( ) ( )( ) ( )

1 2 0

1

0 1 2 2

1 1 1 2

2 2 1

1

1 2 2

2 2

, ,

E , ,

E ; ,

; ,

, ,

;

tot f f f f

f

f f

f s f f f f f f f f f f f

s s s f f f f

s s f f f f

f

f f f f f f f f f f

s s

d p S p

dp

S p

p p D p e S p S p p S p

p C p S p S p

p S p S p

q

D p e S p S p p S p

p S

π ε

ε

=

   ′ ′ + − + −      
  ′− − Σ   

∂Σ
⋅
 ∂

 ′ ′ ⋅ + −    

∂Σ
+

��

� �

�

�

� �

� ( ) ( ){ } ( )1
2 0

2

,

0.

f f f f
f f f

f

p S p
S p

q
ε

 ′⋅  ∂   
=

�
�

 (4.36) 

 We assumed earlier in eq. (3.12) that ( )2
0 0, 0f f f f fD p pε ε∂ ∂ ∂ = , that is, the 

shock 0
fε  translates the forward market demand function horizontally.  We may therefore 

write ( ) ( )( )1 2, ,f f f f f f f fD p e S p S p p′  + 
�  simply as ( )0

f fD p′ , recalling eq. (3.13).  

Making this change in eq. (4.36) yields  

                                                 

139 This is the forward market clearing condition as firm 1 would conceive it.  The argument of 
note 133 applies here, mutatis mutandis.   
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( )( ) ( ) ( ) ( ) ( )

( ) ( ){ }( ){
( ) ( ){ }

( ) ( )
( ) ( ){ } ( )

1 2
1 0 2

1 1 1 2

2 2 1

1

0 2

2 2 1
2

2

,
E

E ; ,

; ,

; ,

0,

tot f f f
f f f s f f f f f

f

s s s f f f f

s s f f f f

f

f f f f

s s f f f f
f f f

f

d p S p
S p p p p D p S p

dp

p C p S p S p

p S p S p

q

D p S p

p S p S p
S p p

q

π
   ′ ′= + − −   

  ′− − Σ  
∂Σ
⋅

∂

 ′ ′⋅ −
 

∂Σ  ′ + ⋅  ∂   
=

��
�

�

�

�

�
�

�

 (4.37) 

where we now condition expectations in eq. (4.37) on firm 1’s optimal price 

( )*
1 0

f f fp p ε= , thus suppressing explicit dependence of the FOC on 0
fε .140  Finally, we 

may rearrange eq. (4.37) as  

 ( ) ( ) ( ) ( ) ( )2 0 1 1Ef f f f f s f f f fS p D p p p p S p pψ   ′ ′− − = +  
� ,  (4.38) 

where we define ( )1
fpψ  as  

                                                 

140 Note that we may condition in eq. (4.37) on either fp  or 0

fε  under our assumption (justified in 

section 5.4) that ( )*

1

fp i  is invertible, and hence fp  and 0

fε  are one-to-one.  We also commit a slight 

abuse of notation in eq. (4.37) in expressing ( )( )1 2,tot f f fp S pπ ��  as a function of only two rather than three 

arguments ( ( )( )1 2 0, ,tot f f f fp S pπ ε�� ), as in eq. (4.36) and the foregoing analysis.   
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( ) ( ) ( ){ }( ){
( ) ( ){ } ( ) ( )

( ) ( ){ } ( )

1 1 1 1 2

2 2 1
0 2

1

2 2 1
2

2

E ; ,

; ,

; ,
.

f s s s f f f f

s s f f f f
f f f f

f

s s f f f f
f f f

f

p p C p S p S p

p S p S p
D p S p

q

p S p S p
S p p

q

ψ   ′≡ − − Σ  
∂Σ

 ′ ′⋅ ⋅ −
 ∂


∂Σ  ′ + ⋅  ∂   

�

�
�

�
�

�

 (4.39) 

Note that we could solve firm 2’s forward market problem to obtain a result completely 

symmetric to eqs. (4.38) and (4.39), but with firms’ subscripts 1 and 2 interchanged.   

 The necessary Nash equilibrium condition in either stage game is that each firm’s 

optimal SF is identical to the SF that its rival imputes to it.  Given that each firm’s SF 

satisfies its optimality conditions (i.e., eqs. (4.38) and (4.39) for firm 1 in the forward 

market and likewise for firm 2), the Nash equilibrium condition becomes a necessary and 

sufficient condition for a Nash equilibrium in SFs.  In the present derivation of the 

forward market’s solution, this Nash equilibrium condition is  

 ( ) ( ) ( ) ( , 1, 2; )f f f f f f
i i iS p S p S p i j i j= ≡ = ≠� , (4.40) 

where we have defined ( )f f
iS p  (see subsection 3.1.5) as firm i’s equilibrium optimal 

admissible forward market SF.  Impose this Nash equilibrium condition by recasting eqs. 

(4.38) and (4.39) in terms of these equilibrium SFs, that is, substitute into these equations 

from eq. (4.40) letting 1i =  and 2j = , yielding141  

                                                 

141 We may make an argument analogous to that in note 134 above that for an arbitrary value 0

fε , 

the firms’ respective optimal forward market price functions ( )*

1 0

f fp ε  and ( )*

2 0

f fp ε  must coincide in any 
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 ( ) ( ) ( ) ( ) ( )2 0 1 1Ef f f f f s f f f fS p D p p p p S p pψ   ′ ′− − = +  
,  (4.41) 

where we redefine ( )1
fpψ  as  

 

( ) ( ) ( ){ }( ){
( ) ( ){ } ( ) ( )

( ) ( ){ } ( )

1 1 1 1 2

2 2 1
0 2

1

2 2 1
2

2

E ; ,

; ,

; ,
.

f s s s f f f f

s s f f f f
f f f f

f

s s f f f f
f f f

f

p p C p S p S p

p S p S p
D p S p

q

p S p S p
S p p

q

ψ   ′≡ − − Σ  
∂Σ

 ′ ′⋅ ⋅ −
 ∂


∂Σ  ′ + ⋅  ∂   

  

Replacing ( )f f
iS p  with firm i’s equilibrium forward market quantity f

iq , the above 

expression becomes  

 

( ) { }( ){
{ } ( ) ( )

{ } ( )

1 1 1 1 2

2 2 1
0 2

1

2 2 1
2

2

E ; ,

; ,

; ,
.

f s s s f f

s s f f
f f f f

f

s s f f
f f f

f

p p C p q q

p q q
D p S p

q

p q q
S p p

q

ψ   ′≡ − − Σ  
∂Σ  ′ ′⋅ ⋅ −

 ∂
∂Σ  ′ + ⋅  ∂  

 (4.42) 

 We say that eqs. (4.41) and (4.42) constitute the forward market equilibrium 

optimality condition for firm 1’s equilibrium optimal admissible forward market SF 

                                                                                                                                                 

forward market Nash equilibrium, i.e., ( ) ( ) ( )* * *

1 0 2 0 0

f f f f f fp p pε ε ε= ≡ .  We assumed in section 3.1—and 

will prove in section 5.4—that ( )*

1 0

f fp ε  (and hence also ( )*

0

f fp ε ) is invertible.   
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( )1
f fS p .142  Comparing the structures of eqs. (4.41) and (4.42) with that of Klemperer 

and Meyer’s (1989, 1252) optimality condition for the single-market SFE—given above 

as eq. (4.15)—we see that they differ in three respects:  

1. As with the spot market solution for firm 1 (eq. (4.13)), we derived eqs. (4.41) 

and (4.42) for two asymmetric firms with asymmetric cost functions.  Eq. (4.15) 

(from KM), in contrast, assumed two symmetric firms.   

2. In eq. (4.41), the expected spot price ( )E s fp p  plays the role of marginal cost 

( )C S′  in eq. (4.15).  This structural similarity suggests that we may interpret the 

expected spot price as a marginal opportunity cost to a (risk-neutral) supplier of a 

particular quantity contracted in the forward market.   

3. Equation (4.41) contains the term ( )1
fpψ  (see eq. (4.42)), whereby KM’s 

optimality condition, eq. (4.15), has no such term.  Appendix C provides an 

economic interpretation of ( )1
fpψ .  Namely, ( )1

fpψ  is the expected change in 

firm 1’s equilibrium optimal provisional spot profits caused by a marginal change 

in fp  while netting out the expected change in its forward contract settlement 

payment, ( )1
s fp q− , due to this change in fp .  In other words, ( )1

fpψ  captures 

the expected effect of a marginal change in fp  on firm 1’s spot market revenue 

                                                 

142 An analogous procedure would yield the corresponding equilibrium optimality condition for 
firm 2’s equilibrium optimal admissible forward market SF ( )2

f fS p .   
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less production cost.143  We may express this interpretation of ( )1
fpψ  

algebraically as  

 ( ) { } ( )
*

1 1 2 1
1

, ,
=E E

s f f s f
f f s f

f f

d q q dqp p p p
dp dp

π ε
ψ

 
 + ⋅
 
 

, (4.43) 

as Appendix C demonstrates.144  The merit of this result is that the relationship of 

the optimality condition, eqs. (4.41) and (4.42), to the original problem statement, 

eqs. (4.16)–(4.18), is then particularly transparent.  Later in chapter 8, we also 

identify ( )1
fpψ  as firm 1’s strategic effect, accounting, in part, for the firm’s 

participation in the forward market.   

 Equations (4.11) and (4.41) (using (4.42))—and the analogous equations for firm 

2—constitute a mixed system of differential equations: partial differential equations in 

{ }; ,s s f f
i i jp q qΣ  and total differential equations in ( )f f

iS p , with the cross-equation 

restrictions of ( )f f f
i iq S p= , , 1,2;i j i j= ≠ .  From these systems, we observe that the 

forward and spot markets are coupled in at least two ways:  

1. In general, firms’ equilibrium forward market quantities ˆ f f
i iq q=  and ˆ f f

j jq q=  

enter both firms’ provisional spot market SFs ( ); ,s s f f
i i jp q qΣ  as arguments.   

                                                 

143 Recall that the definition of equilibrium optimal provisional spot market profits for firm i from 
eqs. (3.29) and (3.30) included not only the firm’s spot market revenue less production cost, but also the 
forward contract settlement payment, in this case ( )1

s fp q− .   

144 In eq. (4.43), we have denoted the change in firm 1’s forward market quantity for a change in 
fp  as ( ) ( ) ( ) ( )1 0 2 0 2,f f f f f f f f f f fdq dp D p S p D p S pε′ ′ ′ ′= − = −� , the slope of firm 1’s forward market 

residual demand function, recalling eqs. (3.43), (3.13), and (4.40).   
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2. Both the level function and the various partial derivatives of firm j’s provisional 

spot market SF ( ); ,s s f f
j j ip q qΣ , enter the function ( )f

i pψ , which itself appears 

in firm i’s forward market equilibrium optimality condition in section 4.2.   

In addition, we make explicit a third relationship between the two markets in chapter 5, 

where we establish how the equilibrium spot market price sp  depends on firms’ 

equilibrium forward market quantities 1
fq  and 2

fq .   

 Solutions to the aforementioned mixed system of differential equations would be 

difficult to characterize in the general case.  Newbery (1998, 733) anticipated this 

complexity, noting the “double infinity of solutions” that arises when we permit a 

continuum of spot market equilibria (characterized by eqs. (4.11) and (4.12)) for every 

forward market equilibrium, themselves elements in a continuum.  The continuum of 

solutions in each market exists because each solution corresponds to a particular initial 

condition (or boundary condition) in a continuum of such conditions for each differential 

equation.145  In the following chapter, we appeal to several simplifying assumptions that 

render eqs. (4.41) and (4.42) more tractable.   

                                                 

145 These continua of initial conditions might arise, for example, due to physical capacity 
constraints or limits on financial contracting related to credit risk.   
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Far better an approximate answer to the right question, which is often vague, than the 
exact answer to the wrong question, which can always be made precise.   

—J.W. Tukey, The Future of Data Analysis 
 

Everything should be made as simple as possible, but not simpler.   
—Einstein 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 A simplified affine example  

THIS CHAPTER introduces an affine example that simplifies the spot market—and 

ultimately, also the forward market—analysis.  Section 5.1 below begins by introducing 

three assumptions regarding affine functional forms in the spot market, and section 5.2 

explores the implications of these assumptions for the spot market SFs.  Section 5.3 

conducts comparative statics analysis for spot market SFs with respect to cost and 

demand function parameters.  Next, we investigate the implications of the affine 

functional form assumptions for optimal spot market prices and the forward market 

optimality conditions in sections 5.4 and 5.5, respectively.  Section 5.6 concludes.   
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5.1 Affine functional forms  

We now invoke several simplifying assumptions in order to carry the analysis further.  

From this point forward, let us restrict ourselves to the case in which the following three 

assumptions hold concerning the spot market:  

AFFINE SPOT MARKET DEMAND FUNCTION:  The spot market demand function is affine, 

having the form ( ),s s s s s sD p pε γ ε= − + .  Thus, the spot market demand function’s 

slope ( ) ( ), ,s s s s s s sD p D p pε ε′ ≡ ∂ ∂  is sγ− , where 0sγ > .146   

AFFINE MARGINAL PRODUCTION COST FUNCTIONS:  Each firm has a quadratic production 

cost function ( )s
i iC q , given by  

 ( ) 21
0 2 , 0s s s s

i i i i i i iC q c q c q q= + ≥ ,  

where 0 0ic ≥  and 0ic >  ( 1, 2i = ).   

Marginal production cost ( )s
i iC q′  for each firm is then also affine:  

 ( ) 0 , 0s s s
i i i i i iC q c c q q′ = + ≥ . (5.1) 

AFFINE SPOT MARKET SFS (EQUILIBRIUM SELECTION):  The provisional spot market SFs 

( ); ,s s f f
i i jp q qΣ  ( ), 1, 2;i j i j= ≠  are affine in sp .  That is, ( ); ,s s f f

i i jp q qΣ  is of the 

form  

 ( ); ,s s f f s s s
i i j i ip q q pα βΣ = +  ( ), 1, 2;i j i j= ≠ , (5.2) 

                                                 

146 In subsection 6.4.4, we relate the magnitude of sγ  to parameters of consumers’ utility 
functions.   
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where s
iα  is the quantity axis intercept and s

iβ  the slope of the (affine) projection of 

( ); ,s s f f
i i jp q qΣ  onto the -s sp q  plane.   

A principal goal of this chapter is to investigate the effects that these various simplifying 

assumptions have on the spot market supply functions, the optimal spot market price 

function, and the forward market equilibrium optimality conditions.  In section 5.3, we 

also perform comparative statics analysis for the spot market in this affine case.   

 While Affine Spot Market SFs may at first appear to be a fairly strong 

assumption, there are two theoretical grounds for selecting affine spot market SFs for 

further study.  First, given the cost functions, the affine spot market SF is the limiting 

equilibrium action as the range of uncertainty in spot market demand increases.  Second, 

stability arguments favor the selection of the affine SF over alternative strictly concave or 

strictly convex SFs.  We elucidate these arguments below.  Finally, apart from these 

theoretical justifications, the affine functional form in the spot market simplifies the 

analysis.   

 Klemperer and Meyer (1989, 1261 (Proposition 4)) show in their single-market 

SFE analysis that when the support of the stochastic demand shock is bounded above, 

there exists a continuum, or connected set, of SFEs consisting of both strictly convex and 

strictly concave SFs, as well as an affine SF in the interior of the set (we call this the 

equilibrium set).147  As we increase the upper endpoint ε�  of this support, the continuum 

of equilibrium SFs narrows as the most concave and most convex SFs drop out of the 

                                                 

147 In addition, KM require that demand and marginal cost functions be linear for sufficiently large 
price and quantity.  While their proof also assumes symmetric firms, this property does not appear to be 
necessary for their result (see Rudkevich 1999).   
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equilibrium set.148  In the limit as ε → ∞� , considering the sequence of equilibrium sets 

associated with each value of ε� , this sequence converges to an equilibrium set having a 

single element, the affine SF.  For this reason, KM conclude that “[f]or unbounded 

support, there exists a unique SFE and it is linear” [or more generally, affine, given affine 

marginal cost functions with strictly positive intercepts].  It is straightforward to show 

that this argument based on the single-market SFE carries over to the spot market, as 

well, in the multi-settlement market context.149  We do not make the rather strong 

assumption here that sε�  is necessarily unbounded.  Rather, we simply restrict ourselves 

under the Affine Spot Market SFs assumption to the class of affine spot market supply 

functions, noting that this assumption becomes less restrictive the larger is sε� .   

 More recent work on the stability of SFE models has shown that under plausible 

conditions, (single-market) non-affine SFs are unstable, as elaborated below.  In 

particular, under assumptions analogous to the Affine Spot Market Demand Function and 

Affine Marginal Production Cost Functions assumptions above,150 Baldick and Hogan 

(2001, 30 (Theorem 6)) find that single-market SFEs comprising either (1) strictly 

concave SFs for each firm or (2) strictly convex SFs for each firm are “unstable.”151  

                                                 

148 This is because at extreme values of the demand shock ε , the SFs having the greatest curvature 
violate the second-order condition for profit maximization beyond a certain point in their domain.   

149 Whether this argument also holds in the forward market within the multi-settlement market, 
however, is a matter for further research; see chapter 7.   

150 And assuming, in addition (as we did in subsection 3.1.8), that suppliers face no binding 
capacity constraints.   

151 See Baldick and Hogan (2001, 30) for details.  These authors define an unstable SFE in the 
following intuitive sense: An SFE is unstable when small perturbations to equilibrium SFs elicit best 
responses from firms that deviate further from this equilibrium (with respect to an appropriate norm on the 
function space of SFs) than do the originally assumed perturbations.  The authors do not address the case of 
SFEs in which the concavity of the equilibrium SFs varies across firms (e.g., when some firms have strictly 



 

  144 

Based on their analysis, it is reasonable to conjecture (although we do not prove this here) 

that Baldick and Hogan’s aforementioned result for the single-market setting will carry 

over (at least to the spot market) in the multi-settlement market environment.  Therefore, 

if stability of the equilibrium is a salient—and desirable—characteristic, the affine spot 

market SFs studied here are also those most of interest on stability grounds.   

Apart from stability considerations, Green (1996) has made the case that affine 

spot market SFs may be reasonable approximations to the actual equilibrium SFs, 

particularly at certain demand levels.152  In addition, the Affine Spot Market SFs 

assumption is naturally attractive, as it makes the multi-settlement SFE model more 

tractable analytically.  Finally, this assumption also facilitates comparisons with previous 

work (e.g., Green 1999a), which has similarly focused, for the most part, on the affine or 

linear cases.   

5.2 Implications for the spot market supply functions  

This subsection solves for the parameters s
iα  and explains how to solve for the s

iβ  (see 

eq. (5.2)).153  For concreteness, we conduct the analysis for firm 1.  Begin by substituting 

from eq. (5.2) for each firm’s affine spot market SF into eq. (4.13), firm 1’s spot market 

                                                                                                                                                 

concave SFs while others’ SFs are strictly convex).  Whether such cases arise is not known, but if they do, 
their stability properties are unknown.   

152 For the case of a single market with marginal cost passing through the origin, Green notes (p. 
209, n. 3) that the slope at the origin of all SFs through this point is equal to the slope of the unique linear 
SF also passing through the origin.  Thus, any affine SF approximates an arbitrary (nonlinear) equilibrium 
SF at low demand levels.  It may be shown that an analogous result holds for spot market SFs in a multi-
settlement market, whereby the approximation is valid in the neighborhood of the point on the marginal 
cost function at the forward contract quantity (see, e.g., Figure 5.1).   

153 The results of this subsection are consistent with those of Green (1999a), who examined a 
forward contract market using conjectural variations interacting with a spot market using SFE.   
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equilibrium optimality condition.  Doing so (and imposing Nash equilibrium in the 

forward market) yields, for all market-clearing sp ,  

 ( ) ( ){ }2 01 1 1 1 1 1 1
s s s s s s s s s fp c c p p qβ γ α β α β + − + + = + −  . (5.3) 

Simplifying and collecting factors of sp  and constant terms, we get  

 
( ) ( )

( ) ( )
2 1 1 2 01 1 1

1 1 1 1 01 1

1

1 1 .

s s s s s

s s s s s s s f

c p c c

c p c c q

β β β α

β γ γ α γ γ

− − +

   = + − + + + −   
  

For this equation to hold for any market-clearing price sp , the factors of sp  on 

either side of this equation must be equal, as must the constant terms.  Equating these 

terms, defining the dimensionless parameter iφ  as  

 ( )
1 ( , 1, 2; )

1i s s
i j

i j i j
c

φ
γ β

≡ = ≠
+ +

, (5.4) 

and solving for 1
sα  and for 1

sβ  (in terms of 2
sβ ), we have154  

 1 1 1 01 1
s f sq cα φ β= −  (5.5) 

and  

 ( )1 1 2
s s sβ φ γ β= + . (5.6) 

Considering the (equilibrium) forward market positions 1
fq  and 2

fq , we see that 1
sα  in 

eq. (5.5) depends only on 1
fq  and not on 2

fq , while 1
sβ  does not depend on either firm’s 

                                                 

154 Equations (5.5) and (5.6) are consistent with Green’s (1999a) eqs. (7) for the duopoly case that 
he studies.   
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forward market position.  The interpretation is that the affine spot market SF depends 

only on one’s own quantity awarded in the forward market and not on the competitor’s 

quantity.  This observation is an instance of Green’s (1999a) finding concerning the 

effect of forward contract positions in his linear SF model and the distinction between 

quantities and stage game actions in the SFE setting.  As Green noted, “[firm j’s] quantity 

is decreasing in [firm i’s] contract sales, but its [optimal spot market action]—its supply 

function—is not affected by them.”155  Our assumption of affine SFs is critical to this 

property, however; non-affine spot market SFs do depend on the rival’s forward market 

quantity.   

 Rewriting eq. (5.6) for generic firms i and j and using eq. (5.4), we find that the 

parameter iφ  may also be written as  

 1 , 1, 2s
i i ic iφ β= − = . (5.7) 

Note that iφ  is a function only of spot market constants, and assuming that 0s
jβ > , eq. 

(5.4) implies, further, that  

 0 1iφ< < . (5.8) 

Using eq. (5.5), we may rewrite eq. (5.2) for firm 1’s spot SF in terms of 1
sβ  as156  

 ( ) ( )1 1 2 1 1 01 1 1; ,s s f f f s s sp q q q c pφ β βΣ = − + . (5.9) 

                                                 

155 Green (1999a, 116) (emphasis in original).  An increase in a firm’s forward market position 
(“contract sales,” in Green’s parlance) decreases its rival’s quantity by depressing the equilibrium spot 
market price, thereby calling forth less supply from its rival, given the rival’s fixed spot market SF.  On the 
nature of this effect in the present model, see section 5.4 below.   

156 For consistency, we maintain 2

fq  as an argument of 1

sΣ , although we note that 2

fq  does not 
appear on the right-hand side of eq. (5.9), as explained above.   
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We may write analogous expressions that characterize firm 2’s spot SF by interchanging 

subscripts 1 and 2 in eqs. (5.5), (5.6), and (5.9):  

 2 2 2 02 2
s f sq cα φ β= − , (5.10) 

 ( )2 2 1
s s sβ φ γ β= + , (5.11) 

and  

 ( ) ( )2 2 1 2 2 02 2 2; ,s s f f f s s sp q q q c pφ β βΣ = − + . (5.12) 

 The equations (5.9) and (5.12) for the firms’ spot market SFs indicate that we may 

interpret the dimensionless parameter iφ  introduced in eq. (5.4) as the partial derivative 

of firm i’s SF ( ); ,s s f f
i i jp q qΣ  with respect to i’s forward market quantity, that is,  

 
( ); ,

0, , 1, 2;
s s f f
i i j

if
i

p q q
i j i j

q
φ

∂Σ
= > = ≠

∂
. (5.13) 

In other words, we may construe iφ  as the sensitivity, at the margin, of firm i’s spot 

market quantity bid (at a given price sp ) to changes in its forward market quantity f
iq .   

5.3 Comparative statics for the spot market  

When solved simultaneously, eqs. (5.6) and (5.11) yield a quadratic form in 1
sβ  and 2

sβ , 

the slopes of the respective firms’ affine spot market SFs, such that ( ), ,s s s
i i i jc cβ β γ=  

( , 1, 2;i j i j= ≠ ).  This system of s
iβ  is a special case (for 2n = ) of the general n-firm 

model studied by Rudkevich (1999), in which firms with affine marginal costs bid affine 

SFs into a centrally-cleared market.  For the duopoly case studied here, Rudkevich’s 
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result implies that the quadratic form in 1
sβ  and 2

sβ  has exactly one root in which both 

1
sβ  and 2

sβ  are positive.  Thus, there is a unique solution ( )1 2,s sβ β  corresponding to a 

strictly increasing spot market SF for each firm.157  Given that ( ), ,s s s
i i i jc cβ β γ= , we 

also have from the definition of iφ  in eq. (5.4) that ( ), , s
i i i jc cφ φ γ= .   

 Table 5.1 below reports the signs of the partial derivatives of ( ), ,s s
i i jc cβ γ  and 

( ), , s
i i jc cφ γ  as derived in Appendix D.1 via differentiation of eqs. (5.6) and (5.11), as 

well as of definition (5.4) for iφ .   

TABLE 5.1: COMPARATIVE STATICS OF ( ), ,s s s
i i i jc cβ β γ=  AND ( ), , s

i i i jc cφ φ γ=  

WITH RESPECT TO THE PARAMETERS ic , jc , AND sγ  ( , 1, 2;i j i j= ≠ ) 

(SEE APPENDIX D.1 FOR DETAILS)  

0
s
i

ic
β∂ <
∂

 0i

ic
φ∂ <
∂

 

0
s
i

jc
β∂ <
∂

 0i

jc
φ∂ >
∂

 

0
s
i
s

β
γ
∂ >
∂

 0i
s

φ
γ
∂ <
∂

 

The signs of the partial derivatives given in Table 5.1 are invariant with respect to the 

parameter values ic , jc , and sγ .  The comparative statics effects in the table for s
iβ  

indicate that—as intuition might suggest—as either firm’s marginal cost function or the 

spot market demand function becomes steeper, the spot market SF slopes s
iβ  become 

                                                 

157 The exact analytical expression for ( ), ,s s

i i jc cβ γ  is straightforward but tedious to obtain from 
eqs. (5.6) and (5.11); we do not require it for the present analysis and so do not solve for it explicitly here.   
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steeper.  Moreover, again using eqs. (5.4), (5.6), and (5.11), we may show that the 

following inequalities obtain at all parameter values for the derivatives of s
iβ  and s

jβ  

with respect to ic  and jc  ( , 1, 2;i j i j= ≠ ; see Appendix D.2 for details):  

 
s s
i i

i jc c
β β∂ ∂>
∂ ∂

, (5.14) 

and  

 
ss
ji

i ic c
ββ ∂∂ >

∂ ∂
. (5.15) 

Inequalities (5.14) and (5.15) indicate that the effect of changing firm i’s own marginal 

cost function slope ic  on the slope s
iβ  of i’s spot market SF ( ); ,s s f f

i i jp q qΣ  is greater in 

magnitude than either  

1. the effect on s
iβ  when changing the corresponding parameter jc  for i’s rival, j 

(eq. (5.14)),158 or  

2. the effect of changing ic  on the slope s
jβ  of j’s spot market SF ( ); ,s s f f

j j ip q qΣ  

(eq. (5.15)).   

The general insight here—consistent with intuition—is that a version of diagonal 

dominance holds for a Jacobian matrix of derivatives of the form  

                                                 

158 Recall from Table 5.1 that both of these effects are negative.   
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1 1

1

1

s s

n

s s
n n

n

c c

c c

β β

β β

 ∂ ∂
 ∂ ∂ 
 
 
 ∂ ∂
 ∂ ∂ 

"

# % #

"

, (5.16) 

in which each diagonal element of the matrix (5.16) is larger than the off-diagonal terms 

in the same row and column.159   

 We next consider the relationships among the slopes of marginal cost functions 

ic , slopes of the spot market SFs s
iβ , the parameter iφ , and the derivative 

( ); ,s s f f f
i i j ip q q q∂Σ ∂  from eq. (5.13).  Begin by considering the case of symmetric costs 

in which 1 2c c=  in the definition (5.4) for iφ .  In this case, the symmetric forms of eqs. 

(5.6) and (5.11) imply that we must have 1 2
s sβ β= .  From eq. (5.7), as a consequence, this 

symmetric scenario implies further that 1 2φ φ= .  We may therefore write that  

 1 2 1 2 1 2
s sc c β β φ φ= ⇒ = ⇒ = .   (5.17) 

Moreover, using the equations of section 5.2, we may begin with any one of the equations 

in (5.17) to generate the other two equations given there.  We thus may strengthen the 

implications in statement (5.17) to “if and only if” relationships as follows:  

 1 2 1 2 1 2
s sc c β β φ φ= ⇔ = ⇔ = . (5.18) 

Finally, we may generalize the statement (5.18) further to include asymmetric firms 1 and 

2.  Consider the two asymmetric cases 1 2c c>  and 1 2c c<  and the implications of each for 
                                                 

159 The inequalities (5.14) and (5.15) imply that such diagonal dominance holds for 2n = .  We 
conjecture that this property holds more generally for 2n > .   
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the relative magnitudes of the s
iβ  and the iφ .  Appealing to the signs of the partial 

derivatives from Table 5.1, to eq. (5.13), and to inequality (5.15) permits us to generalize 

(5.18) for the case of asymmetry in the following natural way:  

 1 2
1 2 1 2 1 2

1 2

s s
s s

f fc c
q q

β β φ φ
> < < <∂Σ ∂Σ       = ⇔ = ⇔ = ⇔ =       < > > >∂ ∂       

. (5.19) 

An implication of the statement (5.19) is that, loosely speaking, a high-cost firm is less 

able to affect the quantity that it bids in the spot market (at any given price) via its 

forward market position than is a low-cost firm.  To put it another way, as a firm’s cost 

increases, its quantity bid into the spot market, in equilibrium, becomes less sensitive to 

its forward market position.160   

 Figure 5.1 below depicts firm i’s spot market supply function ( ); ,s s f f
i i jp q qΣ  

consistent with eqs. (5.9) and (5.12) for each of the two firms.161   

                                                 

160 Consistent with the statement (5.19), the terminology used here of “high-cost” and “low-cost” 
firms denotes, more precisely, the slope ic  of a firm’s marginal cost function.   

161 The geometry of Figure 5.1 is consistent with Green’s (1999a, 114) Figure 1 in which he 
considers spot market competition (also in affine SFs) in the presence of a forward contract market based 
on conjectural variations.   
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FIGURE 5.1: THE GEOMETRY OF THE SPOT MARKET SUPPLY FUNCTION 

( ); ,s s f f
i i jp q qΣ   

Of particular interest in Figure 5.1 is the relationship of the SF ( ); ,s s f f
i i jp q qΣ  to the 

marginal cost function ( )s
i iC q′  and firm i’s forward market quantity f

iq .  As Green 

(1999a, 114) shows, the function ( ); ,s s f f
i i jp q qΣ  intersects ( )s

i iC q′  at the point 

( )( ),f f
i i iq C q′ .  Consequently, increasing f

iq  translates the function ( ); ,s s f f
i i jp q qΣ  

horizontally to the right (recall eq. (5.13)), increasing firm i’s spot market bid quantity at 

every price sp .162  Another implication of Figure 5.1’s geometry is that firm i bids its 

                                                 

162 Allaz and Vila (1993) provide useful intuition for this effect of firms’ forward market positions 
increasing their spot market quantities (also manifested in eq. (5.13)).  Namely, in a model having a 
Cournot spot market, these authors find (p. 4) that “the decrease in price necessary to sell [an] additional 
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spot market quantity below its marginal cost at quantities below f
iq , and above its 

marginal cost at quantities above f
iq .   

 Figure 5.1 above is also useful to illustrate how the spot market geometry changes 

with shocks to the underlying parameters of interest.163  In particular, consider the effects, 

in turn, of shocks to  

•  the marginal cost function intercepts 0ic  and 0 jc ,  

•  the marginal cost function slopes ic  and jc , and  

•  the slope sγ  of the affine spot market demand function  

on the functions depicted in Figure 5.1 for firm i.  Assume, for simplicity, throughout this 

paragraph that firm i’s forward market quantity is fixed at f
iq .164  Considering first an 

increase in the intercept 0ic , this shock induces an upward translation of both firm i’s 

marginal cost function ( )s
i iC q′  and spot market SF ( ); ,s s f f

i i jp q qΣ .  In contrast, a shock 

to 0 jc  leaves the functions in Figure 5.1 unchanged.  A shock to the slope ic  rotates the 

                                                                                                                                                 

unit [on the spot market] does not affect the revenue from the forward sales.”  In other words, the marginal 
revenue function rotates counterclockwise about its price intercept, and the optimal spot market quantity 
increases.  The same effect is present in this SF-based model.   

163 This discussion relies on the comparative statics effects of Table 5.1 on s

iβ  and the definitions 

of firms’ marginal cost functions ( )s

i iC q′  (eq. (5.1)) and SFs ( ); ,s s f f

i i jp q qΣ  (eqs. (5.9) and (5.12)) 
above.  See also Table E.1 of Appendix E.4 for corresponding numerical results from an affine example.   

164 A consequence of this assumption is that the point of intersection of firm i’s marginal cost 

function ( )s

i iC q′  and spot market SF ( ); ,s s f f

i i jp q qΣ  remains fixed at the quantity f

iq q= , though the 

price ( ) 0

f f

i i i i iC q c c q′ = +  at which this point of intersection occurs shifts, naturally, with shocks to 0 ic  or 

ic .   
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function ( )s
i iC q′  counterclockwise about its intercept 0ic , while both rotating the SF 

( ); ,s s f f
i i jp q qΣ  counterclockwise and translating it upward.  If instead we increase the 

slope jc  of firm j’s marginal cost function, this leaves the function ( )s
i iC q′  unchanged, 

while rotating the SF ( ); ,s s f f
i i jp q qΣ  counterclockwise (but to a lesser degree than given 

a comparable shock to ic , due to inequality (5.14)).  Finally, consider the effect of a 

shock to sγ , the magnitude of the spot market demand function’s slope.  A shock that 

increases sγ  makes this demand function (not shown in Figure 5.1) less steeply-sloped.  

This shock likewise makes ( ); ,s s f f
i i jp q qΣ  less steeply-sloped, rotating this SF 

clockwise, but leaves the function ( )s
i iC q′  unchanged.   

Green (1999a, 109) observed that “[a] general conjecture might be that as the spot 

market becomes more competitive, an uncompetitive contract market will have less 

impact on it” [footnote omitted].  As a final remark on the comparative statics results of 

Table 5.1, we obtain results from the multi-settlement SFE model that further support 

Green’s conjecture above.  Namely, consider again the effects of a change in sγ , the 

magnitude of the spot market demand function’s slope.  Increasing sγ  leads both to (1) 

less steeply-sloped spot market SFs ( ); ,s s f f
i i jp q qΣ , and (2) a decrease in iφ , which we 

may interpret (from eq. (5.13)) as the sensitivity of (either firm’s) SF ( ); ,s s f f
i i jp q qΣ  to 

(own) forward market quantity f
iq .  That is, Table 5.1’s results for marginal changes to 

sγ  imply that a change in the slope of spot market demand causing firms to behave more 
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competitively in the spot market makes spot market actions (and hence the spot market 

outcome) less sensitive to forward market actions and outcomes (and vice-versa).   

 When firms compete in SFs in the spot market, they compete in an infinite-

dimensional action space.  In this case, strategic interaction in a duopoly cannot be 

completely characterized by using reaction functions in the plane, which assumes a one-

dimensional strategy (or action) space for each firm.  Even restricting firms’ action 

spaces to affine spot market SFs as we do in this chapter, such action spaces are not one-

dimensional, but two-dimensional.  In this affine case, the firms’ action spaces comprise, 

naturally, the slopes and intercepts of the affine SFs.  As we have noted, we may solve 

eqs. (5.6) and (5.11) for the SF slopes ( ), ,s s s
i i i jc cβ β γ= .  That is, given exogenous 

values for ic , jc , and sγ , the SF slopes s
iβ  are independent of the intercepts s

iα ; in 

particular, the s
iβ  are independent of forward market quantities f

iq .  This property 

motivates the construction below of what we call partial reaction functions ( )s s
i j iR β β≡  

in the 1
sβ - 2

sβ  plane.  These partial reaction functions capture that portion of firms’ 

responses to changes in the parameters ic , jc , and sγ  reflected in the slopes of the affine 

spot market SFs.165  If we assume functional relationships between s
iβ  and s

jβ , we may 

plot the partial reaction functions ( )1 2
sR β  and ( )2 1

sR β  using eqs. (5.6), (5.11), and (5.4) 

for iφ  ( , 1, 2;i j i j= ≠ ), as done in Figure 5.2 below.   

                                                 

165 Similarly, Laussel (1992) interpreted the slope of an affine SF as the relevant strategic variable 
in a strategic international trade model.   
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 Appendix D.3 demonstrates from these three equations that the partial reaction 

functions ( )s
i jR β  have the form depicted in Figure 5.2.  In particular, each function 

( )s
i jR β  is everywhere increasing and concave in its argument 0s

jβ > , with a positive 

s
iβ -axis intercept (in the limit).  The slope ( )s

i jR β′  takes on its maximum value at the 

s
iβ -axis intercept, decreasing as s

jβ  increases and going to zero as s
jβ →∞ .  Consistent 

with these relationships, we find that for fixed ic , s
iβ  is bounded above by 1 ic .  The 

unique intersection of the partial reaction functions ( )1 2
sR β  and ( )2 1

sR β  in the positive 

orthant corresponds, naturally, to firms’ equilibrium choices of 1
sβ  and 2

sβ .   

( )1 1 2
s sRβ β=

( )2 2 1
s sRβ β=
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s

sc
γ
γ+


����

21

s

sc
γ
γ

+ 

1 ( )2 1
sR β

( )1 2
sR β

1

2

1
c




P

1

1
c

( )2

2

1

1 sc γ




+ 

( )2

1

1

1 sc γ+


����

( )1 2

Equilibrium
,s sβ β

��	�


 

FIGURE 5.2: PARTIAL REACTION FUNCTIONS ( )s s
i j iR β β≡  IN THE 1

sβ - 2
sβ  PLANE: 

THE SPOT MARKET SUPPLY FUNCTION SLOPES 1
sβ  AND 2

sβ  ARE 

STRATEGIC COMPLEMENTS  
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 Treating the slopes s
iβ  as the strategic variable for each firm in the spot market, 

we may view the s
iβ  as strategic complements in the sense of Bulow, Geanakoplos, and 

Klemperer (1985), since ( ) 0s
i jR β′ >  for , 1, 2;i j i j= ≠ .  The “complementary” 

relationship between 1
sβ  and 2

sβ  implies, for example, that if firm 1 were to choose—for 

whatever reason—a steeper SF (a lower 1
sβ ), firm 2’s best response would be to likewise 

submit a steeper SF (a lower 2
sβ ).  Similarly, the best response to a flatter SF is likewise 

an SF with a flatter slope.   

5.4 Implications for the optimal spot market price function 

The spot market-clearing condition, given equilibrium forward quantities 1
fq  and 2

fq  and 

a realization of the spot market demand shock sε , is  

 ( ) ( ) ( )1 1 2 2 2 1; , ; , ,s s f f s s f f s s sp q q p q q D p εΣ +Σ = . (5.20) 

The spot market-clearing price sp  satisfying eq. (5.20) is a function of both sε  and f
iq , 

that is, ( )*
1 2; ,s s s f fp p q qε≡ .166  Using the Affine Spot Market Demand Function and 

Affine Spot Market SFs assumptions introduced at the outset of this chapter, eq. (5.20) 

becomes  

 ( ) ( )1 1 01 1 1 2 2 02 2 2
f s s s f s s s s s sq c p q c p pφ β β φ β β γ ε   − + + − + = − +     

which, solving for sp , yields  

                                                 

166 Where it causes no ambiguity, we use the more convenient notation sp  in what follows.   
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 1 1 2 2 01 1 02 2

1 2

s f f s s
s

s s s

q q c cp ε φ φ β β
β β γ

− − + +=
+ +

. (5.21) 

Given our assumptions, we have from eq. (5.21) that  

 
1 2

0
s

i
f s s s

i

p
q

φ
β β γ

∂ = − <
∂ + +

, (5.22) 

that is, an increase in either firm’s forward market position decreases the equilibrium spot 

market price, ceteris paribus.  For concreteness, consider an increase in 1
fq , which from 

inequality (5.22) causes a decrease in the equilibrium price sp .  If firm 2’s affine spot 

market SF remains unchanged, since this SF is assumed to be strictly increasing, the 

lower price causes firm 2 to reduce its spot market quantity offered.  This is the same as 

Green’s (1999a, 116) observation for affine SFs that one firm’s quantity is decreasing in 

the other firm’s forward market position, although the first firm’s SF is unaffected.   

 Since we have from eq. (5.21) that sp  is affine in sε , we conclude that 

( )*
1 2; ,s s f fp q qε  is, in fact, partially invertible with respect to sε  in the simplified affine 

example.  In a Nash equilibrium, this implies that our earlier assumption (see section 4.1) 

of the partial invertibility of ( )* ˆ ˆ; ,s s f f
i i jp q qε  with respect to sε  is justified for the 

simplified affine example.  More generally, due to the continuity of the underlying 

differential equations’ solutions in the initial conditions,167 this property of partial 

invertibility will hold also for spot market SFs sufficiently close to the affine SFs in eqs. 

(5.9) and (5.12).   

                                                 

167 See section 7.2.2 for a statement of the relevant continuity theorems for the forward market 
SFs.  A similar argument holds here for the spot market SFs.   
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 Replacing f
iq  with ( )f f

iS p , 1, 2i = , in eq. (5.21), we may also write this 

equation as a function of the forward market price fp ,  

 
( ) ( )1 1 2 2 01 1 02 2

1 2

s f f f f s s
s

s s s

S p S p c c
p

ε φ φ β β
β β γ

− − + +
=

+ +
. (5.23) 

It will be useful to simplify eq. (5.23) and the expressions that follow by defining some 

additional notation.  Namely, let  

 
1 2

1 0a s s sω
β β γ

≡ >
+ +

 (5.24) 

and  

 01 1 02 2 0s s
b c cω β β≡ + ≥ , (5.25) 

using subscript letters “a” and “b” to avoid confusion with firms 1 and 2.  The signs of aω  

and bω  above follow from the analysis of sections 5.2 and 5.3 and our parametric 

assumptions.  Using the notation of eqs. (5.24) and (5.25), we may recast eq. (5.23) as  

 ( ) ( )1 1 2 2
s s f f f f

a bp S p S pω ε φ φ ω = − − +  . (5.26) 

 Figure 5.3 below illustrates the clearing of the spot market and determination of 

the equilibrium price sp , assuming affine marginal cost and spot market demand 

functions, and affine SFs (as depicted in Figure 5.1 for firm i).   
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Spot market
sp

, ,s s sD ε•Σ

( )ˆ,s s sD p ε

0 1
fq2

fq

( )2 2 1; ,s s f fp q qΣ

( )1 1
sC q′

( )2 2
sC q′

( )1 2; ,s s f f
Agg p q qΣ

2ˆ sq 1ˆ
sq ˆ s

Aggq ˆ sε

( )1 1 2; ,s s f fp q qΣ

( )*
1 2ˆˆ ; ,s s s f fp p q qε=

 

FIGURE 5.3: SPOT MARKET EQUILIBRIUM ( )ˆ ˆ,s s
Aggq p  ASSUMING AFFINE FUNCTIONAL 

FORMS, AND GIVEN FORWARD MARKET QUANTITIES 1
fq  AND 2

fq  AND A 

SPOT MARKET DEMAND SHOCK ˆs sε ε=   

Given forward market quantities 1
fq  and 2

fq  and a spot market demand shock ˆs sε ε= , 

Figure 5.3 illustrates how the firms’ spot market SFs sum horizontally to yield the 

aggregate spot market SF ( )1 2; ,s s f f
Agg p q qΣ .  The intersection of this function with spot 

market demand ( ),s s sD p ε , naturally, defines the equilibrium point ( )ˆ ˆ,s s
Aggq p  for the 

spot market.   
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 Returning to eq. (5.26) for sp , we next compute the conditional expectation of 

this expression.  Conditional on the forward market outcomes of the demand shock168 0
fε  

and the corresponding market-clearing price fp , this expectation is  

 ( ) ( ) ( ) ( )0 0 1 1 2 2E , E ,s f f s f f f f f f
a bp p p S p S pε ω ε ε φ φ ω = − − +  . (5.27) 

The quantities fp  and 0
fε  are related, naturally, in any forward market equilibrium.  

Chapter 4’s optimization problem for firm 1 established the existence of an optimal 

forward market price function ( )*
1 0
f fp ε  for firm 1, and if ( )*

1 0
f fp ε  is invertible, an 

optimal SF ( )1
f fS p .169  Recall also that in Nash equilibrium, ( )*

1 0
f fp ε  and ( )*

2 0
f fp ε  

must coincide in a market-wide optimal forward market price function, ( )*
0

f fp ε .  Below, 

we establish sufficient conditions involving the forward market SFs for the invertibility 

and differentiability of ( )*
0

f fp ε .  These properties will be useful later in simplifying eq. 

(5.27).   

 Consider equilibrium in the forward market.  Given forward market equilibrium 

SFs ( )f f
iS p  and a demand function ( )0,f f fD p ε  with arbitrary shock 0

fε , the forward 

market clearing condition is (at a market-clearing price ( )*
0

f f fp p ε= )170  

                                                 

168 Recall from eq. (3.10) that the additive forward market demand shock ( )0 0 0,f f f fD pε ε=  is 

equal to the forward market demand function ( )0,f f fD p ε  evaluated at the forward market reference price 

0

fp .   

169 Symmetric results obtain, naturally, for firm 2.   

170 Under the assumptions of section 4.2, a unique market-clearing price will exist.   
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 ( ) ( ) ( )1 2 0,f f f f f f fS p S p D p ε+ = . (5.28) 

Substituting ( )*
0

f fp ε  for fp  in eq. (5.28) and recalling the additively separable form 

(eq. (3.8)) for the forward market demand function ( )0,f f fD p ε , we may recast eq. 

(5.28) as  

 ( )( ) ( )( ) ( )( )* * *
1 0 2 0 0 0 0

f f f f f f f f f fS p S p D pε ε ε ε+ = + . (5.29) 

Since eq. (5.29) is an identity for each 0
fε , and assuming that ( )1

fS i , ( )2
fS i , and 

( )0
fD i  are differentiable, we may totally differentiate eq. (5.29) with respect to 0

fε  to 

obtain  

 ( ) ( ) ( ) ( ) ( ) ( )* * *
1 0 0 2 0 0 0 0 0 0

f f f f f f f f f f f f f f f fS p p d S p p d D p p d dε ε ε ε ε ε ε′ ′ ′ ′ ′ ′+ = + . 

Solving the above equation for ( )*
0

f fp ε′ , we get  

 ( ) ( ) ( ) ( )
*

0

1 2 0

1f f

f f f f f f
p

S p S p D p
ε′ =

′ ′ ′+ −
. (5.30) 

 We assume now that, in addition to being differentiable, the forward market SFs 

( )f
iS i  are also strictly increasing171 which, as chapter 6 will show, is sufficient for 

( ) ( )0 0, 0f f f f f fD p p D pε ′∂ ∂ = < .  Then, we have from eq. (5.30) that ( )*
0

f fp ε  is 

differentiable and that  

                                                 

171 Later, in the numerical examples of chapter 7, we will see that there exist forward market SFs 
satisfying these conditions, thus justifying this assumption.   
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 ( )*
0 0f fp ε′ >  (5.31) 

for all 0
f fEε ∈ .  The inequality (5.31) implies that the function ( )*

0
f fp ε  is invertible, so 

that we may define the function ( ) 0
f f f
pe p ε=  as the inverse of ( )*

0
f fp ε , that is,  

 ( ) ( ) ( )1*
0
f f f f f

pe p p pε
−

= ≡ . (5.32) 

Since the relationship ( )*
0

f f fp p ε=  is invertible, fp  and 0
fε  are one-to-one.  In eq. 

(5.27), therefore, we need condition on only one of the two quantities fp  and 

( )0
f f f

pe pε = .  Conditioning on fp  alone, we may write eq. (5.27) as  

 ( ) ( )( ) ( ) ( )1 1 2 2E Es f s f f f f f f
a p bp p e p S p S pω ε φ φ ω = − − +  . (5.33) 

Later, we use eq. (5.33) at the outset of chapter 7 to simplify the firms’ forward market 

equilibrium optimality conditions (see also section 5.5 below).   

 In the multi-settlement SFE model, it is also of interest to determine how the 

expected spot market price ( )E s fp p  varies with marginal changes in forward market 

outcomes.  To investigate this issue, we differentiate eq. (5.33) with respect to fp  to 

obtain  

 
( ) ( )( ) ( ) ( ) ( )1 1 2 2

0

EE s f fs f f f
p p f f f f

af f f

d e pd p p de p
S p S p

dp d dp

ε
ω φ φ

ε

 
 ′ ′= ⋅ − −
 
 

. (5.34) 
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In the term ( )( ) 0E s f f f
pd e p dε ε  on the right-hand side of eq. (5.34), we may condition 

on 0
fε  instead of ( )f f

pe p  (recalling eq. (5.32)) for ease of notation.  Making this change 

and recognizing also from eq. (5.32) that  

 
( ) ( ) 1*

0

0

f f f f
p

f f

de p dp
dp d

ε
ε

−
 
 =
  

,  

eq. (5.34) becomes  

 
( ) ( ) ( ) ( ) ( )

*
0 0

1 1 2 2
0 0

E Es f s f f f
f f f f

a f ff

d p p d dp
S p S p

d ddp

ε ε ε
ω φ φ

ε ε

   ′ ′ = − −     

. (5.35) 

Using eq. (5.30) to substitute for ( ) ( )* *
0 0 0

f f f f fp dp dε ε ε′ ≡  in eq. (5.35) and collecting 

terms, we have  

        

( ) ( ) ( ) ( ) ( )

( ) ( )

0 0
1 1 2 2

0 0

0
0

0

E E E

E
.

s f s f s f
f f f f

af f f

s f
f f

f

d p p d d
S p S p

dp d d

d
D p

d

ε ε ε ε
ω φ φ

ε ε

ε ε
ε

    ′ ′   = − + −      
′− ⋅ 


 (5.36) 

To simplify eq. (5.36) further, the next chapter develops an expression for the derivative 

( )0 0E s f fd dε ε ε  assuming (1) a decomposition of sε  into constituent stochastic 

parameters, and (2) a relationship between consumers’ private information about the level 

of spot market demand, on the one hand, and forward market demand, on the other.   

 In interpreting the results of this subsection, it is important to note that we have 

not yet specified the forward market demand function.  In particular, eq. (5.33) expresses 
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the conditional expectation of sp  in terms of the forward market SFs, whose derivation 

in chapter 4 assumed the existence of a downward-sloping, twice-differentiable forward 

market demand function.  We revisit this issue in chapter 6, in which we explain how 

such a forward market demand function could arise, and analyze this function’s 

properties given the attributes of consumers.   

5.5 Implications for the forward market optimality conditions 

The Affine Spot Market Demand Function, Affine Marginal Production Cost Functions, 

and Affine Spot Market SFs assumptions permit us to simplify firm 1’s equilibrium 

optimality condition for its forward SF, eqs. (4.41) and (4.42).  From eq. (5.12), we have 

that  

 
( )2 2 1

1

; ,
0

s s f f

f

p q q
q

∂Σ
=

∂
,  

and  

 
( )2 2 1

2
2

; ,s s f f

f

p q q
q

φ
∂Σ

=
∂

.   

Using these expressions and after some simplification, eq. (4.41) becomes  

 
( ) ( )( ) ( ){ } ( )

( ) ( ) ( )
1 2 01 1 1 2

1 0

E E

E

s f f f s f f f f

f f f f s f f

p p c c S p p p p S p

S p D p p p p

φφ     ′− + − −  

 ′= − − 

 (5.37) 

for all market-clearing prices fp .   
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 For purposes of comparison with previous work, we make the temporary 

assumption that the expression in braces on the left-hand side of eq. (5.37) is nonzero, 

that is,  

 ( ) ( )( ) ( )1 2 01 1 1E E 0s f f f s f fp p c c S p p p pφφ    − + − − ≠   . (5.38) 

This assumption permits us to rewrite eq. (5.37) as  

 ( ) ( ) ( ) ( )
( ) ( )( ) ( )

1 0

2

1 2 01 1 1

E

E E

f f f f s f f

f f

s f f f s f f

S p D p p p p
S p

p p c c S p p p pφφ

 ′− − ′ =
   − + − −  

. (5.39) 

Examining the right-hand side of eq. (5.39), we see that it depends on two price 

differences:  

1. The difference between the expected spot price and the forward price, 

( )E s f fp p p−   

2. The difference between the expected spot price and firm 1’s marginal cost of 

producing its contract quantity in the forward market, ( )E s fp p  

( )( )01 1 1
f fc c S p− +   

The structure of eq. (5.39) resembles that of KM’s (single-market) optimality condition, 

namely,  

 ( ) ( )
( )( ) ( )S p

S p D p
p C S p

′′ = +
′−

. (5.40) 

The similarity between eqs. (5.39) and (5.40) is particularly apparent for the special case 

in which spot market demand ( ),s s sD p ε  is very elastic, so that its slope sγ−  gets large 
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in magnitude, that is, sγ− → −∞ .  As sγ−  decreases, we have from eq. (5.4) that 0iφ →  

( 1, 2i = ).  Setting 0iφ =  in eq. (5.39) as an approximation, we may then rewrite this 

equation as  

 ( ) ( )
( ) ( )1

2 0
E

f f
f f f f

f s f

S p
S p D p

p p p
′ ′= +

−
. (5.41) 

Equation (5.41) is completely analogous to eq. (5.40), except that ( )E s fp p  appears in 

place of ( )( )C S p′ .172  The structural similarity of these equations suggests that when 

spot market demand is perfectly elastic, the marginal opportunity cost of forward contract 

supply is simply the expected spot market price.   

We may also derive a version of eq. (5.41) more directly if we solve firm 1’s 

forward market problem (see chapter 4) with the simplifying assumptions that  

1. the spot market price is random with expectation ( )E sp , and  

2. suppliers bid perfectly elastic supply functions that are independent of forward 

market outcomes.   

We again assume (as justified in chapter 6) a downward-sloping forward market demand 

function (with shape component ( )0
f fD p ) given strictly increasing forward market SFs 

( )f f
iS p .  In this case, eq. (5.41) becomes  

                                                 

172 Earlier in chapter 4 (specifically, in discussing eqs. (4.41) and (4.42)), we took note of this 
analogy between expected spot price in the forward market problem and marginal cost in the (single 
market) spot market problem.   
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 ( ) ( )
( ) ( )1

2 0E

f f
f f f f

f s

S p
S p D p

p p
′ ′= +

−
, (5.42) 

which is identical to eq. (5.41), except that ( )E sp  replaces ( )E s fp p , as a consequence 

of simplifying assumption 2 above.  

5.6 Conclusion  

This chapter assumed that cost functions, spot market demand functions, and spot market 

SFs have affine functional forms.  These simplifications, naturally, have consequences 

for both the spot and forward markets which we explored in this chapter.   

 The next chapter, chapter 6, explains how the forward market demand function 

arises and investigates its properties.  Then, chapter 7 will integrate the results of the 

present chapter, using eq. (5.33) for ( )E s fp p  to simplify further the forward market 

equilibrium optimality conditions (eq. (5.39) for firm 1, and analogously for firm 2), from 

which we derive the forward market SFE.   
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I can get no remedy against this consumption of the purse; borrowing only lingers and 
lingers it out, but the disease is incurable.   

—Shakespeare, Henry IV, Part 2 
 

Electricity seems destined to play a most important part in the arts and industries.  The 
question of its economical application to some purposes is still unsettled, but experiment 
has already proved that it will . . . give more light than a horse.   

—Ambrose Bierce, The Devil’s Dictionary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 The demand side  

CONSUMERS purchase electricity for consumption in the spot market.  In this chapter, we 

show under reasonable assumptions—notably, consumers’ risk aversion—that consumers 

are also active in the forward market.  Specifically, we derive here an endogenous 

aggregate forward market demand function for a representative consumer.  Moreover, 

this chapter states sufficient conditions for this demand function—which we have 

denoted as ( )0,f f fD p ε —to have the following properties.173  First, ( )0,f f fD p ε  slopes 

downward at all prices fp , is differentiable with respect to both arguments, and its shape 

                                                 

173 We already assumed some of these properties of ( )0,f f fD p ε  in section 3.1.10.  We may view 
the model presented in this chapter as justifying these assumptions.   



 

  170 

is deterministic and common knowledge.  Second, ( )0,f f fD p ε  has an additive, 

exogenous, and stochastic component, subsumed in the shock 0
fε , that shifts 

( )0,f f fD p ε  horizontally but does not change the function’s shape (i.e., rotate or deform 

it).174   

 The outline of this chapter is as follows.  We begin in section 6.1 by introducing 

some fundamental assumptions underlying the demand-side model.  Section 6.2 

motivates a nested optimization problem describing consumers’ behavior in each market, 

and justifies a mean-variance approximation to consumers’ utility maximization problem 

in the forward market.  Next, section 6.3 gives sufficient conditions for a representative 

consumer to exist in the multi-settlement SFE model.  Section 6.4 specifies attributes of 

the representative consumer that are consistent with an affine aggregate spot market 

demand function.  Next, section 6.5 specifies a simple model for the spot market demand 

shock sε .  Section 6.6 reframes the analysis in terms of a representative consumer.  It 

then derives the representative consumer’s forward and spot market activity as the 

solution to her underlying utility maximization problem.175  In section 6.7, we show how 

demand shocks and prices are related across the two markets.  Finally, section 6.8 

characterizes the essential properties of the aggregate forward market demand function.   

 Several empirical studies have found that, as we might expect, estimated 

electricity forward market demand functions are downward sloping, and are more elastic 

                                                 

174 Many of these properties of the multi-settlement SFE model’s forward market demand function 
are identical to those of KM’s single-market (i.e., spot market) demand function.  The shared features 
facilitate the application of KM’s SFE framework to the forward market (in addition to the spot market) in 
the present work.   

175 As an arbitrary convention, we use feminine pronouns to denote consumers.   
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than typical estimates of spot market demand functions.  For example, Earle (2000) 

studies the first twenty months of operation (i.e., from April 1998 to November 1999) of 

California’s competitive market.  Earle finds a downward-sloping residual demand 

function176 with a median elasticity of approximately –0.1; in 27% of the hours in his data 

set, the magnitude of the residual demand elasticity exceeds one.  Such values of demand 

elasticity are indeed markedly higher than short-run elasticities commonly measured in 

spot electricity markets.  The present model’s endogenous determination of ( )0,f f fD p ε  

naturally permits such elasticity, as well.   

6.1 Modeling assumptions 

This section outlines our assumptions regarding the attributes of consumers and 

motivates their optimization problems in the forward and spot markets.   

6.1.1 Price-taking consumers  

There are a total of J consumers active in the market, indexed by 1, 2, ,j J= … .  We 

assume that J is large and fixed.177  Furthermore, each consumer j is a price taker in both 

the forward and spot markets (consumers may be active in both markets).   

6.1.2 Partial equilibrium analysis  

Each consumer’s expenditure on electricity is a small fraction of that consumer’s total 

expenditures; this is also true with respect to each consumer’s marginal expenditures.  In 

                                                 

176 Generating units in the California market which must run due to engineering constraints were 
bid into the PX with a (perfectly elastic and non-strategic) bid of zero dollars.  Earle then subtracts such 
bids from total demand to obtain the residual demand function.   

177 We neglect the possibility of entry and exit of consumers, with the justification that these 
actions are costly.   
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addition, the electricity market, as such, is small relative to the entire economy.  Hence, 

prices of other goods and services may be taken as approximately constant as the price of 

electricity varies.  In this setting, Marshallian partial equilibrium analysis (Marshall 

1920) implies for all consumers that (1) we may neglect wealth effects on electricity 

demand, and (2) we may treat expenditures on goods and services (other than electricity) 

as expenditures on a single composite commodity, termed the numeraire commodity 

(Mas-Collel, Whinston and Green 1995, 316) and denoted as m.  Absent uncertainty, 

moreover, it is reasonable under partial equilibrium assumptions (Mas-Collel, Whinston 

and Green 1995, sec. 10.C) to take consumers’ utility functions to be quasilinear with 

respect to this numeraire (implying no wealth effects for electricity demand, at least in 

the short run).  We also assume a utilitarian social welfare function.  Together, 

quasilinear utility functions and a utilitarian social welfare function imply that we may 

quantify changes in social welfare by measuring changes in aggregate surplus.178   

6.1.3 A derived demand for electricity  

Demand for energy (for example, electricity) is commonly considered a derived demand, 

as either an input to production179 or a means to provide electricity-dependent services180 

(hereinafter amenities) to consumers.  The consequence for the analysis of consumer 

behavior in the present model is that consumers’ utility functions do not depend directly 

                                                 

178 Aggregate surplus (or Marshallian aggregate surplus) from consumption of a commodity is 
defined as the total utility generated by consumption of that commodity less its costs of production (Mas-
Collel, Whinston and Green 1995, 326).  Section 7.7 uses aggregate surplus to compute social welfare in 
the context of a specific numerical example.   

179 See, for example, Berndt and Wood’s (1975) analysis.   

180 For example, light, heat, air conditioning, entertainment, etc.   
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on the amount of electricity consumed, but rather on the level of amenity enjoyed.  A 

related element of the modeling framework adopted here is the assumption that each 

consumer notionally produces her amenity in a given market round using inputs of 

electricity and other (unmodeled) inputs, for example, capital/durable goods, labor/leisure 

time, assumed to be fixed.181  The amount of amenity produced by the consumer is 

subject to stochastic shocks due, in turn, to environmental or technological factors.   

 We now introduce notation to characterize consumer j’s demand-side production 

process for her amenity.  Define the following:  

s
jq ∈ \  = consumer j’s quantity of electricity purchased in the spot market 

 and subsequently used as an input to amenity production in a given 

 market round;182  

jm ∈ \  = consumer j’s consumption of the numeraire commodity m;183  

,j j jT T T ∈ ⊂ 
�

\�  = stochastic production shock with support ,j jT T  
�

�  characterizing 

 randomness in consumer j’s production process due to 

 environmental or technological factors;  

jx ∈ \  = level of amenity184 enjoyed by consumer j; and  

                                                 

181 The present approach is in the same spirit as Michael and Becker’s (1973) reformulation of the 
theory of consumer behavior using a “household production function.”   

182 An outcome in which 0s

jq <  corresponds to consumer j being a net supplier of electricity in 
the given market round.  This possibility could be interpreted as so-called “net metering,” whereby 
consumers owning electricity generation capacity may sell electricity that they choose not to consume.  
While the present model permits this, in principle, the particular forward market equilibrium selection 
procedure employed in chapter 7’s numerical examples preclude suppliers and consumers from switching 
sides in the spot market (but not in the forward market).  See subsection 7.6.1 for details.   

183 We assume jm ∈ \  for convenience, to avoid boundary complications.   
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( ): ,s
j jf q T →\  = consumer j’s production function185 relating the input s

jq  and the 

 shock jT  to output.   

Consumer j observes the realization of the stochastic shock jT  before selecting the 

optimal level of the input s
jq  to produce jx .  Assuming that no amenity is wasted (i.e., 

produced but not enjoyed), we may equate jx  and the amount produced as  

 ( ),s
j j jx f q T= . (6.1) 

Next, assume that consumer j derives utility according to a utility function ( ),s
j jW m x  

from two sources in the spot market: (1) her consumption jm  of the numeraire 

commodity, and (2) her enjoyment of amenity jx .186  Let ( ),s
j jW m x  be quasilinear with 

respect to j’s consumption of the numeraire commodity, jm , and let the contribution of 

                                                                                                                                                 

184 Since we take the units of the amenity jx  to be arbitrary for greatest generality, the origin of 

jx  is also arbitrary.  Hence, jx  may be any real number.   

185 We specify the properties of the production function f below.  While the function ( ),s

j jf q T  is 

consumer-specific, we suppress its subscript “ j ” to reduce notational clutter.  The arguments s

jq  and jT  of 

( ),s

j jf q T  associate this function with consumer j.  From note 184 and eq. (6.1), j’s production ( ),s

j jf q T  
may be positive, negative, or zero.   

186 While the function ( ),s

j jW m x  is consumer-specific, we suppress its subscript “ j ” (as with f) 

to reduce notational clutter.  The arguments jm  and jx  of ( ),s

j jW m x  associate this function with 
consumer j.   
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jx  to j’s utility enter ( ),s
j jW m x  as a function ( )jxφ .187  With the above assumptions, 

we may define ( ),s
j jW m x  as  

 ( ) ( ),s
j j j jW m x m xφ= + . (6.2) 

 Turn now to the properties of the functions f and φ  in expressions (6.1) and (6.2) 

above.  First, let both f and φ  be twice continuously differentiable in their arguments.  

Next, the conventional neoclassical theories of production and of demand—as well as the 

present modeling framework—suggest a number of a priori restrictions on the functional 

forms of both f and φ .  Namely, we assume the following (letting subscripts denote 

partial differentiation) for the production function f:  

•  Production is (strictly) increasing in the input s
jq  (for s

jq  sufficiently small):188  

 ( ), 0s
j

s
j jq

f q T >  (6.3) 

•  Production is (strictly) decreasing in the production shock jT :  

 ( ), 0
j

s
T j jf q T <  (6.4) 

                                                 

187 While the function ( )jxφ  is consumer-specific, we suppress its subscript “ j ” (as with f and 
sW ) to reduce notational clutter.  The argument jx  of ( )jxφ  associates this function with consumer j.   

188 We require this qualification on values of s

jq  to accommodate a quadratic functional form for 

the production function ( ),s

j jf q T , which we specify in subsection 6.4.2.   
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•  The marginal product of the input s
jq  is nonincreasing:  

 ( ), 0s s
j j

s
j jq q

f q T ≤  (6.5) 

•  The marginal product of the input s
jq  is (strictly) increasing in jT :  

 ( ), 0s
j j

s
j jq T

f q T >  (6.6) 

Recall that by the argument of note 185, we have not restricted production to be 

nonnegative.  For example, given the derivatives of f above, ( )0,j jx f T=  might be 

negative for sufficiently large jT , although this may not be an equilibrium outcome (see 

section 6.4.4).  Now assume the following regarding the function φ :  

•  Utility is (strictly) increasing in jx :  

 ( ) 0jxφ′ >  (6.7) 

•  Marginal utility is nonincreasing in jx :  

 ( ) 0jxφ′′ ≤  (6.8) 

 To provide some intuition for the application of the demand-side production 

model outlined above, consider the following specific example.  Suppose that consumer j 

has a derived demand for electricity, s
jq , to operate a household climate control system 

producing the amenity of “a comfortable indoor environment” or simply, “comfort,” 

denoted as jx .  Consumption of a greater amount of electricity produces a higher level of 

comfort, but at a (weakly) decreasing rate, reflecting diminishing returns in s
jq  consistent 
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with inequalities (6.3) and (6.5) above.  Regarding the production shock jT , one might 

interpret this shock, roughly speaking, as “ambient temperature”; it is useful, however, if 

we construe jT  more generally as any adverse shock in the ambient environment in real 

time.  In the present example, increasing jT  decreases comfort, for any level of 

electricity consumption.189  This is consistent with inequality (6.4) above.  Finally, a 

larger value of the shock jT  increases the marginal productivity of the electricity input, 

meaning that an increment in electricity consumption produces more equivalent comfort 

at the margin, as inequality (6.6) indicates.   

6.2 Consumers’ optimization problems  

This section develops a model of consumer j’s decisions in both the forward and spot 

markets.  This model assumes that consumer j’s decisions maximize her (expected) utility 

from consumption of electricity and of the numeraire commodity.  Previously, we noted 

that consumer j observes the realization of the stochastic shock jT  before making her 

spot market consumption decision.  In modeling consumer j’s spot market problem, 

therefore, we may take jT  as given.  In contrast, as consumer j faces her forward market 

problem, the real-time adverse environmental shock jT  is as yet unobserved.  It is 

therefore appropriate to treat jT  as stochastic when modeling consumer j’s forward 

market decision making.   

                                                 

189 This flexible interpretation of jT  permits the demand-side production model to apply to most 
any residential (i.e., consumptive) or commercial (i.e., productive) use of electricity.   



 

  178 

6.2.1 An expected utility maximization problem  

First define the following additional notation:  

ne
jw ∈ \  = consumer j’s wealth endowment available for consumption, not 

 including any proceeds from electricity market activity; in the 

 partial equilibrium framework, it consists of an endowment of the 

 numeraire commodity m  (whereby the superscript “ ne ” on ne
jw  

 indicates “non-electricity”)  

f
jq ∈ \  = consumer j’s quantity of electricity purchased in the forward 

 market190  

mp   = the price of the numeraire commodity m  

As in previous chapters, fp  and sp  are the electricity forward and spot market prices, 

respectively.  We now define consumer j’s budget constraint for a given market round.  

In words, this budget constraint ensures that the sum of consumer j’s expenditures does 

not exceed the sum of her wealth available for consumption.  In the multi-settlement 

model, consumer j incurs three distinct expenditures:  

m jp m   = expenditure on the numeraire commodity m,  

f f
jp q   = expenditure on electricity contracts in the forward market, and  

s s
jp q   = expenditure on electricity in the spot market,  

                                                 

190 Note that the domain for f

jq  is \ .  Since forward contracts are settled financially and are not 
linked to electricity production, it is natural to permit consumers—and for that matter, suppliers as well—
both to buy ( 0f

jq > , or a “long position”) and sell ( 0f

jq < , or a “short position”) in the forward market.   
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and has two sources of wealth available for consumption:  

ne
jw   = non-electricity wealth endowment, and  

s f
jp q   = settlement receipts in the spot market given forward contracts f

jq   

From the above discussion, we may write consumer j’s budget constraint algebraically as  

 s s f f ne s f
m j j j j jp m p q p q w p q+ + ≤ + ,  

or collecting terms in f
jq ,  

 ( )s s ne s f f
m j j j jp m p q w p p q+ ≤ + − . (6.9) 

 In the budget constraint (6.9), we abstract from cashflows arising from shares that 

consumers may hold in the two supplier firms of the multi-settlement SFE model.191  We 

may rationalize this assumption in two ways.  The first potential justification is simply to 

assume that the firms are owned by agents other than the J consumers active on the 

demand side of the model.  The second potential justification for this assumption is to 

permit such share ownership by consumers in the model, while supposing further that 

                                                 

191 Such shareholding is a standard element of models of competitive equilibrium (Mas-Collel, 
Whinston and Green 1995, 314).   
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consumers ignore the effects of their share ownership on forward market behavior192 due 

to bounded rationality.193   

 Assume that consumer j’s objective in the spot market is to maximize her utility 

function ( ),s
j jW m x  through optimal choices of jm  and s

jq  for consumption.  For a 

given shock jT , and using the maximand in eq. (6.2), the production constraint (6.1), and 

the budget constraint (6.9), we may write consumer j’s spot market optimization problem 

as  

 

( )

( )
( )

max

s.t. , (production constraint)

(budget constraint).

j
s
j

j jm
q

s
j j j

s s ne s f f
m j j j j

m x

x f q T

p m p q w p p q

φ
∈
∈

+

=

+ ≤ + −

\
\

 (6.10) 

Two simplifications to problem (6.10) are possible.  First, we may substitute for jx  in 

this problem’s objective function from the production constraint, since it is an equality.  

Second, it is evident that the budget constraint, as well, will hold with equality at any 

solution to this problem.  Consequently, we may solve the budget constraint as an 

equality for jm  (taking 1mp =  without loss of generality), and substitute for this variable 

                                                 

192 Only forward market behavior would be affected by the presence of cashflows from 
shareholding.  In the forward market, such cashflow would be a random variable (a function of spot market 
uncertainty) that would covary with the spot market price sp  and hence affect the behavior of risk-averse 
consumers.  In consumers’ spot market problem, in contrast, such cashflows are treated as lump-sum 
receipts, fixed for a given sp .  As subsection 6.6.1 below elaborates, consumers optimize in the spot 

market conditional on sp .   

193 The bounded rationality of consumers in this setting may be defended, in turn, by assuming that 
consumers’ shareholding is intermediated (through, say, mutual funds).  In such a case, the instantaneous 
exposure of consumers to the cashflows of the electricity suppliers may be relatively intransparent.   
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in problem (6.10)’s objective function.  With these two simplifications, we may rewrite 

the spot market problem (6.10) as  

 ( ) ( )( )max ,
s
j

ne s s s f f s
j j j j j

q
w p q p p q f q Tφ

∈
− + − +

\
. (6.11) 

 Consumer j faces problem (6.11) in period 2 (recall Figure 3.1) after the forward 

market has cleared (revealing fp  and f
jq ), but before the spot market has cleared.  Now 

consider consumer j’s forward market decision in period 1, given that she will face 

problem (6.11) in period 2.  We need to augment problem (6.11) to provide a basis for 

her forward market decision making.  To do so, we add three features to consumer j’s 

problem:  

1. We introduce uncertainty in the parameter jT  (consistent with the discussion at 

the outset of this section).   

2. We permit consumer j to assign a preference ranking194 to the optimal outcomes 

of problem (6.11).195   

3. We allow consumer j to maximize this preference ranking through her choice of 

forward quantity f
jq  (as a function of fp , as we will see).   

                                                 

194 The function ( ),s

j jW m x  introduced in eq. (6.2) accounts only for utility from consumption of 
electricity and the numeraire commodity.  In contrast, the preference ranking sought here will take into 
account not only these utility terms, but will weigh their value along with changes in wealth due to 
electricity market activity, as well, via the terms s s

jp q−  and ( )s f f

jp p q−  in problem (6.11).   

195 Note that with the introduction of uncertainty in jT , the outcomes of problem (6.11) are now 
themselves uncertain.   
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The optimal outcomes from problem (6.11) will be in monetary units (“wealth”),196 so it 

is natural to assume that there exists a consistent functional representation of consumer 

j’s preference ranking of this problem’s optimal outcomes.  We denote such a function as 

( )V i , defined over forward and (optimal) spot market outcomes from problem (6.11).197  

Applying ( )V i  to problem (6.11), we may write  

 ( ) ( )( )max ,
s
j

ne s s s f f s
j j j j j

q
V w p q p p q f q Tφ

∈

  − + − +   \
. (6.12) 

Consumption of numeraire produces utility directly, while according to the demand-side 

production model introduced in section 6.1.3, consumer j uses electricity as an input to 

produce jx , whose enjoyment then contributes to her utility.   

 As an illustration, let ( )V i  be a negative exponential function of the form  

 ( ) 1 j zV z e λ−= − , z ∈ \ , (6.13) 

with risk aversion parameter 0jλ > .  Note that ( )V z  is strictly risk averse for all z, since 

( ) 0V z′′ < .  This form of utility function is also commonly referred to as the constant 

absolute risk aversion—or “CARA”—utility function, since the Arrow-Pratt absolute risk 

aversion coefficient, ( )Ar z , for the utility function ( )V z  of eq. (6.13) is constant:  

                                                 

196 Note that we may express the optimized value of ( ),s

j jW m x  as an equivalent money metric 
indirect utility function.   

197 While the function ( )V i  is consumer-specific, we suppress its subscript “ j ” (as with f, sW , 

and φ ) to reduce notational clutter.  The arguments in ( )V i  (see problem (6.12)) associate this function 

with consumer j.  We assume that ( )V i  is at least twice differentiable.   
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 ( ) ( )
( )A j

V z
r z

V z
λ

′′
≡ − =

′
. (6.14) 

In eq. (6.14), denote the parameter jλ  as the “CARA coefficient” for consumer j.198  For 

ease of presentation, we continue below to refer to the function ( )V i  rather than use 

explicitly the negative exponential functional form of (6.13), although we will appeal in 

what follows to the properties of this functional form.   

 Assume that consumer j maximizes her expected utility of wealth, that is, she 

maximizes (with respect to f
jq ) the expectation ( )E j V i  in the forward market.  

Recasting problem (6.12) to reflect this objective, we have  

 ( ) ( )( )max E max ,
f s

jj

ne s s s f f s
j j j j j j

qq
V w p q p p q f q Tφ

∈∈

  − + − +   \\
. (6.15) 

We may simplify problem (6.15) further by noting the following:  

1. Both consumer j’s non-electricity wealth endowment ne
jw  and (due to the price-

taking assumption) the term ( )s f f
jp p q−  are independent of s

jq , the decision 

variable for the inner maximization problem.  Therefore, we may bring these two 

terms outside of the inner maximization problem.   

                                                 

198 A useful intuitive interpretation of the CARA coefficient jλ  is as follows.  Suppose that 

consumer j is offered a lottery paying jτ  with probability 1
2

 and 2jτ−  with probability 1
2

.  If this 

consumer has a CARA utility function (e.g., eq. (6.13)) with CARA coefficient jλ , it is straightforward to 

show that the value of jτ  for which j is indifferent between accepting and not accepting the given lottery is 

(approximately) the reciprocal of jλ , that is, 1j jτ λ≈ .  In this setting, we may interpret jτ  as consumer 
j’s risk tolerance.  Pratt (1964, 126) offers another characterization of the coefficient of absolute risk 
aversion in terms of a probability premium for accepting a lottery.   
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2. Similar to the institutional structure on the supply side, both the forward and spot 

markets can accept bids from consumers in the form of a demand function, so that 

consumer j’s chosen quantity in market m, m
jq , may, in fact, vary with price mp  

( ,m f s= ).  Since consumer j is a price taker, mp  is exogenous from her 

perspective.  As a consequence, it is appropriate to condition market m’s objective 

function on an arbitrary mp .   

Making these changes in the forward market problem (6.15) yields199  

 ( ) ( )( )( )max E max ,
f s

jj

ne s f f s s s f
j j j j j j

qq
V w p p q f q T p q pφ

∈∈

  + − + −    \\
. (6.16) 

 We now allow for asymmetric information on the part of individual consumers.  

Assume that, before bidding in the forward market (i.e., during period 1), each consumer 

j observes a private, random signal jη +∈ \  that is informative concerning j’s subjective 

conditional probability distribution of sp  given fp .200  Hence, in problem (6.16), we 

condition expected utility ( )E j V i  on jη , as well, to obtain  

                                                 

199 Problem (6.16) suggests a natural way to introduce speculators into the model, that is, demand-
side agents who, rather than consuming electricity, simply speculate on the difference between the forward 
and spot market prices.  Namely, if agent ĵ  were a speculator, we would constrain ˆ 0s

jq =  and 

( )( )ˆ ˆ, 0s

j jf q Tφ = , since by definition, the speculator ĵ  does not consume electricity (or produce the 
amenity x) and hence does not participate in the spot market.  With these restrictions, problem (6.16) would 
become simply ( ){ }

ˆ

ˆ ˆmax E
f
j

s f f f

j j
q

V p p q p− , whereby speculator ĵ  chooses ˆ
f

jq  to maximize his 

expected utility of profits as a function of fp .  By varying fp , we would generate speculator ĵ ’s forward 
market demand function.   

200 Since only consumer j observes the signal jη , it is reasonable to suppose that market 

participants other than consumer j treat jη  as stochastic.  We may think of jη  as representing any 
proprietary information available only to consumer j, such as competitive intelligence on other market 
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 ( ) ( )( )( ) ( )max E max , ,
f s

jj

ne s f f s s s f
j j j j j j j

qq
V w p p q f q T p q pφ η

∈∈

  + − + −    \\
. (6.17) 

Because consumer j is a price taker, the equilibrium spot market price sp  does not 

depend on s
jq  in eq. (6.17), but does depend on both jη  and fp .   

6.2.2 Approximating the expected utility maximization problem with a mean-

variance decision model  

In general, to compute the expectation in problem (6.17) exactly, we would need to resort 

to numerical integration,201 since the distribution of the argument of ( )V i  is a non-trivial 

transformation of the distribution of jT .  Here we follow a more tractable (if 

approximate) approach to problem (6.17)—a mean-variance decision model202—which 

may yield a reasonable approximation to the exact solution of problem (6.17).  There are 

several settings in which the use of a mean-variance decision model is exactly consistent 

with expected utility maximization, and others in which a mean-variance model can 

serve, at the least, as a good approximation of the expected utility maximization problem.  

This subsection examines these issues further, and justifies the use of a mean-variance 

approach to approximate the problem (6.17).   

                                                                                                                                                 

participants, market research, or specialized weather forecasts that would help shape her spot price 
expectations for a particular market round.   

201 Alternatively, one could also apply Monte Carlo methods to obtain an arbitrarily close 
approximation to an exact solution.   

202 That is, a model in which an agent’s decisions are based only on the mean and variance of the 
agent’s payoff function and the form of the agent’s utility function.   
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 Denote consumer j’s payoff from a given market round (given fp  and jη ) as jz  

(including, for convenience, the endowment ne
jw ).  In problem (6.17), therefore, 

( )f
j j jz z q=  is the expression within the braces, that is,203  

 ( ) ( ) ( )( )( ) ( )max , ,
s
j

f ne s f f s s s f
j j j j j j j j j

q
z z q w p p q f q T p q pφ η

∈

 = ≡ + − + −  \
. (6.18) 

Before the spot market clears, revealing sp , jz  is itself a random variable whose 

distribution is a transformation of the (unspecified) distribution of jT .  Using the 

definition (6.18), we may write problem (6.17) concisely as  

 ( )( )max E
f
j

f
j j j

q
V z q

∈ \
. (6.19) 

 We first note two cases in which a mean-variance decision model is exactly 

consistent with expected utility maximization.  The first case having this property is one 

in which the underlying utility function has a quadratic functional form.  Another 

example of such exact consistency is when the utility function is of the negative 

exponential form and, in addition, the payoffs are normally distributed (Freund 1956, 

255).  While we could assume (recall eq. (6.13)) that the utility function ( )V i  in problem 

(6.19) is indeed of the negative exponential form, the distribution of payoffs jz  is likely 

                                                 

203 To reduce clutter in the following analysis, we suppress the dependence of jz  on f

jq  where it 
causes no confusion.   
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to be highly non-normal.204  Thus, given the strong premises of Freund’s result, it is not 

reasonable to appeal to it here.   

 Beyond the rather restrictive conditions for exact consistency between expected 

utility maximization and the mean-variance model, a growing strand of the finance 

literature has explored the conditions under which the mean-variance model serves as a 

reasonable approximation of expected utility maximization.  In this work, the portfolio 

selection problem has naturally attracted much attention.205  Grauer and Hakansson 

(1993, 859) surveyed this literature and concluded that “the consensus . . . is that 

portfolios chosen on the basis of mean and variance can closely approximate portfolios 

chosen by maximizing expected utility, especially when investors have similar risk 

aversion characteristics.”  More recent work (see, e.g., Amilon 2001) has confirmed the 

earlier findings,206 lending support to the argument that the mean-variance model often 

leads to good approximations to the expected utility maximization result for empirical 

distributions.   

                                                 

204 Note that we have not specified the distribution of jT  itself, and moreover, do not need to do so 

for the present analysis.  Since we assumed in section 6.1.3 that [ ],j j jT T T∈
�

� , however, whatever 

distribution one might choose for jT  on this bounded support would likely be highly non-normal.  The 

related distribution of consumer j’s payoffs jz  would be a transformation of jT ’s distribution.   

205 Indeed, researchers have examined this question since the middle of the twentieth century: 
Markowitz (1952) first applied the mean-variance model to the portfolio selection problem.    
 Note, however, that the payoff function (6.18) is clearly not that of a portfolio, which would be 
simply a weighted sum of (random) asset returns.  Therefore, analytical and empirical results from the 
portfolio selection context are not directly applicable to the consumer’s forward market problem (problem 
(6.19)) in the multi-settlement SFE model.   

206 Using a historical distribution of stock returns (shown not to be multivariate normally 
distributed), Amilon (2001) examined the portfolio selection problem.  He found certainty equivalent losses 
of only a few percent for the mean-variance decision model compared to expected utility maximization for 
a wide variety of utility functions.   



 

  188 

 Returning to the multi-settlement SFE model (problem (6.19)), we develop below 

a simple mean-variance decision model of consumer j’s optimization problem in the 

forward market.  Begin by writing the second-order Taylor series approximation to 

consumer j’s utility function ( )jV z  in the neighborhood of the expected value of jz , 

( )Ej j jz z≡ ,  

 ( ) ( ) ( ) ( ) ( ) ( )21
2j j j j j j j jV z V z z z V z z z V z′ ′′≈ + − + − . (6.20) 

The expected value of this approximation is  

 ( ) ( ) ( ) ( )1E Var
2j j j j j jV z V z V z z′′≈ + . (6.21) 

 The approximation (6.21) is a widely-used specification of a mean-variance 

model (Levy and Markowitz 1979).  For our purposes, however, we further simplify this 

model via an additional approximation.  Namely, we approximate the term ( )jV z  in 

(6.21) with a first-order Taylor series approximation in the neighborhood of an arbitrary 

point 0
jz  in the support of jz  that is sufficiently close to—but distinct from— jz .  Thus, 

we have  

 ( ) ( ) ( ) ( )0 0 0
j j j j jV z V z z z V z′≈ + − . (6.22) 

Substituting (6.22) into (6.21) and rearranging yields  

 ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 1E Var
2j j j j j j j j j jV z V z z V z z V z V z z′ ′ ′′≈ − + + .  

Dividing by ( )0 0jV z′ >  and writing the term jz  as ( )E j jz , we have  
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( )
( )

( )
( ) ( ) ( )

( ) ( )
0

0

0 0 0

E 1E Var
2

jj j j
j j j j j

j j j

V zV z V z
z z z

V z V z V z

′′
≈ − + + ⋅

′ ′ ′
. (6.23) 

Since (1) we chose 0
jz  to be sufficiently close to jz  by assumption above, and (2) ( )jV z  

is a smooth function (earlier assumed to be of the negative exponential form), we may 

make the additional approximation that  

 ( ) ( )0
j jV z V z′ ′≈ . (6.24) 

Substituting the approximation (6.24) for ( )0
jV z′  in only the last term on the right-hand 

side of (6.23) gives us  

 
( )
( )

( )
( ) ( ) ( )

( ) ( )
0

0

0 0

E 1E Var
2

jj j j
j j j j j

j j j

V zV z V z
z z z

V z V z V z

′′
≈ − + + ⋅

′ ′ ′
. (6.25) 

 Recall that we defined consumer j’s CARA coefficient jλ  in eq. (6.14) given a 

negative exponential utility function ( ) 1 j jz
jV z e λ−= −  (from eq. (6.13), letting jz z= ) as  

 
( )
( )

j
j

j

V z

V z
λ

′′
≡ −

′
. (6.26) 

Setting j jz z=  in eq. (6.26) to substitute for ( ) ( )j jV z V z′′ ′  in (6.25), we may write 

(6.25) as  

 
( )
( )

( )
( ) ( ) ( )

0
0

0 0

E
E Var

2
jj j j

j j j j j

j j

V zV z
z z z

V z V z

λ
≈ − + −

′ ′
. (6.27) 

Multiplying both sides of (6.27) by ( )0
jV z′  yields  



 

  190 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0E E Var
2

j
j j j j j j j j j jV z V z z V z V z z z

λ  ′ ′≈ − + −    
. (6.28) 

Since the expressions ( ) ( )0 0 0
j j jV z z V z ′−

 
 and ( )0 0jV z′ >  in (6.28) are constant, we may 

interpret ( )E j jV z  as an increasing function of the quantity ( ) ( )E Var
2

j
j j j jz z

λ 
− 

 
.  

Accordingly, maximizing only the expression ( )E j jz  ( )Var
2

j
j jz

λ 
− 


 in (6.28) with 

respect to f
jq  will yield the same result as maximizing the entire right-hand side of  

(6.28).  Therefore, from problem (6.19) (and recalling ( )f
j j jz z q= , again making the 

dependence of jz  on f
jq  explicit), we may write the optimal *f f

j jq q=  from the 

maximization of expected utility ( )( )E f
j j jV z q  approximately as  

      ( )( ) ( )( ) ( )( )* arg max E arg max E Var
2ff jj

jf f f f
j j j j j j j j j j

qq

q V z q z q z q
λ

∈∈

 
≡ ≈ − 

 \\

. (6.29) 

 The problem (6.29) assumes that we will find approximately the same *f
jq  by (1) 

maximizing the expected utility of a payoff ( )( )E f
j j jV z q , as by (2) maximizing an 

additively separable function of only the payoff’s mean ( )( )E f
j j jz q  and variance 

( )( )Var f
j j jz q .  The mean-variance model (6.29) has the following appealing properties:  

1. It depends only on the first two moments of the distribution of jz , and places no 

restriction on the nature of this distribution (e.g., jz  need not be—even 

approximately—normally distributed).   



 

  191 

2. A generalized version of the result (6.29) would hold for other functional forms of 

( )jV ⋅  (e.g., those not having the CARA property of eq. (6.14)) in which—

recalling eqs. (6.25) and (6.26) with j jz z= —the constant jλ  would be replaced 

by ( ) ( )j jV z V z′′ ′− .   

At this point, we simply assume that the mean-variance decision model that underlies 

(6.29) yields acceptable approximations to consumer j’s expected utility maximization 

problem over the domain of interest.  Naturally, when interpreting the results of the 

demand side analysis, one should bear in mind the various approximations—in particular, 

(6.20), (6.22), and (6.24) above—invoked in the course of this derivation.   

 In accordance with the above discussion, we recast consumer j’s expected utility 

maximization problem (6.17) as a mean-variance decision model over j’s payoffs, so that 

problem (6.17) becomes207  

( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

max E max , ,

Var max , , .
2

f s
jj

s
j

ne s f f s s s f
j j j j j j j

qq

j ne s f f s s s f
j j j j j j j

q

w p p q f q T p q p

w p p q f q T p q p

φ η

λ
φ η

∈∈

∈

   + − + −      
  − ⋅ + − + −      

\\

\

 (6.30) 

We later solve problem (6.30) for a representative consumer in section 6.6.  The next 

section determines sufficient conditions for the existence of a representative consumer in 

the multi-settlement SFE model.   

                                                 

207 Problem (6.30) is essentially consistent with Bolle’s (1993) characterization of a consumer’s 
forward market problem, with the addition of a stochastic shock jT  in the spot market.   
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6.3 Existence of a representative consumer  

To simplify the analysis,208 we now demonstrate the existence of a notional 

representative consumer having forward and spot market demand functions that exhibit 

certain properties.  It is useful to consider separately the forward and spot markets in this 

discussion, and also to distinguish between two senses of a representative consumer 

(following Mas-Collel, Whinston and Green 1995, 116)—a positive representative 

consumer (PRC) and a normative representative consumer (NRC).  Below, we explain 

informally the meaning of these terms, and then explore sufficient conditions for 

existence of a representative consumer (in both the positive and normative senses above) 

in each of our two markets.   

 The former construct, the PRC, is intended to capture behavioral verisimilitude 

between all of the economy’s consumers, on the one hand, and the PRC (if one exists), on 

the other.  Informally,209 we may say that there exists a PRC if we can specify a utility 

maximization problem for a fictitious individual—the putative PRC—whose solution 

would generate the economy’s aggregate demand function.  The latter construct, the 

NRC, presupposes the existence of a PRC (having an associated demand function), and in 

addition, requires that we be able to assign welfare significance to this demand function 

(Mas-Collel, Whinston and Green 1995, 116–117).  Note that the existence of an NRC 

                                                 

208 The crucial simplification desired (in particular, for the analysis of section 6.6 below) is to 
abstract from the dependence of the shape of aggregate demand on the likely correlation among consumers’ 
stochastic signals jη .  In the presence of such correlation, the functional form of ( )0,f f fD p ε  (recall eq. 
(3.8)) would no longer be additively separable.  Positing the existence of a representative consumer is one 
means of achieving this simplification.   

209 This informal definition is taken from Mas-Collel, Whinston, and Green (1995, 116), who 
provide (in their section 4.D) a comprehensive overview of representative consumer theory, including 
rigorous definitions of the PRC and the NRC.  The informal definition above suffices for our purposes.   
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implies the existence of a PRC, so that it will be useful for our purposes to consider first 

the NRC, as we do in subsections 6.3.1 and 6.3.2 below.   

6.3.1 A normative representative consumer in the forward market  

In section 7.7, we compute a welfare measure for the multi-settlement SFE model while 

positing a risk-neutral social planner.  Under this assumption, the spot market outcome 

contains all of the welfare-relevant information.  Noting that the essence of the NRC is to 

define the attributes of a fictitious agent whose preferences can serve as a measure of 

aggregate welfare, we need not consider the question of the existence of the NRC in the 

forward market.   

6.3.2 A normative representative consumer in the spot market  

For simplicity, we rely on Mas-Collel, Whinston, and Green’s (1995, 119) observation 

that the following two conditions are sufficient for the existence of an NRC:  

1. Every consumer j’s indirect utility function ( ),j jp wv  has the Gorman form, that 

is,  

 ( ) ( ) ( ),j j j jp w a p b p w= +v , (6.31) 

where p is the vector of prices in the economy, jw  is j’s total wealth, ( ),j jp wv  is 

j’s indirect utility as a function of p and jw , and ( )ja p  and ( )b p  are functions 

of p.   

2. The social welfare function is utilitarian.   

That is, in the spot market of the multi-settlement SFE model, we may state the 

following: if the above conditions 1 and 2 hold, then spot market aggregate demand may 
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always be interpreted as having been generated by an NRC (implying that the 

representative consumer’s spot market demand function will be welfare-relevant).   

 In subsection 6.1.2, we already assumed that the social welfare function is 

utilitarian, thereby satisfying condition 2 above.  As for condition 1, we argue that the 

model introduced in section 6.1 above implies that condition 1 holds, as well.  Namely, 

taking consumers’ spot market preferences to be quasilinear with respect to the 

numeraire commodity m—as we did in eq. (6.2)—implies that indirect utility ( ),j jp wv  

will be of the Gorman form (eq. (6.31)) with ( ) 1

m

b p
p

=  (Mas-Collel, Whinston and 

Green 1995, 108 (n. 4)).  Since conditions 1 and 2 above hold, we conclude that we may 

interpret any spot market aggregate demand function as having been generated by an 

NRC.   

6.3.3 A positive representative consumer in the forward market  

It may be shown that as the number of consumers J grows large, the influence of any 

individual consumer j’s private signal jη  wanes.  To put it another way, as J grows, the 

conditional moments of shocks to spot market demand—conditional on an individual 

consumer’s signal jη —approach the corresponding unconditional moments, assumed to 

be common knowledge.210  If J is sufficiently large so that the unconditional moments 

reasonably approximate the conditional moments of the demand shock, then we 

conjecture that, at least as an acceptable approximation, a PRC exists in the forward 

market.   

                                                 

210 For a specific model of the spot market demand shock sε , see section 6.5.   
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6.3.4 A positive representative consumer in the spot market  

Since the existence of an NRC implies the existence of a PRC, we conclude from the 

argument of subsection 6.3.2 above that there exists a PRC in the spot market.   

6.3.5 Summary and conclusion  

Based on the discussion in the foregoing subsections, we assume now that  

1. there exists an NRC and hence a PRC and in the spot market (see subsections 

6.3.2 and 6.3.4) and  

2. there exists a PRC in the forward market (see subsection 6.3.3).   

For simplicity, we refer hereinafter to a “representative consumer” for the multi-

settlement SFE model, and denote this consumer by “R” and likewise, subscript “ R .”  

The existence of the representative consumer R implies that we may solve R’s utility 

maximization problem to obtain her forward and spot market demand functions which 

are, identically, also aggregate demand functions for the J consumers.   

6.4 Specification of functional forms for f and φ   

This section seeks to identify functional specifications for  

1. the representative consumer R’s production function, ( ),s
R R Rx f q T= , and  

2. R’s utility function, ( )Rxφ , for the amenity Rx   
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that yield a spot market demand function for R (identically, the aggregate spot market 

demand function) that is consistent with the affine spot market demand function in the 

simplified affine example first introduced in chapter 5,211  

 ( ),s s s s s sD p pε γ ε= − + . (6.32) 

In eq. (6.32), 0sγ >  is a constant and sε  is a stochastic parameter (with an as-yet-

unspecified distribution).   

Begin by defining the composition C  of the functions ( ),s
R Rf q T  and ( )Rxφ  as  

 ( ) ( )( ) ( )( ), , ,s s s
R R R R R Rq T f q T f q Tφ φ≡ ≡DC . (6.33) 

The analysis of this section then proceeds as follows.  Subsection 6.4.1 states necessary 

and sufficient conditions on ( ),s
R Rq TC  from eq. (6.33) for the resulting spot market 

demand function for R—denoted as ( ),s s
R RD p T —to have the form of the affine spot 

market demand function (6.32).  Next, in subsections 6.4.2 and 6.4.3, we specify 

individual functional forms for ( ),s
R Rf q T  and ( )Rxφ  that satisfy the a priori theoretical 

restrictions of subsection 6.1.3.  Finally, subsection 6.4.4 then demonstrates that the 

assumed functional forms of f and φ  are sufficient to ensure that ( ),s s
R RD p T  has the 

form of ( ),s s sD p ε  in eq. (6.32).  In addition, we infer a simple relationship between the 

stochastic parameters sε  and RT .   

                                                 

211 See the Affine Spot Market Demand Function assumption, stated at the outset of chapter 5.  
This is also the form of the (single market) demand function assumed by Klemperer and Meyer (1989, 
1260) in their “Linear Example.”   
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6.4.1 Necessary and sufficient conditions for the representative consumer R to 

have an affine spot market demand function  

This subsection states necessary and sufficient conditions for the representative consumer 

R to have an affine spot market demand function of the form of eq. (6.32).  Begin with 

the representative consumer R’s spot market problem, that is, the (identical) inner 

maximization problems of (6.30), conditioning on sp  (recalling subsection 6.2.1’s 

argument) and letting j R= :  

 ( )( )( )max ,
s
R

s s s s
R R R

q
f q T p q pφ

∈

 −  \
. (6.34) 

Substituting for the functional composition ( )( ) ( ), ,s s
R R R Rf q T q Tφ =C  from the 

definitions in the expression (6.33), problem (6.34) becomes  

 ( )( )max ,
s
R

s s s s
R R R

q
q T p q p

∈
 −
 \
C . (6.35) 

The FOC corresponding to problem (6.35) is  

 
( ),

0
s
R R s

s
R

q T
p

q
∂

− =
∂

C
.  

Defining ( ),s s
R R RP q T  as R’s inverse spot market demand function parameterized by the 

production shock RT , the FOC becomes  

 ( ) ( ),
,

s
R Rs s s

R R R s
R

q T
P q T p

q
∂

≡ =
∂

C
. (6.36) 
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Next, denote the partial inverse of the function ( ),s s
R R RP q T  in eq. (6.36) with respect to 

s
Rq  as ( ) ( )1

,s
R

s s
R Rq

P p T
−

.212  The partial inverse of inverse demand with respect to quantity 

is simply R’s (spot market) demand function (also parameterized by RT ) and denoted as 

( ),s s
R RD p T :  

 ( ) ( ) ( )1
, ,s

R

s s s s
R R R Rq

D p T P p T
−

≡ . (6.37) 

 We conclude that ( ),s
R Rf q T  and ( )Rxφ  are such that R has an affine spot market 

demand function of the form of eq. (6.32) if and only if ( ),s s
R RD p T  is of the form  

 ( ) ( ),s s s s
R R R R RD p T p g Tγ= − +  (6.38) 

(given the definitions in (6.33), (6.36), and (6.37)), where 0s
Rγ >  is constant and ( )Rg i  is 

some differentiable function of RT .  Note that for any function ( ),s s
R RD p T  having the 

separable affine form of eq. (6.38), the partial inverse in eq. (6.37) indeed exists.   

6.4.2 The representative consumer R’s production function, ( ),s
R Rf q T , for the 

amenity Rx   

We now specify a functional form for ( ),s
R Rf q T .  Together with a specification for 

( )Rxφ  in the following subsection, these example specifications will be sufficient to 

                                                 

212 Note that the notation “ ( ) 1

s
R

s

R q
P

−
” in this expression denotes a partial inverse of s

RP  with respect 

to s

Rq , not partial differentiation.  Following eq. (6.38), we check whether this partial inverse in fact exists.   
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ensure that the resultant spot market demand function for R is consistent with ( ),s s sD p ε  

in eq. (6.32).   

 Let the representative consumer R’s production function, ( ),s
R Rf q T , have the 

form  

 ( ) ( ) ( )22
0 1,

2
s s s
R R R R R R

af q T a a q T q T≡ + − − ⋅ − , (6.39) 

with coefficients 0 1 2, , 0a a a > .  Given the functional form in eq. (6.39) for ( ),s
R Rf q T , 

the a priori restrictions (6.3) and (6.4) are satisfied for (taking *s s
R Rq q= , R’s optimal spot 

market quantity)213  

 * 1

2

s
R R

aq T
a

− < , (6.40) 

while the a priori restrictions (6.5) and (6.6) always obtain.   

6.4.3 The representative consumer R’s utility function, ( )Rxφ , for the amenity 

Rx   

Let the representative consumer R’s utility function for electricity consumption, ( )Rxφ , 

be linear in Rx , that is,  

 ( ) , 0R Rx bx bφ = > . (6.41) 

                                                 

213 We revisit the condition (6.40) in subsection 6.4.4 below.   
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The linear functional form in eq. (6.41) for ( )Rxφ  is sufficient for the a priori restrictions 

(6.7) and (6.8) to hold.   

 The assumption that ( )Rxφ  is linear in Rx  is a limiting case, used here for 

simplicity without loss of generality.  As we may infer from the development of the 

necessary and sufficient condition in subsection 6.4.1, there is a tradeoff in the degree of 

concavity in the functions ( )Rxφ  and ( ),s
R Rf q T  (concavity with respect to s

Rq , in the 

case of ( ),s
R Rf q T ) satisfying these conditions.  Hence, we may make ( )Rxφ  concave 

while preserving the desired properties of the composition ( )( ),s
R Rf q TφD  by 

simultaneously decreasing the degree of concavity of ( ),s
R Rf q T .  For example, given the 

functions ( ),s
R Rf q T  and ( )Rxφ  from eqs. (6.39) and (6.41), suppose that 1α ≥  

parameterizes a family of pairs of functions ( ) ( ), ,s s
R R R Rf q T f q T

α

α  =    and 

( ) ( )( )1
R Rx x α

αφ φ= .  While the example in the text assumes 1α = , a pair of such 

functions for any 1α >  would also yield an affine spot market demand function for R of 

the form of eq. (6.38).   

6.4.4 Conditions for consistency of ( ),s s sD p ε  and ( ),s s
R RD p T   

As the analysis in subsection 6.4.1 demonstrates, the form of ( ),s s
R RD p T  depends on the 

specifications of ( ),s
R Rf q T  and ( )Rxφ .  Substituting in the spot market problem (6.34)

for the functions ( ),s
R Rf q T  and ( )Rxφ  from eqs. (6.39) and (6.41), respectively, yields  
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 ( ) ( )22
0 1max

2s
R

s s s s s
R R R R R

q

ab a a q T q T p q p
∈

   + − − ⋅ − −   
    \

. (6.42) 

The FOC (for an interior solution) corresponding to problem (6.42) is  

 ( )( )1 2 0s s
R Rb a a q T p− − − = . (6.43) 

Solving eq. (6.43) for the optimal214 *s s
R Rq q=  as a function of sp  and RT  yields R’s spot 

market demand function ( ),s s
R RD p T ,  

 ( )* 1

2 2

1,s s s s s
R R R R R

aq q D p T p T
a b a

 
= ≡ = − + + 

 
. (6.44) 

By construction, ( ),s s
R RD p T  in the expression (6.44) has the separable affine form of eq. 

(6.38) where  

 
2

1 0s
R a b
γ = >  (6.45) 

and  

 ( ) 1

2
R R R

ag T T
a

= + . (6.46) 

 Because ( ),s s
R RD p T  in the expression (6.44) is a schedule of prices and R’s 

corresponding optimal quantities (given RT ), this function is useful in determining when 

                                                 

214 We may also see from eq. (6.43) that given the assumed parameter restrictions, the second-
order sufficient condition for a profit maximum will also hold.   
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the inequality (6.40) in subsection 6.4.2 above indeed holds.  Rearranging the expressions 

in (6.44), we have that  

 * 1

2 2

1s s
R R

aq T p
a b a

 
− = − + 

 
. (6.47) 

Since ( )21 0a b− < , it follows from eq. (6.47) that  

 * 1

2

0s s
R R

ap q T
a

> <   
= ⇔ − =      < >   

. (6.48) 

When 0sp ≤ , the expression (6.48) implies that the inequality (6.40) is violated.  In this 

event, the a priori functional form restrictions (6.3) and (6.4) do not hold.  While we do 

not rule out the event 0sp ≤  in the multi-settlement SFE model, we may choose 

parameter values to render nonpositive prices a relatively uncommon occurrence.  

Accordingly, we say that under “normal” circumstances, we have that 0sp > , and 

therefore by the above argument, all of the a priori functional form restrictions (6.3)–(6.6) 

are normally satisfied.   

 By definition, R is the only consumer in the representative consumer model.  

Consequently, R’s spot market demand function ( ),s s
R RD p T  in eq. (6.44) is identically 

also the aggregate spot market demand function, ( ),s s sD p ε , in eq. (6.32), although 

these functions are parameterized differently by RT  and sε , respectively.  Thus we have  

 ( ) ( ), ,s s s s s
R RD p D p Tε =  (6.49) 
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for every price sp  and production shock RT .  From eqs. (6.32), (6.38), and (6.44)–(6.46), 

eq. (6.49) implies that we must have the following two parametric restrictions for 

( ),s s sD p ε  and ( ),s s
R RD p T  to be mutually consistent:  

 
2

1 0s s
R a b

γ γ= = >  (6.50) 

and  

 ( ) 1

2

s
R R R

ag T T
a

ε = = + . (6.51) 

Given a distribution for RT  and the parameters of the production function, eq. (6.51) 

indicates that the distribution of sε  is a simple translation of the distribution of RT .  In 

particular, we may relate the support of sε  to that of RT  as follows.  Recalling that sε�  

and sε�  are the lower and upper limits of the support of sε , ,s s sΕ ε ε ≡  
�

� , respectively, 

these limits are given by  

 1

2

s
R

aT
a

ε = +��  (6.52) 

and  

 1

2

s
R

aT
a

ε = +
�� . (6.53) 

 Finally, to simplify notation in the remainder of this chapter, we exploit eqs. 

(6.32) and (6.49) to rewrite eq. (6.44) for the optimal *s
Rq  (conditional on sp  and sε ) as 

simply the spot market aggregate demand function ( ),s s sD p ε ,  
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 ( )* ,s s s s s s s
Rq D p pε γ ε≡ = − + . (6.54) 

Equation (6.54) is the form of aggregate spot market demand that we posited in chapter 

5’s simplified affine example.  In particular, ( ),s s sD p ε  is affine and downward-sloping.   

6.5 A simple stochastic model for the spot market demand shock sε   

We now specify a simple model for the spot market demand shock sε  in terms of R’s 

stochastic signal Rη .  Ultimately, this model will permit us to relate demand shocks and 

prices across the two markets.  Begin by introducing a random variable Rν  that is 

revealed to R at 2t =  (see Figure 3.1), when the spot market clears with (public) 

revelation of the demand shock sε .  Let Rν  be defined such that a simple additive 

relationship exists between the spot market demand shock sε  on the one hand, and Rη  

and Rν  on the other.  Namely, we have that  

 s
R Rε η ν= + . (6.55) 

An intuitive interpretation of eq. (6.55) is that Rν  is a noise parameter whose presence 

makes R’s signal Rη  an imperfect signal for sε .   

 Now consider the probability distributions of Rη  and Rν .  Let Rη  and Rν  be 

jointly distributed with a stationary distribution function ( ), ,
R R R RFη ν η ν , which we 

assume to be common knowledge.  Further, let Rη  and Rν  be independent, so that, 

denoting the marginal distributions of Rη  and Rν  as ( )
R RFη η  and ( )

R RFν ν , respectively, 

we have that ( ) ( ) ( ), ,
R R R RR R R RF F Fη ν η νη ν η ν= ⋅ .  In section 6.2.1, we took the stochastic 
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support of jη  to be +\ , so that with j R= , we have that Rη +∈ \ , in principle.215  We 

now also let the stochastic support of Rν  be +\ , in principle (see note 215).  From eq. 

(6.55) and from independence, we then have that the support sE  of sε  is, in principle216  

 [ )0,sE = ∞ . (6.56) 

Denote the means of Rη  and Rν  as ( )ER Rη η≡  and ( )ER Rν ν≡ , and denote their 

variances as ( )2 Var
R Rησ η≡  and ( )2 Var

R Rνσ ν≡ , respectively.  Also, define the higher 

moment ( )2
2

,
Cov ,

R R
R Rν νσ ν ν≡ .217  In light of the independence assumption for Rη  and Rν , 

we may also interpret Rν  as that component of sε  that is unexplained by (or orthogonal 

to) the signal Rη .   

                                                 

215 In practice, given eq. (6.55), a finite upper limit on the supports of both Rη  and Rν  would 
delimit the extent of the corresponding spot market SFs.   

216 Equation (6.51) and the support of sε  in eq. (6.56) imply that the support of RT  is, in principle, 

[ ] [ )1 2, ,R R RT T T a a∈ = − ∞
�

� .   

217 To aid intuition concerning the higher moment ( )2

2

,
Cov ,

R R
R Rν ν

σ ν ν≡ , we may show that 

( ) ( )2

3 22

3,
2

R RR R

Vν νν ν
σ σ α= +   , where ( )3 2

3 3 2m mα ≡  is the coefficient of skewness of Rν , km  is the kth 

moment about the mean of Rν  (so that ( )2

2 Var
R Rm νσ ν= ≡ , as defined above), and 

R R RVν νσ ν≡  is the 

coefficient of variation of Rν .  Recalling that positively-skewed distributions correspond to 3 0α > , and 

negatively-skewed distributions to 3 0α < , we may conclude the following concerning ( )2 ,
sgn

R Rν ν
σ :  

1. If 0Rν ≥  and the distribution of Rν  is positively skewed, then 2 ,
0

R Rν ν
σ > .  

2. If 0Rν ≤  and the distribution of Rν  is negatively skewed, then 2 ,
0

R Rν ν
σ < .  

3. In all other cases, we may conclude only that ( ) ( )2 3,
sgn sgn 2

RR R

Vνν ν
σ α= +   .  
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 We next derive expressions for R’s subjective conditional moments of sε , 

conditional on an arbitrary realization Rη  of R’s signal.  First, denote R’s subjective 

conditional expectation as ( )E s
R Rε η  where, from eq. (6.55) and using the notation 

introduced above, we have that  

 ( ) ( )E Es
R R R R R R R Rε η η ν η η ν= + = + . (6.57) 

The second equality in eq. (6.57) exploits both the independence of Rη  and Rν  and the 

common knowledge distribution of Rν .  Similarly, denote R’s subjective conditional 

variance as ( )Var s
R Rε η , which is  

 ( ) ( )( ) ( ) ( ) 2Var Var Var Var
R

s
R R R R R R R R R R R νε η η ν η ν η ν σ= + = = = . (6.58) 

We use the results of eqs. (6.57) and (6.58) in subsection 6.6.2 below to simplify the 

expression for R’s contribution to aggregate forward market demand as we solve the 

representative consumer R’s maximization problem in the multi-settlement market 

setting.   

6.6 The representative consumer R’s optimization problem  

The sequential structure of the multi-settlement market problem implies that, as on the 

supply side, backward induction is the appropriate solution algorithm.  Accordingly, 

subsection 6.6.1 considers the spot market in the first stage of the backward induction 

algorithm.  Next, the second stage of the algorithm, discussed in subsection 6.6.2, 

addresses the forward market.   
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6.6.1 Spot market  

The first stage of the backward induction algorithm is to solve the representative 

consumer R’s spot market problem, that is, the (identical) inner maximization problems 

of (6.30).  We do so for a fixed RT , which fixes sε  (by eq. (6.51)), and for an arbitrary 

spot market price sp .  Accordingly, we condition on sp , and let j R=  to obtain the spot 

market problem (see problem (6.34))  

 ( )( )( )max ,
s
R

s s s s
R R R

q
f q T p q pφ

∈

 −  \
. (6.59) 

 In preparation for the forward market analysis in the next subsection, we may 

write problem (6.59) as follows (using eqs. (6.39) (6.41), and (6.44) for ( ),s
R Rf q T , 

( )Rxφ , and *s
Rq , respectively):  

 

( )( )( ) ( )( )
( ) ( )

( )

* *

2* * *2
0 1

2
2
1 1

0
2 2 2

max , ,

2

.
2 2

s
R

s s s s s s s
R R R R R R

q

s s s s
R R R R R

ss
s

R

f q T p q p f q T p q

ab a a q T q T p q

pa a pb a p T
a a a b

φ φ
∈

 − = −  
 = + − − ⋅ − − 
 

 
= + − − + 

 

\

 

Solving eq. (6.51) for ( )1 2
s

RT a aε= − , we may substitute this expression into the third 

equation above for RT  and simplify to obtain  

 ( )( )( ) ( )2
2
1

0
2 2

max ,
2 2s

R

s
s s s s s s
R R R

q

paf q T p q p b a p
a a b

φ ε
∈

  − = + − +     \
. (6.60) 

For notational convenience, define a constant k as  
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2
1

0
22

ak b a
a

 
≡ + 

 
. (6.61) 

We may write eq. (6.60) more compactly by substituting from eq. (6.50) for 21 a b  and 

from eq. (6.61) for ( )2
0 1 22b a a a+  to obtain  

 ( )( )( ) ( )2

max ,
2s

R

s s
s s s s s s
R R R

q

p
f q T p q p k p

γ
φ ε

∈

 − = − +  \
. (6.62) 

The result in eq. (6.62) will be useful in the forward market analysis, to which we now 

turn.   

6.6.2 Forward market  

In the second stage of the backward induction algorithm, we analyze R’s forward market 

problem which, letting j R= , is the outer maximization problem of (6.30).  Substituting 

from eq. (6.62) for R’s spot market surplus ( )( )* *,s s s
R R Rf q T p qφ −  (at an optimum) in 

problem (6.30), we have  

         

( ) ( ) ( )

( ) ( ) ( )

2

2

max E ,
2

Var , .
2 2

f
R

s s
ne s f f s s f

R R R R
q

s s
ne s f f s s fR

R R R R

p
w p p q k p p

p
w p p q k p p

γ
ε η

γλ ε η

∈

      + − + − +       
    − ⋅ + − + − +      

\

 (6.63) 

Distributing the expectation and variance operators in the problem (6.63), this expression 

becomes  
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( )( ) ( ) ( )

( ) ( ) ( ){
( ) ( ) ( ) ( ) ( )

( )( ) ( )

2

2

2
2

2

max E , E ,
2

Var , Var ,
2

Var , 2 Cov , ,
4

Cov , , Co

f
R

s s
ne f s f f s s f
R R R R R R

q

f s f s s fR
R R R R R

s
s f f s s s f

R R R R R

f s s s f s
R R R

p
w k q p p p p p

q p p p p

p p q p p p

q p p p

γ
η ε η

λ η ε η

γ
η ε η

γ η γ

∈

   
    + + − + − +         

   − ⋅ +   

   + ⋅ −    

 + −  

\

( )( ) ( )2
v , , .s s s f

R Rp p pε η  
  

  

The FOC with respect to f
Rq  for this maximization problem is (with some further 

simplification)  

 

( )( )
( )( ) ( ) ( ){

( )( ) ( )2

E ,

Var , Cov , ,

Cov , , 0.
2

s f f
R R

f s f s s s f
R R R R R R

s
s s f

R R

p p p

q p p p p p

p p p

η

λ η ε η

γ η

 − 

 − ⋅ −  

 + ⋅ =  

 

Solving this condition for the optimal f
Rq  as a function of fp  and Rη  yields  

 

( )

( )( ) ( )( ){
( ) ( )

( )( ) ( )

*

2

,

1 E ,
Var ,

Cov , ,

Cov , , .
2

f f f
R R R

s f f
R Rs f

R R R

s s s f
R R R

s
s s fR

R R

q q p

p p p
p p

p p p

p p p

η

η
λ η

λ ε η

γ λ η

=

= ⋅ −

 +  
 − ⋅   

 (6.64) 

 Simplifying eq. (6.64) further, we examine, in turn, the two covariance terms and 

the expectation and variance terms on the right-hand side of this equation.  To evaluate 

the two covariance terms, we first need to make explicit the dependence of sp  on sε .  
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Consistent with the statement of the suppliers’ forward market problem in eqs. (4.16)–

(4.18), the representative consumer R solves her forward market problem assuming 

equilibrium in the spot market.  Therefore, it is appropriate at this point to take sp  in eq. 

(6.64) to be a market-clearing spot market price, given a spot market shock and the 

forward market outcome.  Equation (5.26)—rewritten below as eq. (6.65)—gives an 

expression for the market-clearing price sp  as a function of sε  and fp :218  

 ( ) ( )( ) ( ) ( )*
1 2 1 1 2 2; ,s s s f f f f s f f f f

a bp p S p S p S p S pε ω ε φ φ ω ≡ = − − +  . (6.65) 

Now substitute from eq. (6.65) for sp  in ( ) ( )Cov , ,s s s f
R Rp p pε η 
  , the first 

covariance term on the right-hand side of eq. (6.64):  

 

( ) ( )
( ) ( )(
( ) ( ) ) ( )

( )( )
( ) ( )( )

1 1 2 2

1 1 2 2

2

1 1 2 2

Cov , ,

Cov ,

,

Cov ,

Cov , ,

s s s f
R R

s f f f f
R a b

s f f f f s f
a b R

s s
R a a R

s f f f f s
R a a b R

p p p

S p S p

S p S p p

S p S p

ε η

ω ε φ φ ω

ω ε φ φ ω ε η

ω ε ω ε η

ω ε ω ω φ φ ε η

 
 

  = − − + 
 − − +  

 =   
  + − −   

  

which simplifies to  

     
( ) ( ) ( )( )

( ) ( ) ( )

22

2
1 1 2 2

Cov , , Cov ,

Var .

s s s f s s
R R a R R

f f f f s
a b R R

p p p

S p S p

ε η ω ε ε η

ω ω φ φ ε η

   =     
 + − − 

 (6.66) 

                                                 

218 Recall from eqs. (5.24) and (5.25) that, in eq. (6.65), ( ) 1

1 2

s s s

aω β β γ
−

≡ + +  and 

01 1 02 2

s s

b c cω β β≡ + .  That is, aω  and bω  are functions only of exogenous spot market parameters.   
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Next, substitute from eq. (6.65) for sp  in ( )( ) ( )2
Cov , ,s s f

R Rp p pη 
  

, the second 

covariance term on the right-hand side of eq. (6.64), and partially expand the square 

( )2sp :  

 

( )( ) ( )

( ) ( )(
( ) ( ) ( )

( ) ( ) ) ( )

( )( )
( ) ( )( )

2

1 1 2 2

22 2
1 1 2 2

22
1 1 2 2

22

2
1 1 2 2

Cov , ,

Cov ,

2

,

Cov ,

Cov , 2 ,

s s f
R R

s f f f f
R a b

s f f f f s
a a b

f f f f f
a b R

s s
R a a R

s f f f f s
R a a b R

p p p

S p S p

S p S p

S p S p p

S p S p

η

ω ε φ φ ω

ω ε ω ω φ φ ε

ω ω φ φ η

ω ε ω ε η

ω ε ω ω φ φ ε η

 
  

  = − − + 

 + − − 
 + − −   

 =   
  + − −   

  

which simplifies to  

 

( )( ) ( )

( )( )
( ) ( ) ( )

2

23

3
1 1 2 2

Cov , ,

Cov ,

2 Var .

s s f
R R

s s
a R R

f f f f s
a b R R

p p p

S p S p

η

ω ε ε η

ω ω φ φ ε η

 
  

 =   
 + − − 

 (6.67) 

 Now consider the expectation and variance terms on the right-hand side of eq. 

(6.64).  We may evaluate these terms by taking the subjective conditional expectation and 

variance of sp  in eq. (6.65), again conditional on Rη  and fp .  Doing so yields  

 ( )( ) ( ) ( ) ( )1 1 2 2E , Es f s f f f f
R R a R R bp p S p S pη ω ε η φ φ ω = − − +   (6.68) 

and  



 

  212 

 ( )( ) ( )( ) ( )2 2Var , Var , Vars f s f s
R R a R R a R Rp p pη ω ε η ω ε η= = . (6.69) 

Using the results of eqs. (6.57) and (6.58) to simplify eqs. (6.68) and (6.69), these latter 

equations become  

 ( )( ) ( ) ( )1 1 2 2E ,s f f f f f
R R a R R bp p S p S pη ω η ν φ φ ω = + − − +   (6.70) 

and  

 ( )( ) 2 2Var ,
R

s f
R R ap p νη σ ω= . (6.71) 

 Collecting the above results, we substitute from eqs. (6.66), (6.67), (6.70), and 

(6.71) into eq. (6.64) to obtain  

 

( )
( ) ( ){
( )( )
( ) ( ) ( )

( )( )
( ) ( ) ( )}

*

1 1 2 22 2

22

2
1 1 2 2

3 2

3
1 1 2 2

,

1

Cov ,

Var

Cov ,
2

Var .

R

f f
R R

f f f f f
a R R b

R a

s s
R a R R

f f f f s
R a b R R

s
s sR a

R R

s f f f f s
R a b R R

q p

S p S p p

S p S p

S p S p

ν

η

ω η ν φ φ ω
λ σ ω

λ ω ε ε η

λ ω ω φ φ ε η

λ γ ω ε ε η

λ γ ω ω φ φ ε η

 = ⋅ + − − + − 

 +   
 + − − 

 − ⋅   

 − − − 

  

Collecting like terms, this equation becomes  

( )
( ) ( ){

( ) ( )( )
( ) ( ) ( ) ( )}

*

1 1 2 22 2

2 2

2
1 1 2 2

,

1

2 Cov ,
2

1 Var .

R

f f
R R

f f f f f
a R R b

R a

s s sR a
a R R

s f f f f s
R a a b R R

q p

S p S p p

S p S p

ν

η

ω η ν φ φ ω
λ σ ω

λ ω γ ω ε ε η

λ ω γ ω ω φ φ ε η

 = ⋅ + − − + − 

 + ⋅ −   

 + − − − 

 (6.72) 
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 From the definition of sε  in eq. (6.55), we may evaluate the covariance term on 

the right-hand side of eq. (6.72) as  

 

( )( ) ( )( )
( )
( ) ( )

2 2

2 2

2

Cov , Cov ,

Cov 2 ,

2 Var Cov , .

s s
R R R R R R R R

R R R R R R R R

R R R R R R R R

ε ε η η ν η ν η

η η ν ν η ν η

η ν η ν ν η

   = + +     
 = + + + 

 = +  

 

Using the notation for the distributional moments introduced in section 6.5, we may write 

this term as  

 ( )( ) 2

2 2
,

Cov , 2
R R R

s s
R R R ν ν νε ε η η σ σ  = +  

. (6.73) 

Finally, substituting from eqs. (6.73) and (6.58) for the covariance and variance terms, 

respectively, in eq. (6.72) and factoring aω  out of the braces, we have  

 

( ) ( ) ( )

( )( )
( ) ( ) ( ) }

2

*
1 1 2 22

2
,

2
1 1 2 2

1,

2 2
2

1 .

R

R R R

R

f
f f f f f f

R R R R b
R a a

sR a
a R

s f f f f
R a a b

pq p S p S p

S p S p

ν

ν ν ν

ν

η η ν φ φ ω
λ σ ω ω

λ ω γ ω η σ σ

λ σ ω γ ω ω φ φ


= ⋅ + − − + −



+ − +

 + − − − 

 

Collecting terms in fp  and Rη , we may write ( )* ,f f
R Rq p η  as  

( )
( ) ( ) ( ){

( ) ( )

( ) }

2

*

2
1 1 2 22

,2

2

,

1 1 1

1 2 2
2

1 1 .

R

R

R R

R

R

f f
R R

s f f f f
R a a

R a

f
R as s

R a a R R a
a

s
b R a a

q p

S p S p

p

ν
ν

ν ν
ν

ν

η

λ σ ω γ ω φ φ
λ σ ω

λ σ ω
λ σ ω γ ω η ν γ ω

ω

ω λ σ ω γ ω

   = ⋅ − + − +   

 − + + − + + ⋅ − 

 + + − 

 (6.74) 
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 Since the forward market demand function of the representative consumer R is 

identically also the aggregate forward market demand function, denoted here as 

( )* ,f f
Rq p η , we have  

 ( ) ( )* *, ,f f f f
R R Rq p q pη η= . (6.75) 

Recall that in chapter 3 (eq. (3.8)), we expressed forward market demand as  

 ( ) ( )0 0 0,f f f f f fD p D pε ε= + . (6.76) 

Equations (6.75) and (6.76) (using eq. (6.74)) are two different parameterizations of the 

same aggregate forward market demand function.  If we assume that there exists a 

function ( )feη i  of the signal vector Rη  such that ( ) 0
f f

Reη η ε=  for all relevant Rη , then 

we will have that  

 ( ) ( )( ) ( )*
0, , ,f f f f f f f f

R R RD p D p e q pηε η η= = .   (6.77) 

 We may combine eqs. (6.74)–(6.77) to write  
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( ) ( )( )
( ) ( )
( )

( ) ( ) ( )

( ){ ( )

( ) }

2

0

0

*

2
1 1 2 22

,2
2

2

2

, ,

,

1 1 1

1 1 2 2
2

1 1

1 1

R

R

R R

R

R

R

R

f f f f f f
R

f f f
R

f f
R R

f
s f f f f

R a a
R a a

R as s
R a a R R a

R a

s
b R a a

R
R a

D p D p e

D p e

q p

pS p S p

η

η

ν
ν

ν ν
ν

ν

ν

ν
ν

ε η

η

η

λ σ ω γ ω φ φ
λ σ ω ω

λ σ ω
λ σ ω γ ω η ν γ ω

λ σ ω

ω λ σ ω γ ω

λ σ
λ σ ω

=

= +

=

    = − ⋅ + − + +     

 + ⋅ + − + + ⋅ − 

 + + − 

= − ⋅ + ( ){
( ) ( ) ( ) ( )

( ){

( )

( ) ( ) ( ) }

2

2

1 1 1 0 2 2 2 0

0

2
2

, 0

2
1 1 0 2 2 0

1

1 1 2

2
2

1 1 ,

R

R

R

R R

R

s
a a

f f f f f f f f

f f

a

s
R a a R R

R a

f
R a s

a
a

f f f f s
b R a a

S p S p S p S p

p p

p

S p S p

ν
ν

ν ν

ν

ω γ ω

φ φ

ω

λ σ ω γ ω η ν
λ σ ω

λ σ ω
γ ω

ω

ω φ φ λ σ ω γ ω

 − 

    ⋅ − + −    
−+ 


 + ⋅ + − + 

+ ⋅ − −

   + − − + −   

 

where we recall from subsection 3.1.10 that 0
fp  is an arbitrary reference price in the 

interval ,f fp p  
�

�  over which we defined the forward market demand function.  

Comparing the second and fifth equalities above, we have that  

 

( ) ( ){
( ) ( ) ( ) ( )

2
0 2

1 1 1 0 2 2 2 0

0

1 1 1

.

R

R

f f s
R a a

R a

f f f f f f f f

f f

a

D p

S p S p S p S p

p p

ν
ν

λ σ ω γ ω
λ σ ω

φ φ

ω

 = − ⋅ + − 

    ⋅ − + −    
−+ 


 (6.78) 
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Moreover, we may confirm that the function ( ) 0
f f

Reη η ε=  indeed exists, and in particular,  

( )

( ) ( )

( ) ( ) ( ) }

2

0

,2 0
2

2
1 1 0 2 2 0

1 1 2 2
2

1 1 .

R R

R

R

R

f f
R

f
R as s

R a a R R a
R a a

f f f f s
b R a a

e

p

S p S p

η

ν ν
ν

ν

ν

η ε

λ σ ω
λ σ ω γ ω η ν γ ω

λ σ ω ω

ω φ φ λ σ ω γ ω

=

 = ⋅ + − + + ⋅ − − 

   + − − + −   

 (6.79) 

 Equations (6.78) and (6.79) decompose the forward market demand function 

( )( ),f f f
RD p eη η  into  

1. the price-dependent shape component ( )0
f fD p  and  

2. the price-independent stochastic shock ( )0
f f

Reηε η=  of the forward market 

demand function.   

Note that ( )0
f fD p  in eq. (6.78) is a deterministic function of fp ; using this equation, we 

may verify that ( )0 0 0f fD p = .  Equation (6.79) indicates that ( )f
Reη η  depends on the 

realizations of the signals Rη  and the expectations Rν , but not on the realizations Rν , 

since Rν  is revealed after the forward market clears.  In addition, it is possible to show in 

eqs. (6.78) and (6.79) that ( )2 0s
aγ ω− >  and ( )1 0s

aγ ω− >  for all permissible parameter 

values.   

 We may further decompose the expression for 0
fε  in (6.79) into a stochastic 

component  

 
( )2

2

1 2
R

R

s
R a a

R
R a

ν

ν

λ σ ω γ ω
η

λ σ ω

 + −
 
  

, (6.80) 
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and a deterministic component  

 
( )

( ) ( ) ( ) }

2 , 0
2

2
1 1 0 2 2 0

1 2
2

1 1 .

R R

R

R

f
R a s

R a
R a a

f f f f s
b R a a

p

S p S p

ν ν

ν

ν

λ σ ω
ν γ ω

λ σ ω ω

ω φ φ λ σ ω γ ω

⋅ + ⋅ − −


   + − − + −   

 (6.81) 

Note that the expression (6.80) collects the factors dependent on Rη  in eq. (6.79) for 

( )f
Reη η , so that we may write ( )f

Reη η′  as  

 ( ) ( )2

2

1 2
0R

R

s
R a af

R
R a

e ν
η

ν

λ σ ω γ ω
η

λ σ ω
+ −′ = > . (6.82) 

 Finally, consider how the signal Rη  affects the level of forward market demand.  

Applying the chain rule to the function ( )( ),f f f
RD p eη η , we have that  

 
( )( ) ( ) ( )0

0

, ,f f f f f f f
R R

f
R R

D p e D p de
d

η ηη ε η
η ε η

∂ ∂
= ⋅

∂ ∂
. 

Using eqs. (6.76) and (6.82), we may conclude from the above equation that  

 
( )( ) ( ),

0
f f f f

R R

R R

D p e de
d

η ηη η
η η

∂
= >

∂
. (6.83) 

The inequality (6.83) indicates that an increase in R’s signal Rη  shifts ( )( ),f f f
RD p eη η  

to the right.   

6.7 The relationship of demand shocks and prices across markets  

This section revisits an expression from the previous chapter (eq. (5.36)) for 

( )E s f fd p p dp , which we established as a function of the derivative 
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( )0 0E s f fd dε ε ε .219  In subsection 6.7.1, we derive expressions for ( )0 0E s f fd dε ε ε , 

and likewise for ( )E s f fd p p dp  in subsection 6.7.2.   

6.7.1 The derivative ( )0 0E s f fd dε ε ε   

Begin by taking conditional expectations of sε , conditional on 0
fε , from eq. (6.55):  

 ( ) ( ) ( )0 0 0E E Es f f f
R Rε ε η ε ν ε= + . 

This equation is an identity in 0
fε  so that we may differentiate it with respect to 0

fε  to 

obtain  

 
( ) ( ) ( )0 0 0

0 0 0

E E Es f f f
R R

f f f

d d d
d d d

ε ε η ε ν ε
ε ε ε

= + . (6.84) 

Since Rν  is exogenous, we have that ( ) ( )0E Ef
R Rν ε ν= , and hence  

 
( ) ( )0

0 0

E E
0

f
R R

f f

d d
d d
ν ε ν
ε ε

= = . 

Using this result, eq. (6.84) becomes simply  

 
( ) ( )0 0

0 0

E Es f f
R

f f

d d
d d

ε ε η ε
ε ε

= . (6.85) 

 To find ( )0 0E f f
Rd dη ε ε , we may solve the second equation in (6.79) for Rη  in 

terms of 0
fε  to obtain  

                                                 

219 We may interpret this derivative as the effect of forward market (public) information on 
expectations concerning the level of spot market demand.   
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( ) ( )

( ) ( )
( ) }

2 ,2 0
02

1 1 0 2 2 0

2

1 2
21 2

1 1 .

R R

R

R

R

f
R af s

R R a R as
aR a a

f f f f
b

s
R a a

p

S p S p

ν ν
ν

ν

ν

λ σ ω
η λ σ ω ε ν γ ω

ωλ σ ω γ ω

ω φ φ

λ σ ω γ ω

= ⋅ − − ⋅ − +
+ − 

 − − − 

 ⋅ + − 

 (6.86) 

Taking conditional expectations of this equation and differentiating with respect to 0
fε , 

we obtain  

 
( )

( )
2

0

2
0

E

1 2
R

R

f
R R a

f s
R a a

d
d

ν

ν

η ε λ σ ω
ε λ σ ω γ ω

=
+ −

. (6.87) 

Substituting from eq. (6.87) into eq. (6.85), we also have that  

 
( )

( )
2

0

2
0

E
0

1 2
R

R

s f
R a

f s
R a a

d

d
ν

ν

ε ε λ σ ω
ε λ σ ω γ ω

= >
+ −

. (6.88) 

As eq. (6.88) indicates, ( )0 0E s f fd dε ε ε  is constant as 0
fε  varies (all else equal), given 

our assumptions.  More specifically, ( )0 0E s f fd dε ε ε  is a function of the representative 

consumer’s attributes, the variance of the underlying stochastic parameter Rν , and spot 

market demand and cost parameters.  Comparing eq. (6.88) with eq. (6.82), and noting 

(from inequality (6.82)) that we may invert ( )f
Reη η′ , we see that  

 
( )

( )
0

0

E 1
s f

f f
R

d

d eη

ε ε
ε η

=
′

.  
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6.7.2 The derivative ( )E s f fd p p dp   

Using previous results in this chapter, we may simplify the expression for the derivative 

( )E s f fd p p dp .  Equation (5.36) first gave an expression for this derivative, which we 

rewrite below as eq. (6.89):  

        

( ) ( ) ( ) ( ) ( )

( ) ( )

0 0
1 1 2 2

0 0

0
0

0

E E E

E
.

s f s f s f
f f f f

af f f

s f
f f

f

d p p d d
S p S p

dp d d

d
D p

d

ε ε ε ε
ω φ φ

ε ε

ε ε
ε

    ′ ′   = − + −      
′− ⋅ 


 (6.89) 

Next, taking the derivative of ( )0
f fD p  from eq. (6.78) with respect to fp , we obtain an 

expression for ( )0
f fD p′ :  

 ( )
( ) ( ) ( )2

1 1 2 2

0 2

11 1
R

R

s f f f f
R a a

f f a

R a

S p S p
D p

ν

ν

λ σ ω γ ω φ φ
ω

λ σ ω

 ′ ′ + − + +   ′ = − . (6.90) 

Using eqs. (6.88) and (6.90) to substitute for ( )0 0E s f fd dε ε ε  and ( )0
f fD p′ , 

respectively, in eq. (6.89) yields  
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( )
( ) ( )

( ) ( )
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R

R

R

R

R

R
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R a f f
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R a a
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s

R a a
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s
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s f f f f
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S p
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ω φ
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λ σ ω γ ω
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λ σ ω γ ω φ φ
ω

λ σ ω

  ′ = −
+ −  
 

′ + −
+ −  

−
+ −

  ′ ′ + − + +       ⋅ − 
 
  

  

Collecting terms and simplifying, this becomes  

 
( ) ( ) ( ) ( ) ( )

( )
2 2

1 1 2 2

2

1 1 1E

1 2
R

R

f f f fs f
R a

f s
R a a

S p S pd p p

dp
ν

ν

λ σ ω φ φ

λ σ ω γ ω

 ′ ′− + − +
 =

+ −
. (6.91) 

Assuming strictly increasing forward market SFs for all fp , ( ) 0f f
iS p′ > , we conclude 

that  

 
( )E

0
s f

f

d p p

dp
> . (6.92) 

6.8 Properties of aggregate forward market demand ( )0
f f fD p , ε   

The final section of this chapter summarizes the salient properties of ( )0
f fD p , 0

fε , and 

their sum, aggregate forward market demand ( ) ( )( )0, ,f f f f f f
RD p D p eηε η=  

( )0 0
f f fD p ε= +  based on eqs. (6.76)–(6.79) in section 6.6.   



 

  222 

6.8.1 Properties of ( )0
f fD p   

Given our parametric assumptions—and once we have determined the forward market 

SFs ( )f f
iS p  (see chapter 7)—the shape component ( )0

f fD p  of forward market demand 

(see eq. (6.78)) is deterministic, differentiable, and common knowledge.  Signing the 

result of eq. (6.90) from the previous section (again assuming ( ) 0f f
iS p′ > , 1, 2i = ), we 

get  

 ( )
( ) ( ) ( )2

1 1 2 2

0 2

11 1
0

R

R

s f f f f
R a a

f f a

R a

S p S p
D p

ν

ν

λ σ ω γ ω φ φ
ω

λ σ ω

 ′ ′ + − + +   ′ = − < . (6.93) 

From eq. (6.93) we conclude, under our parametric assumptions and assuming strictly 

increasing forward market SFs, that ( )0
f fD p  and hence ( )0,f f fD p ε  are downward-

sloping in fp .220   

6.8.2 Properties of 0
fε   

Given our parametric assumptions, the shock 0
fε  in eq. (6.79) is a function of R’s 

exogenous signal Rη , and includes both stochastic and deterministic components as 

indicated in the discussion of that equation.  In addition, the stochastic component of 0
fε  

has a stationary, common knowledge distribution ( )
0

0f
fF

ε
ε , since the distribution 

( )
R RFη η  has these properties.   

                                                 

220 Moreover, ( )0

f fD p  would be affine in fp  if the functions ( )f f

iS p  are affine for firms 
1, 2i = , though we do not impose this affine restriction here.   
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 Now consider the support fE  of 0
fε .  In subsection 6.2.1, we assumed that the 

support of any consumer’s signal—and therefore of Rη —was +\ .  Recalling that 

( )0
f f

Reηε η=  from eq. (6.79), we may obtain an expression for the minimum value of the 

forward market demand shock—denoted as 0
fε� —by substituting 0Rη =  into eq. (6.79).  

Doing so yields  

 

( )

( )

( ) ( ) ( ) }

2

0

, 0
2

2
1 1 0 2 2 0

0

1 2
2

1 1 .

R R

R

R

f f

f
R a s

R a
R a a

f f f f s
b R a a

e

p

S p S p

η

ν ν

ν

ν

ε
λ σ ω

ν γ ω
λ σ ω ω

ω φ φ λ σ ω γ ω

=

= ⋅ + ⋅ − −


   + − − + −   

�

 (6.94) 

In other words, 0
fε  is bounded below by some 0

fε ∈ \�  from eq. (6.94) in every round of 

the market.  In terms of the support fE , we have that  

 0 0 0,f f f fEε ε ε ∈ ≡  
�

� , (6.95) 

where 0 0
f fε ε< ��  is given by eq. (6.94).  The support fE  in eq. (6.95) determines the 

extent of the forward market SFs, that is, the price domain over which they are defined.  

We need not specify the upper limit 0
fε�  of this support; from eq. (6.79) and given 

Rη +∈ \ , 0
fε�  may in principle be infinite.221  If 0

fε�  is sufficiently small (and from eq. 

                                                 

221 In practice, however, as the next chapter discusses, we will compute forward market SF 
trajectories over a finite interval of prices ,f fp p  

�
� , where ( )*

0

f f fp p ε= �� , ( )0

f f

Reηε η=� � , and the 

support of Rη  is [ ]0, Rη
� , 0 Rη< < ∞� .   
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(6.94), we can have 0 0fε <� ), suppliers’ forward market quantities will be negative, 

indicating purchases rather than sales in the forward market.222   

6.8.3 Properties of ( ) ( )( )0, ,f f f f f f
RD p D p eηε η=   

The additively separable functional form ( ) ( )0 0 0,f f f f f fD p D pε ε= +  assumed in 

subsection 3.1.10 and restated in eq. (6.76) above implies that  

 
( )( ) ( )( ) ( )2 2

0

, ,
0

f f f f f f f
R R R

f f f
R R

D p e D p e de
p p d

η η ηη η η
η ε η

∂ ∂
= ⋅ =

∂ ∂ ∂ ∂
, (6.96) 

since  

 
( )( ) ( )2 2

0

0 0

, ,
0

f f f f f f
R

f f f f

D p e D p
p p

η η ε
ε ε

∂ ∂
= =

∂ ∂ ∂ ∂
.  

The interpretation of eq. (6.96) is that the signal Rη  shifts the forward market demand 

function horizontally but does not change this function’s shape.   

                                                 

222 There is at least anecdotal empirical evidence from electricity markets (see, e.g., Federal 
Energy Regulatory Commission 2003a) that generating firms do frequently take long positions in the 
forward market.  In addition, recent theoretical work (e.g., Hughes and Kao 1997, 128; Pirrong 2000, 15) 
has suggested that, under a variety of circumstances, such behavior can indeed be profitable.    
 As we see in the specific numerical examples of chapter 7, however, focusing on strictly 
increasing forward market SFs over reasonable price ranges tends to yield positive forward market 
quantities (short positions on the part of suppliers) within the present model.   
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Equilibrium has become a kind of holy sacrament in economics and has seriously 
diverted attention from the real world of Heraclitean flux. . . .  The economic system is a 
structure in space-time.  Consequently, it is evolutionary, subject to constant and 
irreversible change.   

—Kenneth Boulding 
 

God does not care about our mathematical difficulties.  He integrates empirically.   
—Einstein 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 The forward market supply functions in the simplified 

affine example  

WE RETURN IN THIS CHAPTER to the supply-side analysis of chapter 5.  Section 7.1 below 

simplifies further firms’ equilibrium optimality conditions for the forward market, while 

section 7.2 explores the existence and uniqueness properties of solutions to the resulting 

system of equations and the effect of singularities.  Next, in section 7.3, we discuss two 

complementary numerical strategies for solving this system.  We develop qualitative 

insights into the phase space of solutions in section 7.4 with the help of numerous 

graphical illustrations.  Section 7.5 then describes how we chose values of certain model 

parameters to enhance the verisimilitude of the model.  Section 7.6 presents an 

equilibrium selection procedure and conducts comparative statics analysis to investigate 

the effects of parameter variations on firms’ forward market SFs.  To conclude the 
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chapter, section 7.7 compares expected welfare under the multi-settlement SFE model 

with that under alternative behavioral assumptions and market architectures.   

7.1 Equilibrium optimality conditions for the forward market  

7.1.1 Integrating previous chapters’ results concerning the functions ( )E s fp p  

and ( )0
f fD p′   

Begin by recalling eq. (5.37), firm 1’s equilibrium optimality condition for the forward 

market under the assumptions of the simplified affine example, rewritten as eq. (7.1) 

below:  

 
( ) ( )( ) ( ){ } ( )

( ) ( ) ( )
1 2 01 1 1 2

1 0

E E

E .

s f f f s f f f f

f f f f s f f

p p c c S p p p p S p

S p D p p p p

φφ     ′− + − −  

 ′= − − 

 (7.1) 

The analogous condition for firm 2 is, by symmetry,  

 
( ) ( )( ) ( ){ } ( )

( ) ( ) ( )
1 2 02 2 2 1

2 0

E E

E .

s f f f s f f f f

f f f f s f f

p p c c S p p p p S p

S p D p p p p

φφ     ′− + − −  

 ′= − − 

 (7.2) 

In the following, we use analytical results from chapters 5 and 6 to substitute for the 

functions ( )E s fp p  and ( )0
f fD p′  in eqs. (7.1) and (7.2).   

 Recall eq. (5.33) for ( )E s fp p  (rewritten as eq. (7.3) below),  

 ( ) ( )( ) ( ) ( )1 1 2 2E Es f s f f f f f f
a p bp p e p S p S pω ε φ φ ω = − − +  , (7.3) 
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where, also in chapter 5, we defined ( ) 1

1 2
s s s

aω β β γ
−

= + +  and 01 1 02 2
s s

b c cω β β= + .  To 

evaluate eq. (7.3) in terms of known constants and functions of fp , we need to evaluate 

the expectation ( )( )E s f f
pe pε .  We may do so by appealing to various results from 

chapter 6, as described below.   

 Begin with section 6.5’s simple model for sε  (eq. (6.55)),  

 s
R Rε η ν= + . (7.4) 

Taking expectations of eq. (7.4) conditional on ( ) 0
f f f
pe p ε=  yields  

 ( )( ) ( )( ) ( )( )E E Es f f f f f f
p R p R pe p e p e pε η ν= + ,  

which, since Rν  is exogenous, is simply  

 ( )( ) ( )( )E Es f f f f
p R p Re p e pε η ν= + . (7.5) 

Similarly, taking expectations of eq. (6.86) conditional on ( ) 0
f f f
pe p ε=  gives us  
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( ) ( ) ( )
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1 2
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R
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R a p R as
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f
f f f f

b
a

s
R a a

e p

e p

p S p S p

ν ν
ν

ν

ν

η

λ σ ω
λ σ ω ν γ ω

λ σ ω γ ω

ω φ φ
ω

λ σ ω γ ω

= ⋅ − − ⋅ −
+ − 

 + − − − 

 ⋅ + − 

 (7.6) 

Solving the market-clearing condition for the forward market (eq. (5.29)) for 0
fε  

( )f f
pe p=  and substituting fp  for ( )*

0
f fp ε , we have  
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 ( ) ( ) ( ) ( )1 2 0
f f f f f f f f
pe p S p S p D p= + − . (7.7) 

Finally, the shape component of forward market demand, ( )0
f fD p , is (from eq. (6.78))  

 

( ) ( ){
( ) ( ) ( ) ( )

2
0 2

1 1 1 0 2 2 2 0

0

1 1 1

.

R

R

f f s
R a a

R a

f f f f f f f f

f f

a

D p

S p S p S p S p

p p

ν
ν

λ σ ω γ ω
λ σ ω

φ φ

ω

 = − ⋅ + − 

    ⋅ − + −    
−+ 


. (7.8) 

Combining eqs. (7.5)–(7.8) to simplify eq. (7.3) and collecting terms yields the desired 

result,223  

 

( )
( ) ( ) ( ) ( ) ( )

( )

2 ,2 2
1 1 2 2 2

2

E
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R R
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R
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  
− + − + + − − +      =

+ −

(7.9) 

 We turn next to the function ( )0
f fD p′ , the slope of the shape component of 

forward market demand.  Differentiating eq. (7.8) with respect to fp , we have that  

                                                 

223 The derivative of eq. (7.9) is consistent with ( )E s f fd p p dp  from eq. (6.91).  Note also that 

( )E s fp p  in eq. (7.9) (and ultimately, the forward market supply and demand functions) depend only on 

three moments of Rν — Rν , 2

Rν
σ , and 2 ,R Rν ν

σ —rather than on Rν ’s entire distribution.  For computational 

purposes, we assume in Appendix F.1.5 that Rν  is lognormally distributed, which permits us to express 

2 ,R Rν ν
σ  as a function of the other two moments.  We choose the parameters Rν  and 2

Rν
σ , in turn, via an 

empirically-based benchmarking procedure described in section 7.5.   
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 ( )
( ) ( ) ( )2

1 1 2 2

0 2

11 1
R

R

s f f f f
R a a

f f a

R a

S p S p
D p

ν

ν

λ σ ω γ ω φ φ
ω

λ σ ω

 ′ ′ + − + +   ′ = − . (7.10) 

 The three equations (7.1), (7.2), and (7.10) constitute a system of nonlinear 

ordinary differential equations (ODEs) implicitly characterizing the forward market SFs 

( )1
f fS p  and ( )2

f fS p  as well as the slope of forward market demand, ( )0
f fD p′ , where 

eq. (7.9) gives an expression for ( )E s fp p .  Each consumer224 solves her forward 

market optimization problem (as in chapter 6) given the two SFs ( )f f
iS p , and given an 

equilibrium price in both the forward and spot markets.  Each supplier i ( , 1, 2,i j i j= ≠ ) 

maximizes its profits, taking supplier j’s SF as given (the Nash assumption), and also 

taking consumers’ actions as given.   

 Each equation in the system (7.1), (7.2), and (7.10) arises from the respective 

optimization problems of the duopoly suppliers and the representative consumer.  In 

order to solve this system numerically using commercially-available differential equation 

solvers, however, we have found it useful to rearrange this three-equation system by 

isolating the derivatives of the dependent variables ( )1
f fS p′  and ( )2

f fS p′ .225  In 

addition, the simplifications we undertake in the remainder of this section are useful in 

highlighting certain quadratic forms that characterize several loci of interest, as detailed 

in section 7.4 below.   
                                                 

224 Recall that eq. (7.10) above expresses the slope of aggregate forward market demand, the sum 
of individual consumers’ forward market demand functions.   

225 We do this in subsection 7.2.2 for a restricted version of this three-equation system.  While the 
resulting expressions appear, if anything, more complicated than the original system, the revised system 
does have the virtue of isolating the vector of supply functions’ derivatives.   
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 As a first step toward solving the system (7.1), (7.2), and (7.10), we may reduce 

these three equations to a two-equation system in ( )1
f fS p  and ( )2

f fS p  and eliminate 

( )E s fp p  by using eqs. (7.9) and (7.10) to substitute for ( )E s fp p  and ( )0
f fD p′  in 

eqs. (7.1) and (7.2).  Making these substitutions and collecting terms yields the two 

equations  
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 (7.11) 

and  
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 (7.12) 

In the next subsection, we examine the structure of eqs. (7.11) and (7.12) and recast them 

in a form more convenient for numerical solution.   

7.1.2 The structure of equations (7.11) and (7.12)  

To make clear the structure of eqs. (7.11) and (7.12), define some additional notation.  

First, let a superscript “®” be the matrix (or vector) transpose operator.  Let ( )f fS p++ , 

given by  

 ( ) ( ) ( )( )1 2 1f f f f f f fS p S p S p p++ ≡
®

, (7.13) 
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be an ( )2 x 1n +  column vector of supply functions, augmented by the independent 

variable fp  and the number “1.”226  The derivative of ( )f fS p++  with respect to fp  is, 

from eq. (7.13),  

 ( ) ( ) ( )( )1 2 1 0f f f f f fS p S p S p++′ ′ ′=
®

. (7.14) 

 Now define i
kP , given by (suppressing its dependence on fp  in the following for 

notational simplicity)  

 ( ) ( )i i f f
k kC S p++≡P

®

, (7.15) 

as the first-order polynomial in the elements of ( )f fS p++  that multiplies the kth 

component of ( )f fS p++′  (recall eq. (7.14)) in eqs. (7.11) (for 1i = ) and (7.12) (for 

2i = ).  In eq. (7.15), define  

 ( ),1 ,2 ,3 ,4
i i i i i
k k k k kC C C C C≡

®

 (7.16) 

as an ( )2 x 1n+  column vector of constant, exogenous coefficients ,
i
k lC  (defined below), 

with 1, 2, 3, 4l =  indexing the elements of the vector i
kC .  Writing out the polynomial i

kP  

explicitly, we have  

 ( ) ( ),1 1 ,2 2 ,3 ,4
i i f f i f f i f i

k k k k kC S p C S p C p C≡ + + +P . (7.17) 

                                                 

226 Hence the superscript “++” in the notation ( )f fS p++ .   
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We define each coefficient ,
i
k lC  by comparing the definition of i

kP  with the respective 

coefficients in eqs. (7.11) and (7.12).227  Using the notation i
kP , we may write eqs. (7.11) 

and (7.12) more compactly as  

 ( ) ( )1 1 1
1 1 2 2 3 0f f f fS p S p′ ′+ + =P P P  (7.18) 

and  

 ( ) ( )2 2 2
1 1 2 2 3 0f f f fS p S p′ ′+ + =P P P . (7.19) 

7.1.3 Isolating the ( )f f
iS p′  in equations (7.18) and (7.19)  

For computational purposes, it is useful to recast eqs. (7.18) and (7.19) so that each 

derivative ( )f f
iS p′  appears in only one equation.  Doing so yields  

 ( ) ( )1 2 1 2 1 2 1 2
1 2 2 1 1 2 3 3 2

f fS p′− = −P P P P P P P P  (7.20) 

and  

 ( ) ( )1 2 1 2 1 2 1 2
2 1 1 2 2 1 3 3 1

f fS p′− = −P P P P P P P P , (7.21) 

where we impose the restriction that the determinant of the coefficient matrix in eqs. 

(7.18) and (7.19) is nonzero, that is,  

 1 2 1 2
1 2 2 1 0− ≠P P P P . (7.22) 

Given the restriction (7.22), the two systems [(7.18), (7.19)] and [(7.20), (7.21)] are 

                                                 

227 For convenience, Appendix E.1 defines each coefficient ,

i

k lC  explicitly.   
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equivalent in the sense that the sets of solutions to each of these two systems coincide.  

Note that the coefficient of ( )1
f fS p′  in eq. (7.20), ( )1 2 1 2

1 2 2 1−P P P P , is just the additive 

inverse of the coefficient of ( )2
f fS p′  in eq. (7.21), ( )1 2 1 2

2 1 1 2−P P P P .  An implication is 

that the coefficients ( )1 2 1 2
1 2 2 1−P P P P  and ( )1 2 1 2

2 1 1 2−P P P P  vanish over the same set of 

parameter values.  This property will be important in the next section and in Appendix 

E.2 in characterizing properties of the phase space that the solutions to the system (7.20) 

and (7.21) inhabit.   

 Let both j and k index elements of the vector ( )f fS p++′  in eq. (7.14).  By 

multiplying out the coefficients of the form ( )1 2 1 2
j k k j−P P P P  in eqs. (7.20) and (7.21), 

Appendix E.1 makes explicit that these coefficients are quadratic forms in the elements 

of ( )f fS p++ , as eqs. (7.17), (7.20), and (7.21) imply.  Next, let jkQ  be an 

( ) ( )2 x 2n n+ +  symmetric matrix.  We define jkQ  implicitly below such that its 

elements are functions of the coefficients ,
i
k lC .  In particular, for a coefficient 

( )1 2 1 2
j k k j−P P P P  in eqs. (7.20) and (7.21), the following relationship defines elements of 

jkQ  in terms of the coefficients of the polynomials i
jP  and i

kP :  

 ( ) ( ) 1 2 1 2f f f f
jk j k k jS p S p++ ++ ≡ −Q P P P P

®

. (7.23) 

From definition (7.23), we have that  

 21 12= −Q Q . (7.24) 

Using the notation of eq. (7.23), we may rewrite eqs. (7.20) and (7.21) as  
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 ( ) ( ) ( ) ( ) ( )12 1 23
f f f f f f f f f fS p S p S p S p S p++ ++ ++ ++  ′ =  

Q Q
® ®

 (7.25) 

and  

 ( ) ( ) ( ) ( ) ( )21 2 13
f f f f f f f f f fS p S p S p S p S p++ ++ ++ ++  ′ =  

Q Q
® ®

, (7.26) 

whereby the condition (7.22) becomes  

 ( ) ( )12 0f f f fS p S p++ ++ ≠Q
®

. (7.27) 

Equation (7.24) implies, moreover, that  

 ( ) ( ) ( ) ( )21 12
f f f f f f f fS p S p S p S p++ ++ ++ ++ = −  

Q Q
® ®

. (7.28) 

Appendix E.1 provides explicit expressions for the elements of the matrices jkQ  in eqs. 

(7.25) and (7.26).  Under the restriction (7.27), equations (7.25) and (7.26) constitute a 

transformed version of the original ODE system (7.11) and (7.12) above characterizing 

firms’ optimal forward market actions.  Later in this chapter, we compute numerical 

solutions of this system for a restricted domain of prices fp .   

 The coefficient matrices jkQ  in eqs. (7.25) and (7.26) are functions, ultimately, of 

parameters characterizing228 suppliers’ marginal costs, stochastic distributions, and 

consumers’ technology, utility and risk preferences.  Hence, given values for these 

primitive parameters, the elements of jkQ  are simply known, exogenous constants.  

Equations (7.25) and (7.26) constitute a coupled system of first-order nonlinear ODEs in 

                                                 

228 In part through the intermediate variables sγ , 1φ , 2φ , aω , and bω .   
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the equilibrium forward market quantities, ( )1 1
f f fq S p≡  and ( )2 2

f f fq S p≡ , with 

independent variable fp .  The system needs to be augmented by an “initial condition” 

( ) ( ),0 ,0 ,0
1 2, ,f f f f fS p S p p 

   to have a well-defined, unique solution.229  We use the term 

SF trajectory (or simply, trajectory) to denote a curve ( )f fS p  in 1 2- -f f fq q p  space (i.e., 

some subset of 3\ ) passing through some initial condition ( ) ( ),0 ,0 ,0
1 2, ,f f f f fS p S p p 

   

and solving eqs. (7.25) and (7.26) at every point.  The projections of this SF trajectory 

into the 1-f fp q  and 2-f fp q  planes, in turn, are identically the SFs ( )1
f fS p  and ( )2

f fS p  

for firms 1 and 2.  Once we solve for the SFs ( )f f
iS p , we may compute the slope of the 

shape component of forward market demand, ( )0
f fD p′ , from eq. (7.10).   

 While there are no known methods of solving a system of the form of eqs. (7.25) 

and (7.26) analytically (Braun 1993, 372), it is possible to show that solutions to the 

system exhibit certain qualitative properties.  Also, we may assign values to the 

exogenous parameters in the system and obtain numerical solutions.  In section 7.2 

below, we consider the properties of the system (7.25) and (7.26).  Following that, in the 

remaining sections of this chapter, we solve the system (7.25) and (7.26) numerically 

over a restricted domain, and examine in detail the qualitative and quantitative properties 

of such solutions.   
                                                 

229 We enclose “initial condition” in quotation marks here since such a condition customarily 
denotes the state of a time-dependent system at some initial time of interest 0t .  Since it is the forward 

market price, fp —rather than a time coordinate—that is our independent variable in this “timeless” 
problem, the notion of an initial time does not apply literally here.  Nonetheless, we continue to refer to 
initial conditions in this problem.   

On the existence and uniqueness of solutions, see subsection 7.2.2.   
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7.2 Properties of the system (7.25) and (7.26) and existence and 

uniqueness of solutions  

7.2.1 Singularities 

For this discussion, it is convenient to write the system (7.25) and (7.26) more compactly 

as follows.  First, augment the vector of the duopolists’ SFs (i.e., the dependent variables) 

with a third component230 (only), defined as  

 ( )3
f f fS p p≡ , (7.29) 

which we may differentiate to yield  

 ( )3 1f fS p′ = . (7.30) 

Next, using eq. (7.29), define fS +  as an ( )1 x1n+  vector of the form231  

 ( ) ( ) ( ) ( )( )1 2 3
f f f f f f f fS p S p S p S p+ ≡

®

,  

which has the derivative with respect to fp  of  

 ( ) ( ) ( )( )1 2 1f f f f f fS p S p S p+′ ′ ′=
®

. (7.31) 

We may then write eqs. (7.25), (7.26), and (7.30) in vector form as the system  

                                                 

230 Or, an ( )th1n +  component, for the general case of n firms.   

231 This augmentation of the vector of dependent variables permits us to suppress the explicit 
appearance of fp  in the ODE system; such systems are commonly called autonomous systems of ODEs.  
This step is helpful since many theoretical results for ODE systems are expressed with reference to such 
autonomous systems.   
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 ( )( ) ( ) ( )( )f f f f f fS p S p S p++ + ++′ =A G , (7.32) 

where ( )( )f fS p++A  is an ( ) ( )1 x 1n n+ +  matrix of the form  

 ( )( )
( ) ( )

( ) ( )
12

21

0 0

0 0

0 0 1

f f f f

f f f f f f

S p S p

S p S p S p

++ ++

++ ++ ++

 
 
 =  
 
  

Q

A Q

®

®

, (7.33) 

and ( )( )f fS p++G  is an ( )1 x1n+  vector of the form  

 ( )( )
( ) ( )
( ) ( )

23

13

1

f f f f

f f f f f f

S p S p

S p S p S p

++ ++

++ ++ ++

 
 
 =  
 
  

Q

G Q

®

®

. (7.34) 

Since they contain quadratic forms, the matrix ( )( )f fS p++A  and the vector 

( )( )f fS p++G  are each a quadratic function of the elements of ( )f fS p++ .   

 Systems of the form of eq. (7.32) are often called quasilinear because in this case, 

we may write the general form of an implicit ODE, ( ) ( )( ), 0f f f fS p S p++ +′ =F , as  

 ( ) ( )( ) ( )( ) ( ) ( )( ), 0f f f f f f f f f fS p S p S p S p S p++ + ++ + ++′ ′≡ − =F A G , (7.35) 

where the (implicit) derivative term ( )f fS p+′  enters ( ) ( )( ),f f f fS p S p++ +′F  linearly.  

The system (7.32) is singular at a point ( ) ( )1 2, ,f f f f fS p S p p 
   when the matrix 

( )( )f fS p++A  in eq. (7.33) is not invertible, or singular.  This occurs if and only if at 
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least one of the quadratic forms on the diagonal of ( )( )f fS p++A  equals zero at that 

point, that is, when  

 ( ) ( )12 0f f f fS p S p++ ++ =Q
®

 (7.36) 

or  

 ( ) ( )21 0f f f fS p S p++ ++ =Q
®

, (7.37) 

or both.  Recall from eq. (7.28), however, that the locus of points 

( ) ( )1 2, ,f f f f fS p S p p 
   at which eq. (7.36) holds coincides exactly with the locus of 

such points at which eq. (7.37) holds.  Thus we may consider exactly one of eqs. (7.36) 

and (7.37) to be redundant.  We call points in this locus the singular points, or 

singularities, of the ODE system (7.32).232  Pulling together this nomenclature, we may 

label eq. (7.32) a singular quasilinear ODE system.   

 Geometrically, the graphs of each equation (7.36) and (7.37) coincide in a 

common graph: a quadratic surface.233  Because this quadratic surface is the locus of the 

singular points in this problem, we call this surface—defined by eqs. (7.36) and (7.37)—

the singular locus.  Informally, we may think of “most” points on the singular locus as 

that set of points at which, in the limit, both firms’ forward market SFs become infinitely 

                                                 

232 To preserve symmetry in the discussion, however, we will customarily continue to refer to both 
of eqs. (7.36) and (7.37) as characterizing the system (7.32)’s singularities, although by the argument 
above, either equation (7.36) and (7.37), taken individually, would suffice to describe these points.  In our 
earlier notation, a necessary and sufficient condition for eqs. (7.36) and (7.37) to hold is 1 2 1 2

1 2 2 1 0− =P P P P , 
the converse of the restriction (7.22).   

233 One generates quadratic (or “quadric”) surfaces by rotating a conic section about an axis of 
symmetry.  On quadratic surfaces, see Eves (1987, 298) for a useful taxonomy, as well as Weisstein 
(1999a) and Hilbert and Cohn-Vossen (1952) for additional illustrations.   
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sloped.234  Appendix E.2 examines in greater detail the theory and computation of 

singularities in the system (7.32).   

7.2.2 Solutions of the system (7.25) and (7.26) away from the singular locus  

At points not on the singular locus discussed in subsection 7.2.1,235 we will have by 

definition that the converses of eqs. (7.36) and (7.37) will hold at all fp , namely, 

(rewriting the restriction (7.27))  

 ( ) ( )12 0f f f fS p S p++ ++ ≠Q
®

 (7.38) 

and (consistent with eq. (7.28)),  

 ( ) ( )21 0f f f fS p S p++ ++ ≠Q
®

. (7.39) 

Under the conditions (7.38) and (7.39), ( )( )f fS p++A  is invertible, and we may write 

the system (7.32) in explicit form—that is, solving explicitly for the derivatives 

( )f f
iS p′ , 1, 2i = —as  

 ( ) ( ) ( )
( ) ( )

23
1

12

f f f f
f f

f f f f

S p S p
S p

S p S p

++ ++

++ ++
′ =

Q

Q

®

®
, (7.40) 

 ( ) ( ) ( )
( ) ( )

13
2

21

f f f f
f f

f f f f

S p S p
S p

S p S p

++ ++

++ ++
′ =

Q

Q

®

®
, (7.41) 

                                                 

234 Assigning price fp  to the vertical axis, as usual, infinitely-sloped SFs would be parallel to the 

horizontal plane defined by the quantity axes 1

fq  and 2

fq .  See Table 7.1 on page 252 below for a more 
precise discussion.   

235 We refer to such points as being “away from the singular locus.”   
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and  

 ( )3 1f fS p′ = . (7.42) 

 If the inequalities (7.38) and (7.39) hold for every point on the SFs of interest, we 

obtain a non-singular ODE system (7.40)–(7.42).  Given the aforementioned inequalities, 

SFs solving (7.40)–(7.42) do not intersect the singular locus (eqs. (7.36) and (7.37)) 

defined in section 7.2.1.  Since the system (7.40)–(7.42) is non-singular, we may appeal 

to the standard theorems on existence, uniqueness and continuity of solutions to ODE 

systems (see, e.g., Birkhoff and Rota 1989, ch. 6 (in particular, Theorems 1, 2, 3, 8, 11, 

and applicable corollaries)).  These theorems provide that, for the system (7.40)–(7.42), a 

unique solution exists—perhaps over a restricted domain of fp —for any initial 

condition.236  Moreover, such a solution is continuous, and varies continuously with the 

exogenous parameters of the problem.   

 The following section presents the computational methods used in this 

investigation to solve the system (7.40)–(7.42).   

                                                 

236 Technically, the existence and uniqueness results apply to a local solution of the system (7.40)–
(7.42) in the neighborhood of a given initial condition ( ) ( ), 0 ,0 ,0 ,0

1 2, ,f f f f f fS S p S p p≡    .  By “pasting 
together” such local solutions, we may extend such solutions to some maximal interval of existence 
( ), 0f

mJ S ⊆ \ , yielding a resulting maximal or global solution on ( ), 0f

mJ S .  See de la Fuente (2000, 
437ff.) for details.  We will not investigate the properties of solutions near the boundaries of intervals 
( ), 0f

mJ S , and so do not need to define them formally here.   
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7.3 Computational approaches to solving the differential equation system 

characterizing the forward market SFs  

We used two distinct approaches to solving the differential equation system (7.40)–(7.42) 

characterizing the forward market SFs in the multi-settlement SFE model: (1) numerical 

integration using MATLAB (The MathWorks 2001), and (2) a difference equation 

approximation implemented here using Microsoft Excel’s “Solver tool.”  These two 

approaches are complementary in that each highlights particular properties of solutions to 

the ODE system.  This section provides details on both of these implementations of the 

multi-settlement SFE model.   

7.3.1 Numerical integration using MATLAB  

MATLAB offers several differential equation solvers for numerical solution of (non-

singular) problems of the form (7.40)–(7.42), together with symbolic algebra capabilities 

(specifically, the Maple symbolic algebra kernel (Maplesoft 2002)).237  We tested the 

performance of each of MATLAB’s solvers on the present problem for reasonable ranges 

of parameters.  The best-performing solver in terms of both stability and the range of 

prices over which we could integrate successfully is named “ode15s.”  Appendix E.2 

discusses the properties of MATLAB’s ode15s solver in greater detail.238  This solver 

formed the core of the MATLAB-based solution to the system (7.40)–(7.42), to which we 

refer hereinafter as “the MATLAB model.”  Given an initial condition 

                                                 

237 The MATLAB codes used in this thesis are available from the author.   

238 The solver ode15s worked best with the backwards differentiation formulae (BDFs) (rather 
than the numerical differentiation formulae (NDFs)) enabled.  The BDFs are also commonly known as 
“Gear’s method”; see Gear (1971).  On the details of and the distinction between BDFs and NDFs, see 
Shampine and Reichelt (1997).   
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( ) ( ),0 ,0 ,0
1 2, ,f f f f fS p S p p 

  —that is, initial quantities for each firm and a corresponding 

initial price239—we may use the MATLAB model to compute a trajectory ( )f fS p  in 3\  

that solves the system (7.40)–(7.42).  Projecting this trajectory into the 1-f fp q  and 

2-f fp q  planes, in turn, yields the SFs ( )1
f fS p  and ( )2

f fS p .240   

7.3.2 Difference equation approximation using the Excel Solver: The discrete 

Excel model  

The second computational approach that we employ in this investigation to solving the 

differential equation system (7.40)–(7.42) relies on a difference equation approximation 

to this system.  Since this approach uses Microsoft Excel (Microsoft Corporation 2001)—

in particular, Excel’s Solver tool, hereinafter simply the “Excel Solver”241—we refer to 

this approach hereinafter as the “discrete Excel model.”242  In contrast to the MATLAB 

model’s requirement of an exogenously-specified initial condition, we formulate the 

discrete Excel model to select endogenously a (locally) unique equilibrium trajectory, as 

elaborated below.   

 The discrete Excel model comprises a family of doubly-nested optimization 

problems having the general form  
                                                 

239 Recall from subsection 7.1.3 that we must specify an initial condition for an ODE to have a 
well-defined, unique solution.  The MATLAB model requires that this initial condition be specified 
exogenously.   

240 As depicted, for example, in subsection 7.4.3’s Figure 7.7 below.   

241 It appears that a similar discrete approximation of the system (7.40)–(7.42) could also have 
been implemented and solved in MATLAB by exploiting the capabilities of the “Optimization Toolbox,” 
an add-on product for the MATLAB software suite.  Because the discrete Excel model is relatively simple 
and effective, however, we did not attempt a MATLAB-based discretization of this problem.   

242 The Excel files used in this thesis are available from the author.   
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( ) ( )
[Additional decision variables]

min/max Objective function

. . Subgame-perfect Nash equilibrium in  and 
. . Parameters 

[Additional constraints]

f f
iS p discretized

s f
i is t S

s t
Σ

Θ
 (7.43) 

where, as discussed further below, the bracketed phrases in problem (7.43) indicate 

(optional) additional elements of the problem.  We solve problem (7.43) using the Excel 

Solver.243  In the following, we elaborate on the various components of this problem.   

 The elements of primary interest in problem (7.43) are the discretized values of 

( )f f
iS p  ( 1, 2i = ) that represent the quantities offered by firm i over a specified vector of 

prices fp .  These price-quantity pairs constitute a piecewise affine spline approximation 

to a smooth forward market SF for each firm.  The “[a]dditional decision variables” noted 

in problem (7.43) could be, for example, parameters of the problem for which market 

data and the literature offer little quantitative empirical support.  Converting such 

parameters to decision variables in problem (7.43) would enable us to determine 

endogenous values for such parameters in this problem’s solution.   

We may solve problem (7.43) using a variety of objective functions.  Two 

intuitively appealing choices for the objective function would be  

                                                 

243 According to Excel’s documentation (in Excel, see “Help | About Solver”), “[t]he Microsoft 
Excel Solver tool uses the Generalized Reduced Gradient (GRG2) nonlinear optimization code developed 
by Leon Lasdon, University of Texas at Austin, and Allan Waren, Cleveland State University.”   
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1. The minimization of the discrepancy between endogenous model outputs (e.g., 

expected prices and quantities in each market), and corresponding empirical 

reference values244 from the literature  

2. The maximization of expected aggregate welfare, which could be relevant as a 

benchmark for policy analysis  

In addition, we could identify other plausible candidates for objective functions that 

correspond to special cases of the multi-settlement SFE model.  For example, minimizing 

the “overall curvature” (defined in some meaningful way) of the forward market SFs 

might be used to identify forward market SFs that are (nearly) affine over a chosen price 

range.  Choosing an objective function for problem (7.43) constitutes an equilibrium 

selection rule that identifies a single trajectory (assuming a unique solution for this 

problem) from the phase space of SF trajectories.  Naturally, a different objective 

function would, in general, select a different SFE from this phase space.   

The upper-level constraint set of problem (7.43) is itself a constrained equilibrium 

solution of the multi-settlement SFE model.  The equilibrium constraint of “Subgame-

perfect Nash equilibrium in s
iΣ  and f

iS ” refers to the (simplified affine) spot and forward 

market equilibria described in chapters 4 and 5.  This equilibrium comprises each firm’s 

first- and second-order optimality conditions as well as slope restrictions on the forward 

market SFs.  Here, the forward market equilibrium SFs are represented by the piecewise 

affine approximation corresponding to the discretized decision variables ( )f f
iS p  (i.e., 

quantities defined over a grid of fixed prices).  We compute the subgame-perfect Nash 

                                                 

244 For example, for California’s electricity market during a particular period of interest.  See 
Appendix F for details.   
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equilibrium subject to chosen parameter values—elements of the vector Θ—and 

possibly to “[a]dditional constraints.”245  Such additional constraints could include 

restrictions that enhance the verisimilitude of the model.  Sections 7.5 and 7.6 below 

provide further details and specific examples of the application of problem (7.43).   

7.3.3 Comparison of computational approaches  

The discrete Excel model and the MATLAB model share some fundamental similarities.  

Like any numerical integration routine, the MATLAB model is at its heart also a 

discretization of what is—away from the singular locus—a continuously differentiable 

problem.  The major algorithmic distinction between the two approaches lies in the 

discrete Excel model’s incorporation of equilibrium selection—implemented using 

optimization problems having the general form of (7.43)—not represented in the 

MATLAB model.  As a consequence, the Excel- and MATLAB-based approaches differ 

in their inputs and outputs in ways that are important for the present investigation.  We 

review these distinctions below.   

 For our purposes, the discrete Excel model offers two distinct advantages over the 

MATLAB model described in subsection 7.3.1.  First, by allowing for an equilibrium 

selection procedure, the discrete Excel model affords a systematic means of choosing the 

initial conditions ( ), 0 , 0
1 ,f fq p  and ( ), 0 , 0

2 ,f fq p  for each firm’s forward market SF.  

Namely, the initial quantities ( ), 0 , 0
1 1

f f fq S p=  and ( ), 0 , 0
2 2
f f fq S p=  appear as simply 

                                                 

245 To obtain numerical solutions, we assign values to the cost, demand, distributional, and risk 
parameters of the multi-settlement SFE model, already introduced in chapters 3 through 6.  Together with 
some new notation, we collect these parameters as elements of a parameter vector Θ  in subsection 7.4.1 
below.  Appendix F explains the provenance of the particular parameter values used to conduct the 
comparative statics and welfare analyses of this chapter.   
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two of the endogenously-determined decision variables in problem (7.43).  The 

MATLAB model, in contrast, requires the user to specify exogenously the initial 

quantities for each firm.  As a second advantage, it is straightforward in the discrete 

Excel model to impose explicitly the constraints that forward market SFs be strictly 

increasing, whereas this is not possible using only MATLAB’s ODE solvers (see note 

241, however).  Finally, we note that the discrete Excel model permits the user to adjust 

both the (uniform) step size and—like MATLAB—the range of prices fp  considered.   

 The disadvantages of the discrete Excel model center around existence and 

uniqueness of solutions, and the ease with which we may solve the model to find 

solutions.  First and most fundamentally, a feasible solution to the optimization problem 

(7.43) cannot always be found for a given set of constraints and decision variables.  Trial 

and error246 may be required to identify a model for which the Excel Solver can identify a 

feasible solution.  If a feasible solution can be found, the Solver can guarantee only a 

locally optimal solution, not a globally optimal solution due to the nonlinearity of 

problem (7.43).  Accordingly, the discrete Excel model’s solution depends, in general, on 

the decision variables’ initial values.247  Finally, the MATLAB ODE solvers adjust 

dynamically the step size for numerical integration to keep the discretization error (see 

note 380 below) within acceptable limits, while the uniform step size in the discrete 

Excel model is fixed by the user.  This implies that, at certain points, the approximation 
                                                 

246 That is, trial and error with respect to the following attributes: the constraint set, the set of 
decision variables, the grid of prices used in the approximation, initial values for the optimization, and 
parameters of the Excel solver (in Excel, see “Tools | Solver | Options | Help”).   

247 Away from the singular locus, these questions of existence and uniqueness of solutions arise 
due to the nonlinear optimization problem in the discrete Excel model, rather than to theoretical properties 
of the ODE system (7.40)–(7.42).  For (nonsingular) ODE systems, we recall that the theorems noted in 
subsection 7.2.2 guarantee the existence and uniqueness of solutions to such systems.   
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(discretization) error of the discrete Excel model can be relatively large.248  Provided, 

however, that the discretized SFs in the chosen price range do not “straddle” any 

singularities (not necessarily the case in the trials that we examine), the approximation 

error may in principle be made arbitrarily small by increasing the number of price 

steps,249 or decreasing the overall price range over which we compute the discretized SFs.   

 The MATLAB model (which exploits MATLAB’s graphics capabilities) is well-

suited to investigate qualitatively the phase space and the properties of SF trajectories 

starting from arbitrarily-specified initial conditions.  Section 7.4 presents qualitative 

results from the MATLAB model; the analysis emphasizes the geometry of trajectories, 

the singular loci, and other salient features of the phase space.   

7.4 Qualitative analysis of the differential equation system characterizing 

the forward market SFs  

We begin in subsection 7.4.1 below by defining the general parameter vector Θ  as well 

as a particular vector baseΘ  whose elements serve as our set of base case parameter values 

for the multi-settlement SFE model.  Subsection 7.4.2 then analyzes qualitatively the 

singular quasilinear ODE system, eq. (7.32).  Following that, subsection 7.4.3 explores in 

greater detail the non-singular ODE system (7.40)–(7.42).   

                                                 

248 Two examples in which this approximation error tends to be large in magnitude are regions in 
which an SF’s curvature is large, and at points on a segment of the affine approximation to an SF that are 
relatively distant from the endpoints of the segment (e.g., near the midpoint of such a segment).  At the 
segment’s endpoints, in contrast, the approximation is exact.   

249 The current implementation of the discrete Excel model characterizes a firm’s forward market 
SF using eleven affine segments connecting twelve price-quantity pairs.  Increasing the number of price 
steps is possible, in principle, though doing so would increase the size of the problem and hence its 
computation time.   
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7.4.1 The parameter vector Θ   

We first introduce some new notation to represent the elasticity of spot market demand; 

denote this elasticity as s
deme .  Given an empirical mean reference price ,s mean

empirp  and 

quantity ,s mean
empirq  for the spot market,250 we may write s

deme  in terms of 

( ),s s s s sD p pγ ε≡ ∂ ∂ 251 as  

 
,

,

s mean s
empirs

dem s mean
empir

p
e

q
γ

= − . (7.44) 

We introduce the parameter s
deme  in eq. (7.44) in order to conduct this chapter’s 

quantitative analysis in terms of this intuitively more appealing parameter.   

 Let Θ  be the (general) parameter vector for the multi-settlement SFE model, 

defined as  

 ( )2 2
01 02 1 2 R R

s
dem R R Rc c c c e η νη σ ν σ λΘ ≡

®

. (7.45) 

The ten-element vector Θ  collects the cost, distributional, and risk parameters already 

introduced in previous chapters, along with the demand elasticity parameter s
deme  defined 

immediately above.  Now denote as baseΘ  the parameter vector Θ  assuming base case 

values of each of its ten elements.  The base case values of the cost function parameters 

0ic  and ic  ( 1, 2i = ) are based on empirical data from California’s electricity market, 

                                                 

250 See the discussion of Appendix F.1.1 for data sources and values of ,s mean

empirp  and ,s mean

empirq .   

251 Recall that we wrote the forward market equilibrium optimality conditions (7.11) and (7.12) in 
subsection 7.1.1 above in terms of the slope parameter sγ  rather than the elasticity s

deme .   
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circa 1999, as detailed in Appendix F.1.3.  The base case values of the elasticity s
deme , the 

four distributional parameters Rη , 2
Rη

σ , Rν , and 2
Rν

σ  (see section 6.5), and R’s CARA 

parameter Rλ  are endogenous to the benchmarking procedure for the discrete Excel 

model, described in subsection 7.5 below.  Bringing together these exogenously- and 

endogenously-determined parameters in this problem, the resulting base case parameter 

vector baseΘ  is,252 to three significant figures,  

 

( )
( )

01

02 2

1
2

2

2 2

2 2

1

$25.60 MWh
$30.50 MWh

$0.000341 MWh

$0.00326 MWh

5.95e-5
4640 MWh

2.46e6 MWh
335 MWh

5.86e4 MWh

3.20e-4 $

R

R

base

s
dembase

R

R

R

c

c
c
c

e

η

ν

η
σ
ν
σ
λ −

  
  
  
  
  
  
  
   −Θ ≡ =  
  
  
  
  
 
 
     





. (7.46) 

Unless otherwise specified, the computations in this section rely on the base case 

parameter vector baseΘ  of eq. (7.46).   

7.4.2 The singular quasilinear ODE system, equation (7.32)  

To study the singular quasilinear ODE system (7.32), it is useful to begin by 

characterizing two types of loci in this system’s phase space.  First, there is the singular 

locus defined by eqs. (7.36) and (7.37) and discussed in subsection 7.2.1 above.  Roughly 

                                                 

252 See also eq. (F.39) and the associated discussion in Appendix F.   
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speaking, this is the locus at which (for “most” points in the locus—see Table 7.1 below) 

both firms’ forward market SFs become, in the limit, infinitely sloped.  For this reason, 

we also refer below to the singular locus as the ∞ -locus.  Second, we have the two loci at 

which, respectively, each of the first two elements of ( )( )f fS p++G  vanishes (see eq. 

(7.34)), that is, the locus represented by the equation  

 ( ) ( )23 0f f f fS p S p++ ++ =Q
®

 (7.47) 

and that corresponding to the equation  

 ( ) ( )13 0f f f fS p S p++ ++ =Q
®

. (7.48) 

For convenience, we refer to the loci (7.47) and (7.48) as the 10 -locus (“zero-one locus”) 

and the 20 -locus (“zero-two locus”), since at non-singular points in these loci (again, see 

Table 7.1 below), we have that ( )1 0f fS p′ =  and ( )2 0f fS p′ = , respectively.  For ease of 

reference, we collect this terminology in Table 7.1 below.   
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TABLE 7.1: LOCI OF INTEREST IN THE SINGULAR QUASILINEAR ODE SYSTEM (7.32)  

Name of the locus Equation(s) characterizing the 
locus 

Properties satisfied  
by “most” pointsa  

on the locus 

∞ -locus (also, 
“singular locus”) 

( ) ( )12 0f f f fS p S p++ ++ =Q
®

 or 

( ) ( )21 0f f f fS p S p++ ++ =Q
® 253 

( )f f
iS p′ → ∞ , 1, 2i =  

10 -locus ( ) ( )23 0f f f fS p S p++ ++ =Q
®

 ( )1 0f fS p′ =  

20 -locus ( ) ( )13 0f f f fS p S p++ ++ =Q
®

 ( )2 0f fS p′ =  

Note:  
 a In the restriction to “most” points, we exclude those points lying on the manifolds at which either 
(1) the ∞ - and 10 -loci, or (2) the ∞ - and 20 -loci intersect.  We would need to determine the slopes 

( )f f

iS p′  at such points on a case-by-case basis; the generalizations in the rightmost column of the table 

do not necessarily apply.  On the other hand, for points at the manifold of intersection of the 10 - and 20 -

loci (but not also on the ∞ -locus), we have that ( )1 0f fS p′ =  and ( )2 0f fS p′ =  (as the table indicates).  
We include the generalizations in the rightmost column of the table solely as an aid to intuition, and 
emphasize that, without exception, we characterize the loci using the equations in the middle column of the 
table.   

Where appropriate in the discussion below, we refer generically to the 10 -locus or the 

20 -locus as a 0i -locus (“zero-eye locus”).   

 This subsection characterizes each of Table 7.1’s loci analytically using the 

taxonomy of Eves (1987, 298) for quadratic forms, and plots their graphs using 

MATLAB’s three-dimensional visualization capabilities (and assuming, unless otherwise 

specified, that baseΘ =Θ ).  Eves’ taxonomy associates relationships among a quadratic 

form’s coefficients—for example, the elements of ijQ  in each of Table 7.1’s quadratic 

forms—with one of the seventeen types of quadratic surfaces.  The taxonomy involves 

                                                 

253 Recall that these two equations are redundant; hence, we use the conjunction “or.”   
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rank, determinantal, and eigenvalue conditions of the coefficient matrices associated with 

each quadratic form.   

 Consider first the ∞ -locus.  Applying the taxonomy of Eves (1987, 298) to 

(either) equation representing this locus, we may show that this locus is a real elliptic 

(double) cone.  Figure 7.1 below depicts the ∞ -locus, confirming this classification.   

 

FIGURE 7.1: THE ∞ -LOCUS, A REAL ELLIPTIC (DOUBLE) CONE, IN A NEIGHBORHOOD 
OF THE ORIGIN  
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The graph depicted in Figure 7.1 is, naturally, only a discrete approximation—made for 

the sake of visualization—to a theoretical real elliptic (double) cone.  The fact that the 

two nappes of the cone do not appear to meet at a single point—the vertex—but rather 

appear to intersect over a continuum of points is merely an artifact of this 

discretization.254   

                                                 

254 Refining the resolution of the lattice used to visualize the cone “shrinks” the apparent 
continuum at which the nappes of the cone meet.  This behavior is consistent with the familiar theoretical 
property that the cone’s two nappes meet at a point.   



 

  255 

 Next, we examine the 10 -locus.  The taxonomy of Eves (1987, 298) implies from 

the corresponding equation that this locus is a hyperboloid of one sheet.  Figure 7.2 below 

depicts the 10 -locus, confirming this result.   

 

FIGURE 7.2: THE 10 -LOCUS, A HYPERBOLOID OF ONE SHEET, IN A NEIGHBORHOOD OF 

THE ORIGIN  
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 Finally, applying the taxonomy of Eves (1987, 298) to the equation representing 

the 20 -locus, we find that this locus is also a hyperboloid of one sheet.  Figure 7.3 below 

depicts the 20 -locus, again confirming this result.   

 

FIGURE 7.3: THE 20 -LOCUS, A HYPERBOLOID OF ONE SHEET, IN A NEIGHBORHOOD OF 

THE ORIGIN  

 To emphasize the geometry of the three loci in Figure 7.1–Figure 7.3, we drew 

these figures to a smaller scale than would be appropriate to depict equilibria in the 

California electricity market (see Appendix F.2 for representative forward market 
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quantities).  Next, in Figure 7.4 below, we superimpose the graphs of the loci shown in 

Figure 7.1–Figure 7.3, enlarging the scale of the plot, as well.   

 

FIGURE 7.4: THE ∞ -LOCUS (IN BLACK), THE 10 -LOCUS (A TRIANGULAR MESH), AND 

THE 20 -LOCUS (IN GRAY) IN A (SMALLER) NEIGHBORHOOD OF THE 

ORIGIN  

In the next few figures, for clarity, we suppress both 0i -loci and examine the 

relationships between various SF trajectories and the ∞ -locus.  Recall, as Figure 7.1 

depicts, that the ∞ -locus—the black surface in Figure 7.4—is a real elliptic (double) 

cone.  Given that the orientation of the cone’s axis (a function of the parameters Θ ) is 
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more nearly parallel with the vertical ( fp ) axis than with either quantity axis, it is natural 

to characterize this ∞ -locus as dividing the phase space into three partitions: the upper 

partition, the middle partition, and the lower partition.  Figure 7.5 below portrays the ∞ -

locus along with separate SF trajectories beginning in each of these three partitions.255   

 

FIGURE 7.5: THE ∞ -LOCUS (BLACK SURFACE) DIVIDING THE PHASE SPACE INTO 
UPPER, MIDDLE, AND LOWER PARTITIONS, AND SF TRAJECTORIES 
(BLACK CURVES MARKED WITH “O”) BEGINNING IN EACH PARTITION  

                                                 

255 We define the partitions of the phase space as open sets, bounded, in part, (as depicted in 
Figure 7.5) by the ∞ -locus (and otherwise unbounded).  By this definition, points on the ∞ -locus itself 
belong to none of these partitions, and therefore each partition contains exclusively non-singular points.   

Middle 
partition 

Upper partition 
Middle 
partition 

Lower partition 
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 Figure 7.5 illustrates the three types of behavior that we have observed for 

forward market SF trajectories as they approach the ∞ -locus.256  Namely, an SF 

trajectory can be 

•  deflected by,  

•  transverse to, or  

•  absorbed by  

the ∞ -locus.257  Figure 7.5 depicts three distinct trajectories in the neighborhood of the 

∞ -locus, each of which begins in a different phase space partition and each of which 

exhibits one of the three behaviors noted above.258  We characterize these behaviors 

informally below.   

 Consider first the trajectory depicted in the upper partition of Figure 7.5, labeled 

as “ .”  Qualitatively, we may say that the ∞ -locus deflects this trajectory, that is, the 

direction of this trajectory changes abruptly in the vicinity of the ∞ -locus.   

 Next, consider the trajectory labeled as “ ” in Figure 7.5, which begins in the 

middle partition at $1,500 MWhfp = −  and moves up (i.e., in the direction of increasing 

fp ) and to the left from there.  This trajectory crosses the ∞ -locus—we say it is 

                                                 

256 The trajectories depicted in Figure 7.5 do not necessarily satisfy the second-order condition for 
optimality for either firm over the entire price range; we use these trajectories for expository purposes only.  
This is the case (unless otherwise specified) for SFs and trajectories portrayed in all of this subsection’s 
figures.   

257 While we do not claim that the above classification of behavior is exhaustive of all 
possibilities, all trajectories investigated in this study clearly fell into one of these three categories, as 
defined below.   

258 The apparent correspondence in Figure 7.5 between the partitions and the three trajectory 
behaviors discussed here is incidental.  For different initial conditions or parameter values, we can find 
trajectories in each partition that behave differently.   
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transverse to the ∞ -locus—and continues into the lower partition.  Closer numerical 

examination of trajectory  reveals that the slopes ( )f f
iS p′  near the apparent 

intersection with the ∞ -locus are on the order of 103, that is, these slopes are clearly 

finite.  This observation suggests that at the ∞ -locus, trajectory  encounters a 

removable singularity,259 meaning that the magnitudes of the SF slopes ( )1
f fS p′  and 

( )2
f fS p′  in eqs. (7.40) and (7.41) are bounded along an SF trajectory in the 

neighborhood of the singularity.  Consequently, the MATLAB ODE solver does not fail 

in this neighborhood, making numerical integration using our model feasible almost 

everywhere—that is, on “both sides” of the ∞ -locus.260  This finding is supported by 

further graphical investigation (not illustrated in Figure 7.5), which indicates that the 

intersection of this trajectory with the ∞ -locus is also close to a point at which the ∞ -, 

10 -, and 20 -loci all appear to intersect.  While we would require further research to 

                                                 

259 A removable singularity of a real function ( )f x  is a singular point 0x  at which we may assign 

a value ( )0f x  such that f is analytic, that is, f possesses derivatives of all orders and agrees with its Taylor 
series in the neighborhood of every point (Weisstein 1999b, 1999c).   

260 A more familiar example of a removable singularity is found in Green (1999a).  In Green’s 
Figure 1 (p. 114), removable singularities exist at the points of intersection of the marginal cost function 
and his spot market supply functions, that is, at quantities X1 and X2 for the supply functions S(X1) and 
S(X2), respectively.  To see this analytically, solve Green’s eq. (4) for jdq dp  to obtain  

 ( )
( )

j i i

i i

dq q p x
b

dp p c q p

−
= −

−
.  

The ratio ( )( ) ( )( )i i i iq p x p c q p− −  in the above equation is indeterminate at the quantities X1 and X2 
noted above (i.e., at the removable singularities), but it may be evaluated via L’Hopital’s Rule.  Similarly, a 
removable singularity exists at the origin in Klemperer and Meyer’s (1989) connected set of SFEs; see their 
Figure 1 (reproduced as Figure 7.10 below) and their eq. (5).   
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corroborate numerically that this represents an actual point of intersection,261 these 

observations suggest that the singular point at which trajectory  crosses the ∞ -locus 

belongs to a class of more complex singularities.  These more complex singularities 

likely differ in important ways from other points on the ∞ -locus, exemplified by the 

possibility of trajectories transverse to the ∞ -locus at such points.   

 Finally, regarding the trajectory labeled as “ ” in the lower partition of Figure 

7.5, we may say that the ∞ -locus absorbs this trajectory.  More precisely, in this case, 

the MATLAB solver fails and numerical integration halts (see Appendix E.3 for details) 

when the trajectory approaches the ∞ -locus sufficiently closely.  This numerical failure 

is due, analytically, to the derivatives ( )f f
iS p′ → ∞  that explode as trajectory  

approaches the ∞ -locus (recall Table 7.1 above).   

 While a closer analysis of the factors governing trajectories’ behavior in the 

neighborhood of the ∞ -locus is left for further research,262 we make here a few general 

observations on these factors.  In theoretical terms, the vector field corresponding to an 

underlying ODE system is tangent to any arbitrary solution trajectory at all points along 

the trajectory.  Accordingly, the parameter values that determine this vector field will 

clearly contribute to determining how trajectories behave in different regions of the phase 

                                                 

261 Or, practically speaking, a small neighborhood through which the trajectory and the various 
surfaces pass, since we are dealing invariably with approximate numerical representations of the underlying 
theoretical objects.   

262 Riaza (2002, 306) highlights the distinction made in the applied mathematics literature between 
algebraic singularities (where, in our framework, ( )( ) ( )( )rgef f f fS p S p++ ++∉G A , recalling eqs. 

(7.33) and (7.34)), and geometric singularities (where ( )( ) ( )( )rgef f f fS p S p++ ++∈G A ).  Exploring 
this distinction in the present context may be a useful point of departure for future work.  See also the 
discussion of Appendix E.2, which examines in greater detail the theory and computation of solution 
trajectories in the neighborhood of this model’s singularities.   
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space.  Each trajectory that we compute in this chapter is, naturally, a numerical 

approximation to an underlying “theoretical” trajectory.  Error tolerances and step size 

restrictions for numerical integration will play a role in determining the extent, the 

accuracy of approximation near the singularities, and perhaps even which of the three 

behaviors identified above that a (numerical) trajectory exhibits.  In some cases, the 

numerical approximation may only approximate the theoretical trajectory over a limited 

range.  For example, while Figure 7.5 showed that trajectory  was apparently absorbed 

by the ∞ -locus, simply stopping short before reaching this locus, this behavior is clearly 

attributable—as MATLAB error messages report—to a numerical rather than a 

theoretical cause (i.e., failure of the MATLAB solver).  Therefore, although the 

numerical trajectory stops near the ∞ -locus, it is certainly possible that the underlying 

theoretical trajectory extends beyond this point.  Through a change of coordinates to 

remove the singularity, it may also be possible to extend such a trajectory numerically, 

through the ∞ -locus.263  Again, we reserve for future research the exploration of such 

questions.   

 A special case is the situation in which suppliers’ cost functions and initial 

conditions are symmetric.  As a specific illustration, define a symmetric parameter vector 

symmΘ  as the vector baseΘ  (recall eq. (7.46)) with firm 2 replaced by a replica of firm 1 in 

the base case, so that ( ) ( )02 01
symm basec c=  and ( ) ( )2 1

symm basec c= .  That is, we define symmΘ  

as  
                                                 

263 For example, interchanging the dependent and independent variables would imply that SF 
slopes would now approach zero at points where they were formerly unbounded.  Accordingly, the ODE 
solver would no longer fail at such points.  The author is indebted to Allan Wittkopf of Maplesoft 
(Wittkopf 2002) for suggesting this approach to numerical integration in the vicinity of such singularities, 
and for helpful discussions concerning computational implementation using MAPLE (Maplesoft 2002).   
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. (7.49) 

Also take the initial condition to be  

 ( ) ( ) [ ],0 ,0 ,0
1 2, , 1e6 MWh,1e6 MWh, $2000 MWhf f f f fS p S p p  =  ,  

symmetric across the two firms.   
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 Figure 7.6 below illustrates the resulting trajectory, integrating downward over 

the range [ ]$2000 MWh , $2000 MWhfp ∈ − .   

 

FIGURE 7.6: WITH SYMMETRIC SUPPLIERS (THAT IS, ASSUMING symmΘ =Θ  FROM EQ. 
(7.49)) AND SYMMETRIC INITIAL CONDITIONS, THE SF TRAJECTORY IS 
TRANSVERSE TO THE ∞ -LOCUS  

In this symmetric case, we observe that, like trajectory  of Figure 7.5, firms’ 

trajectories are also transverse to the ∞ -locus.  The SF trajectory depicted in Figure 7.6 

appears to cross the ∞ -locus near the vertex of the double cone.264  In analytical terms, 

                                                 

264 Whether this is indeed a general property of trajectories in the symmetric case is a question 
reserved for future research.   
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we conjecture that the numerators and denominators of eqs. (7.40) and (7.41)265 will go to 

zero at same rate along an SF trajectory as it approaches the ∞ -locus.  This property 

implies that under symmetry, all of the singularities of the ∞ -locus become removable 

singularities (see note 259).   

 Return again to the base case parameters baseΘ  and Figure 7.5 above, which 

portrays various trajectories ( )f fS p  from different initial conditions and ranges of 

integration.  In accordance with the a priori slope constraints (due to market rules 

defining admissible SFs) noted in subsection 3.1.5, we are interested in locating and 

characterizing a forward market SF for each firm that is strictly increasing.  To simplify 

the search for strictly increasing SFs and for ease of exposition, we restrict the qualitative 

analysis for the remainder of this section (and the numerical analysis in the rest of this 

chapter) to SFs inhabiting the upper partition of the phase space (see Figure 7.5 above).  

In the analysis below, we are able to identify SFs in the upper partition that slope upward, 

at least over certain price ranges.  We may implement the restriction to consider only SFs 

inhabiting the upper phase space partition through judicious choice of the SFs’ initial 

conditions.  In particular, we may exploit the observed empirical regularity that an SF 

trajectory beginning at an initial condition ( ) ( ), 0 ,0 ,0 ,0
1 2, ,f f f f f fS S p S p p ≡    within the 

upper phase space partition remains in the upper partition for any chosen range of 

integration.266   

                                                 

265 Under symmetry, these two equations are, of course, identical.   

266 Although this observation remains unproven as a theoretical matter, we observed this behavior 
in numerical trials, without exception.  Naturally, if the specified range of integration includes prices 
outside of the maximal interval of existence ( ), 0f

mJ S  (see note 236), the solver will fail to find a solution 
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 Restricting our attention to the upper partition of the phase space is a substantive 

limitation in the scope of this analysis, though extending it to include SFs in the other 

partitions would be straightforward.  That is, we could in principle undertake an analysis 

of trajectories inhabiting the middle and lower partitions of the phase space similar to that 

conducted below for trajectories in the upper partition.  Indeed, preliminary explorations 

confirm that, as in the upper partition, there are regions within the middle and lower 

partitions in which both firms’ SFs slope upward.  Moreover, it may be reasonable to 

suppose that SF trajectories lying in these other partitions share the characteristics of 

those trajectories in the upper partition that we study here (e.g., the comparative statics 

properties discussed in section 7.6 below).  We reserve for future research, however, such 

questions pertaining to SF trajectories lying in the middle and lower partitions of the 

phase space, and do not consider further these trajectories in the present work.   

 Accordingly, the next subsection below restricts the analysis to trajectories 

inhabiting the upper partition which, by construction (recall note 255), contains only non-

singular points.  In accordance with this restriction, we supplant the singular quasilinear 

ODE system (eq. (7.32)) with the non-singular ODE system (eqs. (7.40)–(7.42)) as the 

object of our analysis.   

7.4.3 The upper partition of the phase space of the non-singular ODE system, 

equations (7.40)–(7.42)  

In this subsection, we focus on the portions of the 0i -loci and trajectories that lie within 

the upper partition of the phase space depicted in Figure 7.5.  As argued at the close of 
                                                                                                                                                 

at such prices.  Moreover, the solver may fail to compute a numerical solution as the theoretical trajectory 
approaches the ∞ -locus sufficiently closely from within the upper partition.   
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the previous subsection, confining our attention to the upper partition permits us to 

replace eq. (7.32) with the non-singular ODE system, equations (7.40)–(7.42).  We also 

further enlarge the scales of the plots below to consider forward market quantities for 

each firm in the range [ ]1e4,1e4−  MWh.  This range is representative of actual forward 

market quantities observed in the California electricity market.  Using the system (7.40)–

(7.42), we study the upper partition of the phase space to identify admissible—in 

particular, strictly increasing—SFs.   

 As subsection 7.3.1 noted, for each firm i, the forward market SF ( )f f
iS p  that 

solves the system (7.40)–(7.42) is simply the projection of the trajectory ( )f fS p  in 3\  

into the -f f
ip q  plane.  Figure 7.7 below shows (as dashed lines) these planar projections 

for firms 1 and 2 of an SF trajectory ( )f fS p  (the solid line) lying in the upper partition 

(that is, above the ∞ -locus, the black surface in the figure).  In the figure, we see that the 

∞ -locus deflects this particular SF trajectory in the neighborhood of $40 MWhfp = .   
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FIGURE 7.7: AN SF TRAJECTORY ( )f fS p  (SOLID LINE, MARKED WITH “O”) IN THE 

UPPER PARTITION OF THE PHASE SPACE, ITS PLANAR PROJECTIONS—THE 

SFS ( )1
f fS p  AND ( )2

f fS p  (DASHED LINES)—FOR FIRMS 1 AND 2, AND 

THE ∞ -LOCUS (BLACK SURFACE)  

( )1
f fS p

( )2
f fS p

( )f fS p
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Figure 7.8 below plots the projections from Figure 7.7—the SFs ( )1
f fS p  and 

( )2
f fS p —in a common price-quantity plane.   
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FIGURE 7.8: THE SFS ( )1
f fS p  AND ( )2

f fS p  OBTAINED FROM PLANAR PROJECTIONS 

OF THE SF TRAJECTORY ( )f fS p  IN FIGURE 7.7, PLOTTED IN A COMMON 

-f f
ip q  PLANE  

From Figure 7.8, we see that, for the particular SFs depicted, ( )2
f fS p  is everywhere 

strictly increasing, and ( )1
f fS p  is strictly increasing at all but the lowest prices (i.e., 

strictly increasing for $44 MWhfp ≥ , approximately).  As the figure suggests, whether 

a particular SF slopes upward depends on the chosen price range for integration as well 
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as on the initial condition, for a given parameter vector Θ  (whereby baseΘ =Θ , in this 

case).   

 We now characterize more closely the set of points in the upper partition at which 

the trajectory ( )f fS p  is such that the SFs ( )f f
iS p  are strictly increasing.  To do so, 

some additional terminology will be useful.  Namely, we define a region to be an open 

connected set of points within any given partition over which the signs of both SF slopes 

( )1
f fS p′  and ( )2

f fS p′  are invariant.  From the definitions of the 0i -loci in Table 7.1 in 

the previous subsection, it is clear that within the given partition, the 0i -loci constitute 

the boundaries of the regions.  In other words, within each partition, we will have several 

regions, demarcated by the 0i -loci and the ∞ -locus (recall Figure 7.4 above).   

While we may further subdivide each partition of the phase space into regions, 

our focus in this subsection is on the upper partition alone; we consider now the 

constituent regions of this partition.  To this end, Figure 7.9 below reintroduces both of 

the 0i -loci (as shown, for example, in Figure 7.4 above), emphasizing via choice of axis 

scales the portions of these loci lying in the upper partition in a neighborhood of the 

origin.  The figure depicts the ∞ -locus, as well; we may think of the ∞ -locus as the 

lower boundary (i.e., in the fp−  direction) of the upper partition.  Consistent with the 

previous subsection’s graphical conventions, Figure 7.9 portrays the ∞ -locus in black, 

the 10 -locus as a triangular mesh, and the 20 -locus in gray.   
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FIGURE 7.9: THE UPPER PARTITION COMPRISES REGIONS I–IV (SEE TEXT BELOW FOR 
DETAILS), BOUNDED BY THE ∞ -LOCUS (IN BLACK), THE 10 -LOCUS (A 

TRIANGULAR MESH), AND THE 20 -LOCUS (IN GRAY)  

Figure 7.9 also depicts four regions in the upper partition, numbered I–IV, delimited by 

the various loci and defined with respect to the signs of the SF slopes ( )f f
iS p′  as 

follows:  

Region I 

Region II 

Region IIIRegion IV 
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•  Region I: ( )1 0f fS p′ > , ( )2 0f fS p′ >   

•  Region II:  ( )1 0f fS p′ < , ( )2 0f fS p′ >   

•  Region III: ( )1 0f fS p′ < , ( )2 0f fS p′ <   

•  Region IV: ( )1 0f fS p′ > , ( )2 0f fS p′ <   

For simplicity, Figure 7.9 does not depict SF trajectories in addition to the various loci, 

and also does not attempt to depict or label the various regions within the middle or lower 

partitions.  As discussed above, the distinctions among the four regions labeled in Figure 

7.9 follow from the definitions of the 0i -loci (recall, e.g., Table 7.1).  Since we seek 

strictly increasing SFs for both firms, we can identify Region I from the above definitions 

as that portion of the phase space that is most of interest for the multi-settlement SFE 

model.   

 For expository purposes, however, we consider first a variety of trajectories 

having, in general, both positively- and negatively-sloped portions over different price 

ranges.  While we have not observed forward market SF trajectories in the upper partition 

that cross the ∞ -locus, such trajectories can and do cross each of the 0i -loci, as we 

demonstrate in this subsection.  If a trajectory crosses the 10 -locus (but not the 20 -locus) 

at a particular point, for example, the sign of ( )1
f fS p′  changes at the crossing point, 

while the sign of ( )2
f fS p′  does not change.267   

                                                 

 267 These sign changes are due, in turn, to changes in the signs of the numerators and denominators 
of the ratios on the right-hand sides of eqs. (7.40) and (7.41).  In particular, from the definitions of the 
various loci, we have the following sign relationships for any trajectory:  
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 The possibility that SFs can have both positively- and negatively-sloped sections 

is not novel in the SFE literature.  As examples, we may cite two models of spot market 

SF competition for which the equilibrium SFs slope downward, at least for some prices.  

First, Klemperer and Meyer’s (1989, 1254) model generates a continuum of SFs as their 

“Figure 1”—reproduced below as Figure 7.10—depicts.268  In this continuum of SFs (see 

Figure 7.10 below), the sections of the SFs that (1) lie above the ( ), 0f p S =  locus, or 

(2) lie below the ( ),f p S = ∞  locus, are decreasing in price p.  Conversely, the sections 

of the SFs lying between these two loci are increasing in p.  As noted in subsection 1.5.1 

above, a second instance of downward-sloping SFs in the literature is Bolle (1992, 99), 

who finds SFs (in his “Model B”) that are everywhere downward-sloping functions of 

price.   

                                                                                                                                                 

1. If the trajectory crosses the 10 -locus, the numerator ( ) ( )23

f f f fS p S p++ ++Q
®

 on the right-hand 
side of eq. (7.40) changes sign.   

2. If the trajectory crosses the 20 -locus, the numerator ( ) ( )13

f f f fS p S p++ ++Q
®

 on the right-hand 
side of eq. (7.41) changes sign.   

3. For two trajectories on either side of the ∞ -locus (and separated only by this locus), the 

denominators ( ) ( )12

f f f fS p S p++ ++Q
®

 and ( ) ( )21

f f f fS p S p++ ++Q
®

 on the right-hand sides of 
eqs. (7.40) and (7.41) have opposite signs.   

Moreover, within the phase space’s upper partition that we study here, the denominators of the ratios on the 
right-hand sides of eqs. (7.40) and (7.41) are negative and positive, respectively; the signs of the 

numerators of these ratios then determine the signs of the slopes ( )1

f fS p′  and ( )2

f fS p′ .   

268 Assuming that the shock to the demand function in Klemperer and Meyer’s model has finite 
support.   
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p

S

( ), 0f p S =

( ),f p S =∞

 

FIGURE 7.10: KLEMPERER AND MEYER’S (1989, 1254) FIGURE 1 DEPICTING THE 

( ), 0f p S =  AND ( ),f p S = ∞  LOCI (SOLID LINES), AND SUPPLY 

FUNCTIONS (DASHED LINES) SATISFYING THE DIFFERENTIAL EQUATION  

 ( ) ( ) ( ), Sf p S D p
p C S

′≡ +
′−

  

AND HAVING BOTH POSITIVELY- AND NEGATIVELY-SLOPED SECTIONS  

 To provide additional insight into the qualitative behavior of solutions to the ODE 

system for the forward market, the following series of figures depicts three different 

examples of trajectories (for a variety of initial conditions) inhabiting the upper partition.  

We show how these trajectories pass among the various regions in this partition over the 

chosen range of integration, and examine how the path of each trajectory corresponds to 

changes in the slopes of each firm’s SFs.  As with Klemperer and Meyer (1989) and 

Bolle (1992) for the spot market, the examples presented below indicate for the forward 

market that—depending on equilibrium selection and the price domain considered—non-

negative constraints on SF slopes could well be binding in equilibrium.  This suggests, 
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further, that such SF slope constraints could be potentially important considerations in 

market design.   

 Figure 7.11 below portrays an SF trajectory in the price range [ ]100, 2,500fp ∈  

$/MWh.  This trajectory begins in Region IV at $100 MWhfp = , passes through the 10 -

locus separating Regions III and IV at approximately $678 MWhfp = , and ends in 

Region III.  Figure 7.11 is rotated so that the planes constantfp =  are perpendicular to 

the page, to facilitate accurate reading of the price fp  for points along the SF 

trajectory.269  Finally, note that Region I is hidden on the “other side” of this figure, and 

is not labeled.   

                                                 

269 An unfortunate side effect of the perspective of Figure 7.11 is that the 1

fq  and 2

fq  axes are 

collinear in Figure 7.11, although these axes are, of course, perpendicular in 3\ .  To clarify the perhaps 
confusing labeling of these axes, the axes share the lower limit of “–1 x 104” MWh at the bottom of the 
figure.  The 1

fq  axis extends to the right from this point, while the 2

fq axis extends to the left (in each case, 
to an upper limit of “1 x 104” MWh).   
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FIGURE 7.11: AN SF TRAJECTORY BEGINNING IN REGION IV AT $100 MWhfp = , 
PASSING THROUGH THE 10 -LOCUS AT APPROXIMATELY fp  

$678 MWh= , AND ENDING IN REGION III AT $2,500 MWhfp =   

Region IV Region III Region II 
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Figure 7.12 below plots the projections of Figure 7.11’s SF trajectory as the two firms’ 

SFs in a common price-quantity plane.   
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FIGURE 7.12: THE SFS ( )1
f fS p  AND ( )2

f fS p  CORRESPONDING TO THE SF 

TRAJECTORY ( )f fS p  IN FIGURE 7.11  

Note, in particular, that the point at which the trajectory in Figure 7.11 passes through the 

10 -locus coincides with the point in Figure 7.12 at which ( )1
f fS p  bends back through 

the vertical ( ( )1 0f fS p′ =  at $678 MWhfp ≈ ), and becomes downward-sloping.   

 We present another example portraying a trajectory on the “other side” of the 

upper partition.  Figure 7.13 below depicts an SF trajectory in the price range 

( )1 0
at $678 MWh

f f

f

S p
p

 ′ =


≈
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[ ]100, 2,500 $ MWhfp ∈ .  This trajectory begins in Region II at $100 MWhfp = , 

passes through the 20 -locus separating Regions II and III at approximately fp  

$1,117 MWh= , and ends in Region III.  Like Figure 7.11, Figure 7.13 is rotated so that 

the planes constantfp =  are perpendicular to the page, to facilitate accurate reading of 

the price fp .270  Finally, note that Region I is hidden on the other side of this figure, and 

is not labeled.   

 

FIGURE 7.13: AN SF TRAJECTORY BEGINNING IN REGION II AT $100 MWhfp = , 
PASSING THROUGH THE 20 -LOCUS AT APPROXIMATELY fp  

$1,117 MWh= , AND ENDING IN REGION III AT $2,500 MWhfp =   

                                                 

270 Note 269 applies here, as well.   

Region IV 

Region III Region II 
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Figure 7.14 below plots the projections of Figure 7.13’s SF trajectory as the two firms’ 

SFs in a common price-quantity plane.   
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FIGURE 7.14: THE SFS ( )1
f fS p  AND ( )2

f fS p  CORRESPONDING TO THE SF 

TRAJECTORY ( )f fS p  IN FIGURE 7.13  

The point at which the trajectory in Figure 7.13 passes through the 20 -locus coincides 

with the point in Figure 7.14 at which ( )2
f fS p  bends back through the vertical 

( ( )2 0f fS p′ =  at $1,117 MWhfp ≈ ), and becomes downward-sloping.   

 Turning now to this subsection’s final pair of figures, Figure 7.15 below portrays 

an SF trajectory in the price range [ ]500, 2,500 $ MWhfp ∈ .  This trajectory begins in 

( )2 0
at $1,117 MWh

f f

f

S p
p

 ′ =


≈
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Region I at $500 MWhfp = , first passes through the 10 -locus separating Regions I and 

II at $1,830 MWhfp ≈ , next passes through the 20 -locus separating Regions II and III 

at $2,208 MWhfp ≈ , and ends in Region III.   

 

FIGURE 7.15: AN SF TRAJECTORY BEGINNING IN REGION I AT $500 MWhfp = , 
PASSING THROUGH THE 10 -LOCUS AT $1,830 MWhfp ≈ , PASSING 

THROUGH THE 20 -LOCUS AT $2,208 MWhfp ≈ , AND ENDING IN 

REGION III AT $2,500 MWhfp =   

Region I 

Region II 

Region III

Region IV 
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Figure 7.16 below plots the projections of Figure 7.15’s SF trajectory as the two firms’ 

SFs in a common price-quantity plane.   
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FIGURE 7.16: THE SFS ( )1
f fS p  AND ( )2

f fS p  CORRESPONDING TO THE SF 

TRAJECTORY ( )f fS p  IN FIGURE 7.15  

The points at which the trajectory in Figure 7.15 passes through the 10 - and 20 -loci 

coincide with the points in Figure 7.16 at which ( )1
f fS p  and ( )2

f fS p  bend back 

through the vertical ( ( )1 0f fS p′ =  at $1,830 MWhfp ≈  and ( )2 0f fS p′ =  at 

$2,208 MWhfp ≈ , respectively), and become downward-sloping.  Also, each firm’s 

( )2 0

at $2,208 MWh

f f

f

S p

p

′ = 


≈ 

( )1 0

at $1,830 MWh

f f

f

S p

p

′ = 


≈ 
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second-order condition for profit maximization is satisfied over the entire price range of 

the SFs in Figure 7.16.   

 The various “three-dimensional” figures above (i.e., Figure 7.11, Figure 7.13, and 

Figure 7.15, depicting the 0i -loci and the ∞ -locus) are the analogs to Klemperer and 

Meyer’s (1989, 1254) Figure 1 for the forward market in the (asymmetric) multi-

settlement SFE model.  Figure 1 of KM’s paper—redrawn as Figure 7.10 above—depicts 

various SFs solving the differential equation that characterizes (symmetric) spot market 

supply functions in their (single-market) model, along with the “ ( ), 0f p S = ” and 

“ ( ),f p S = ∞ ” loci analogous to the 0i -loci and the ∞ -locus discussed here.  Figure 

7.10 is suggestive of several characteristics of KM’s SFs.  For example—among other 

properties—all SFs pass through the origin (a singular point) with a common slope, and 

any nonsingular point has a unique SF passing through it.  Such properties constitute the 

basis for KM’s characterization of their SFs, proofs of existence, symmetry, and 

uniqueness of SFEs, and various comparative statics results.  In our asymmetric multi-

settlement SFE model, on the other hand, we prove existence and uniqueness of solutions 

(for a given initial condition) by appealing directly to properties of (nonsingular) systems 

of differential equations.  Because we cannot solve the ODE system (7.40)–(7.42) 

explicitly, we are only able in the present work to conduct comparative statics analysis 

numerically (see section 7.6 below), rather than analytically, as KM did.   

 In future work, we may be able to characterize the SF trajectories—such as those 

depicted in the figures of this subsection—more precisely, and exploit their properties to 

prove additional results of greater generality than those documented here.  Although the 

ODE system (7.40)–(7.42) is not analytically tractable, solutions to the system likely 
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possess some properties that have not been explored here.  For example, one conjecture 

based on numerical investigations is that if, as fp  increases, the trajectory enters Region 

III (of the upper partition) in which both SFs are downward-sloping, the trajectory 

remains in this region forever.  Another conjecture is that, for fp  sufficiently large, both 

SFs are concave to the price axis.  While these conjectures are presently unproven, future 

research could extend the catalog of such regularities, make them more precise, and 

possibly prove them analytically.  The result would be a richer analytical characterization 

of the connected set of trajectories ( )f fS p , which might be helpful in sharpening and 

extending the generality of the comparative statics and other results presented in this 

work.   

7.4.4 Price relationships across markets  

We next investigate qualitatively the relationship of forward market and expected spot 

market equilibrium prices for a range of forward market outcomes.  To do so, it will be 

useful to define analytically and graphically an additional construct for the forward 

market.  Namely, denote as the arbitrage plane the set of forward market equilibrium 

points ( ) ( )1 2, ,f f f f fS p S p p 
   such that the forward market price fp  is equal to the 

conditional expectation of the spot market price, ( )E s fp p , given the price fp .  To 

characterize this locus, we set fp  equal to ( )E s fp p  in eq. (7.9) and solve for fp , 

yielding the following equation of a plane in 1 2- -f f fq q p  space—the arbitrage plane, 

defined above:  
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 Figure 7.17 below depicts in 1 2- -f f fq q p  space the arbitrage plane (in gray), an SF 

trajectory (in the upper partition of the phase space), and the ∞ -locus (in black) in a 

neighborhood of the origin.271   

 

FIGURE 7.17: THE ARBITRAGE PLANE (GRAY SURFACE—SEE EQ. (7.50)), AN SF 
TRAJECTORY (SOLID LINE, MARKED WITH “O”), AND THE ∞ -LOCUS 
(BLACK SURFACE) IN A NEIGHBORHOOD OF THE ORIGIN  

                                                 

271 We plot the SF trajectory for [ ]23.95, 300fp ∈  $/MWh and assuming base case parameter 

values baseΘ .  For clarity, we do not plot the two 0i -loci in the above figure.   
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From the definition of the arbitrage plane in eq. (7.50), we may infer the following 

relationships.  For forward market equilibrium points in 1 2- -f f fq q p  space above the 

arbitrage plane, we have that ( )Ef s fp p p> , while for such points below the arbitrage 

plane, we have that ( )Ef s fp p p< .  In the neighborhood of the subset of 

1 2- -f f fq q p  space depicted in Figure 7.17, we see that the SF trajectory is everywhere 

above the ∞ -locus (consistent with the trajectory’s location in the upper partition).  In 

contrast, the arbitrage plane is everywhere below the ∞ -locus, situating it in the lower 

partition.  These observations imply, further, that the SF trajectory in Figure 7.17 lies 

everywhere above the arbitrage plane, so that we conclude that the forward market 

equilibrium points comprising this SF trajectory are characterized by the inequality  

 ( )Ef s fp p p> . (7.51) 

Moreover, inequality (7.51) applies along any SF trajectory lying in the upper partition 

that we may select within the neighborhood of the origin depicted in Figure 7.17.272  If 

inequality (7.51) holds for all fp  along such a trajectory (as it will in a “moderately-

sized” neighborhood of the origin—see note 272), we have further that  

 ( ) ( )E Ef sp p> . (7.52) 

The inequalities (7.51) and (7.52) indicate that a risk-neutral, SF-bidding supplier in the 

multi-settlement SFE model facing a downward-sloping forward market demand 
                                                 

272 At points in the phase space much more distant from the origin (i.e., for forward market 
quantities several orders of magnitude larger), the arbitrage plane may cross one or both nappes of the ∞ -
locus, and hence leave the lower partition of the phase space.  In such a case, the inequality (7.51) may not 
hold at all points along SF trajectories in the upper partition.   
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function273 will not act so as to “equalize the market prices” in either the sense 

( )Ef s fp p p=  or ( ) ( )E Ef sp p= .  We may conclude that in this model, perfect inter-

market price arbitrage is not a necessary implication of profit maximization.  For such 

arbitrage to obtain would require, for example, that we introduce risk-neutral traders 

(with no trading limits) into the model.274   

 Inequalities (7.51) and (7.52) are natural results for our base case trajectory given 

the assumptions of the multi-settlement SFE model.  To see why, recall that in chapter 6, 

we assume that the representative consumer R is risk averse.  Accordingly, this consumer 

R pays a risk premium to the (risk-neutral) suppliers in the forward market, leading to 

forward market prices fp  in excess of conditional expected spot market prices 

( )E s fp p .   

                                                 

273 And abstracting, as in the multi-settlement SFE model, from any risk-neutral traders.   

274 Alternatively, without introducing additional agents, it appears that permitting the 
representative consumer R to become progressively less risk averse tends to equate ( )E s fp p  and fp  

(and tends to make the forward market demand function ( )0,f f fD p ε  approach the horizontal).  That is, 
preliminary numerical simulations for base case parameter values suggest that 

( )
0

lim E 0
R

f s fp p p
λ +→

− =   .  While consistent with intuition, exploring the generality of this numerical 

result is left for future work.   
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7.4.5 Equilibrium in the forward market  

To conclude the qualitative graphical analysis of forward market competition in this 

section, we illustrate in Figure 7.18 below the determination of the forward market 

equilibrium price ( )*
0

f f fp p ε=  via the intersection of forward market aggregate supply 

and demand.   
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FIGURE 7.18: FORWARD MARKET EQUILIBRIUM FOR EXAMPLE SUPPLY FUNCTIONS AND 

MEAN DEMAND SHOCK ( )0 0E 6,008 MWhf fε ε≡ = , YIELDING AN 

EQUILIBRIUM PRICE ( )*
0 $59.42 MWhf f fp p ε≡ =  AND AGGREGATE 

QUANTITY ( ) 5,488 MWhf f f
Agg Aggq S p≡ =   
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Figure 7.18 is analogous to Figure 5.3 for the spot market.  In the figure above, aggregate 

forward market supply ( )f f
AggS p  intersects forward market demand ( )0,f f fD p ε , given 

the mean forward market demand shock ( )0 0Ef fε ε≡  corresponding to baseΘ .  Naturally, 

this intersection defines the equilibrium for the forward market, at which the equilibrium 

price is ( )*
0 $59.42 MWhf f fp p ε≡ =  and the aggregate quantity is ( )f f f

Agg Aggq S p≡  

5,488 MWh= .275   

7.4.6 Equilibrium solution of the differential equation system  

To conclude the discussion of the qualitative properties of system (7.40)–(7.42), we 

investigate the existence of an equilibrium solution to this differential equation system.  

First, we distinguish this new concept of an equilibrium solution of a differential equation 

system from the notion of supply function equilibrium.  Recall that Table 3.1 defined a 

multi-settlement supply function equilibrium as sequence of equilibrium (optimal) SFs 

( ) ( ){ }, ;f f s s
i iS p pΣ i , one for each market.276  We also imposed the restriction that these 

SFs must be strictly increasing in their price arguments.  Now, contrast supply function 

equilibria with the concept of an equilibrium—or steady-state—solution of a differential 

equation (DE) system.  For brevity, we refer to this concept as a DE equilibrium.  Many 

applications of differential equations to dynamic systems use time as the independent 

                                                 

275 We chose the initial quantities for the forward market SFs in Figure 7.18 so that these SFs 
slope upward, and also to ensure reasonable magnitudes for the forward market quantities, given the mean 
forward market demand shock 0

fε .  Section 7.6 presents a systematic procedure for selecting a particular 
pair of forward market SFs from the connected set of SFEs.   

276 Where we later found that ( ) ( ); ; ,s s s s f f

i i i jp p q qΣ ≡ Σi .   
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variable, rather than price, as in the present model.  In time-dependent problems, the use 

of “steady-state” as a synonym for “equilibrium” reflects the temporal nature of the 

concept of DE equilibrium.  Namely, at a DE equilibrium of a time-dependent problem, 

values of dependent variables are fixed for all time t beginning with the initial time.   

 We may generalize this characterization of DE equilibrium for our problem of 

interest—a static problem—in which price is the independent variable.  Namely, a DE 

equilibrium of the system (7.40)–(7.42) for the forward market of the multi-settlement 

SFE model277 would satisfy  

 ( ) 0f fS p+′ =  (7.53) 

for all ), 0 ,f fp p∈ ∞  (assuming upward integration from an initial price , 0fp ).  From 

the third component of the vector equation (7.53), a DE equilibrium must satisfy  

 ( )3 0f fS p′ =  (7.54) 

for all ), 0 ,f fp p∈ ∞ .  Recalling the definition ( )3
f f fS p p≡ , however, eq. (7.42) held 

that ( )3 1f fS p′ =  for all fp .  Equation (7.42) thereby contradicts eq. (7.54) and we 

conclude that the system (7.40)–(7.42) has no DE equilibria.   

 This result is not surprising, since DE equilibria “are not usually associated with 

non-autonomous equations although they can occur” (Jordan and Smith 1999, 6).  Recall 

                                                 

277 We need consider here only the forward market since, in the simplified affine example for the 

spot market, a function ( ); ,s s f f

i i jp q qΣ  such that ( ); , 0s s f f

i i jp q q′Σ =  at all sp  (i.e., a vertical spot 

market SF) exists only in the limit as ic → ∞ .  Thus, we conclude that there is no DE equilibrium in the 
spot market for finite parameter values.   
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that the original form of the system (7.40)–(7.42), eqs. (7.11) and (7.12), was indeed a 

non-autonomous equation, and converting it to an autonomous system via eq. (7.29) does 

not alter the presence (or absence, as is the case here) of DE equilibria.  We examine 

here, in passing, the existence of DE equilibria for the system (7.40)–(7.42) since such 

equilibria and their properties are a common component of the qualitative analysis of 

differential equations.  We emphasize that the nonexistence of DE equilibria for our 

system is inconsequential for our purposes.   

 What is of fundamental interest in the multi-settlement SFE model, naturally, are 

the SF trajectories and their dependence on initial conditions and parameter values.  

These relationships are the subject of comparative statics analysis in section 7.6 below.  

First, however, in the following section, we benchmark the discrete Excel model to 

ensure that it yields reasonable numerical results.   

7.5 Benchmarking the discrete Excel model  

This section describes how we benchmark the discrete Excel model using a representative 

multi-settlement market equilibrium.  The purpose of this benchmarking procedure is to 

assign values to certain parameters of the multi-settlement SFE model that otherwise lack 

a plausible empirical basis for quantification.  This procedure chooses these parameter 

values such that the mean equilibrium prices and quantities computed by the discrete 

Excel model agree, to the extent possible, with corresponding empirically-based 

reference values from the California market.278  In this way, the benchmarking procedure 

                                                 

278 More fundamentally, it is the case that not all parameter values Θ  produce equilibria having 
strictly increasing SFs in a subset of interest of 1 2- -f f fq q p  space.  Therefore, even if our objective does not 
involve replicating certain empirical outcomes, simply requiring that SFs be strictly increasing in a given 
subset of this space places restrictions on the parameter vector Θ .   
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enhances the verisimilitude of solutions to the discrete Excel model in a sense that we 

make more precise below.   

 The benchmarking procedure comprises a lexicographic, two-step hierarchy.  To 

summarize this procedure, the first benchmarking step produces numerically-computed 

expectations of spot market price and quantity that agree with corresponding empirical 

reference values from the California market.  The second benchmarking step fixes these 

spot market expectations from the first step, and similarly computes expectations of 

forward market price and quantity that agree as closely as possible with the 

corresponding empirical reference data from California.  Both benchmarking steps take 

as their basis a version of problem (7.43) from subsection 7.3.2 above.  Each such step 

entails a revision of problem (7.43) in three respects:  

1. First, we convert the parameters in problem (7.43) whose values are to be 

determined to decision variables.  That is, we drop these parameters from the 

parameter vector Θ , yielding a “reduced” parameter vector.  We add these same 

parameters to the problem’s set of decision variables (i.e., along with the 

discretized SFs ( )f f
iS p ), so that they become endogenous.279  Subsections 7.5.1 

and 7.5.2 below discuss the particular parameters to be converted to decision 

variables in each benchmarking step.   

                                                 

279 In each of the optimization problems presented in subsections 7.5.1 and 7.5.2 below (as well as 
in section 7.6’s comparative statics analysis), we used the grid of forward market prices 

0, 250, 500, , 2,750 $ MWhfp = …  to compute the discretized SFs ( )f f

iS p .  That is, the discretized 
SFs each consist of eleven affine segments connecting twelve price-quantity pairs.  While the discrete 
Excel model permits the user to adjust both the (uniform) step size and the range of prices fp  considered, 

the aforementioned grid of prices fp  yielded robust numerical results in each instance.   
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2. We use as the objective function in problem (7.43) the minimization (for each 

market, in turn) of the sum of squared proportional deviations of expected price 

and quantity from the corresponding empirical reference values.  The choice of 

objective function constitutes an equilibrium selection rule for selecting a single 

forward market SF trajectory (assuming a unique solution for problem (7.43)) 

from the phase space of SF trajectories.   

3. As appropriate, we introduce additional constraints into problem (7.43) that we 

call benchmarking constraints.  These additional constraints equate certain 

expected equilibrium prices and quantities computed via the discrete Excel model 

with corresponding empirical reference values.   

In the optimization problems that follow, ( )E sp  denotes the expected spot market price 

and ( )E s
Aggq  the expected aggregate (equilibrium) spot market quantity.  These 

expectations account for both forward and spot market uncertainty; that is, we compute 

these expectations with respect to the stochastic parameters Rη  and Rν  (see section 6.5).  

We use the discrete Excel model to compute these expectations via discrete 

approximation of the joint cumulative distribution function of these parameters.   

 Subsections 7.5.1 and 7.5.2 below outline these two benchmarking steps in 

greater detail.   

7.5.1 Benchmarking step 1 (spot market)  

Recasting problem (7.43) in accordance with the discussion of paragraphs 1–3 above, we 

obtain—as step 1 of the benchmarking procedure—the following optimization problem:  
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 (7.55) 

Problem (7.55) converts the parameters Rη , 2

Rη
σ , Rν , and 2

Rν
σ —the means and variances 

of the stochastic parameters Rη  and Rν —in Θ  to decision variables.280  The objective 

function of this problem is the minimization of the sum of squared proportional 

deviations of the expected spot market price ( )E sp  and expected aggregate spot market 

quantity ( )E s
Aggq  from the corresponding empirical reference values ,s mean

empirp  and 

,s mean
empirq .281  The notation ( )(0) 2 2\ , , ,

R RR Rη νη σ ν σΘ  represents the reduced parameter vector 

for problem (7.55).282  The values chosen for the elements of this vector are, where 

possible, supported by empirical data.283   

                                                 

280 We make this choice of additional decision variables as the result of experimenting with 
various formulations of the benchmarking procedure.  The specification of problem (7.55) yields a feasible 
solution to this problem and, ultimately, reasonable base case values of all parameters, as discussed in 
subsection 7.5.3 below.   

281 See Appendix F.1.1 for details on these empirical values.   

282 That is, Θ  with parameters Rη , 2

R
ησ , Rν , and 2

R
νσ  dropped.   

283 See Appendix F for details.   
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 Problem (7.55)284 yields optimal parameter values ( )(1)
Rη , ( )(1)

2

Rη
σ , ( )(1)

Rν , and 

( )(1)
2

Rν
σ , which we collect along with other (fixed) parameters from 

( )(0) 2 2\ , , ,
R RR Rη νη σ ν σΘ  in an intermediate parameter vector (1)Θ .285  This problem also 

produces optimal forward market SFs ( ) (1)f f
iS p  for firms 1, 2i = .286  Finally, the 

optimized objective function value of problem (7.55) ( 1.14e-21≈ ) is approximately zero, 

so that for practical purposes, we may consider the equalities ( ) ,E s s mean
empirp p=  and 

( ) ,E s s mean
Agg empirq q=  to hold.  This fact will be useful in Step 2 of the benchmarking 

procedure below.   

7.5.2 Benchmarking step 2 (forward market)  

Again recasting the general form of problem (7.43), we obtain—as step 2 of the 

benchmarking procedure—the following optimization problem:  

                                                 

284 We solve problem (7.55) without using automatic scaling, one of the Excel Solver’s “Solver 
Options” (Microsoft Corporation 2001) (in Excel, see “Tools | Solver | Options”).  Scaling may be useful in 
obtaining a feasible solution, particularly when the underlying matrices used by the Excel Solver to 
represent the optimization problem are poorly conditioned.   

285 The superscript “ (1) ” denotes optimal values for benchmarking step 1 (problem (7.55)).   

286 Optimal, of course, only for problem (7.55).   
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 (7.56) 

Problem (7.56) is related to problem (7.55) in four important ways.  First, (7.56) adds two 

additional decision variables to those used in (7.55), namely, the spot market demand 

elasticity s
deme , and the representative consumer R’s CARA parameter Rλ .  We introduce 

these decision variables in problem (7.56) both to allow for maximum flexibility in 

improving (7.56)’s objective function, and because these parameters have a rather 

tenuous empirical basis, as Appendix F discusses.287  Second, we use values in (1)Θ  and 

( ) (1)f f
iS p  from problem (7.55) as initial values for decision variables and for the 

parameter values ( )(1) 2 2\ , , , , ,
R R

s
R R dem Reη νη σ ν σ λΘ  in problem (7.56).  Third, problem 

(7.56)’s objective function minimizes the sum of squared proportional deviations of 

expected price ( )E fp  and quantity ( )E f
Aggq  from the corresponding empirical reference 

values ,f mean
empirp  and ,f mean

empirq  for the forward market (rather than the spot market, as was the 

case in problem (7.55)).288  Fourth and finally, we introduce the benchmarking 

                                                 

287 Note that the only parameters in (1)Θ  left fixed in problem (7.56) are the slopes ic  and 

intercepts 0 ic  of the firms’ marginal cost functions.   

288 See Appendix F.2.1 for details on these empirical values.   
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constraints ( ) ,E s s mean
empirp p=  and ( ) ,E s s mean

Agg empirq q=  in problem (7.56).  Recalling that these 

equalities held, effectively, in the solution to benchmarking step 1 (problem (7.55)), we 

may consider (7.56) a refinement of (7.55), that is, a refinement in the “direction” of a 

better fit to the empirical outcome in the forward market.   

 At an optimal solution to problem (7.56)289—benchmarking step 2—we have the 

optimal parameter values ( )(2)
Rη , ( )(2)

2

Rη
σ , ( )(2)

Rν , ( )(2)
2

Rν
σ , ( )(2)s

deme , and ( )(2)
Rλ , 

which we collect along with other (fixed) parameters from 

( )(1) 2 2\ , , , , ,
R R

s
R R dem Reη νη σ ν σ λΘ  in (another) intermediate parameter vector (2)Θ .  

Problem (7.56) also yields optimal forward market SFs ( ) (2)f f
iS p  for firms 1, 2i = .   

7.5.3 Discussion  

The results of the benchmarking procedure outlined in this section include a vector (2)Θ  

of parameter values that we use below as base case parameter values; that is, we set  

 (2)baseΘ =Θ . (7.57) 

Equation (7.46) above gives values for the elements of the resulting vector baseΘ , values 

which are intuitively reasonable and consistent with a priori expectations.  In addition, 

the benchmarking procedure yields a corresponding set of (discretized) forward market 

SFs ( ) (2)f f
iS p  for use as initial conditions in the comparative statics analysis of section 

7.6.  Moreover, this procedure also guarantees that the spot market benchmarking 

                                                 

289 We solve problem (7.55) using automatic scaling in the Excel Solver (see note 284).   
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constraints ( ) ,E s s mean
empirp p=  and ( ) ,E s s mean

Agg empirq q=  from problem (7.56) still hold, 

essentially, in the base case problem analyzed in subsection 7.6.1 below.290  In this sense, 

the benchmarking procedure enhances the verisimilitude of solutions to the discrete Excel 

model.   

 As noted at the outset of section 7.5, we may view the benchmarking procedure 

detailed in the foregoing subsections as a lexicographic approach to benchmarking the 

model.  Under this approach, we first ensure that the spot market benchmarking 

constraints hold with equality.  Then, for the forward market—while enforcing these spot 

market constraints—we seek the best possible agreement between the model and stylized 

reality.   

7.6 Comparative statics analysis  

This section describes the comparative statics of a discrete approximation to the ODE 

system (7.40)–(7.42) in which we investigate, in effect, the simultaneous perturbation of 

parameters and initial conditions for this system.  This analysis entails, for each firm, a 

comparison of a “base case” SF (computed for base case parameter values) with a variety 

of “test case” SFs, each corresponding to a certain parameter perturbation.   

 We may decompose comparative statics analysis of the multi-settlement SFE 

model into several steps:  

                                                 

290 That is, these equalities hold to within the convergence criterion chosen in the Excel Solver.   
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1. Choose a range of prices ,f fp p  
�

�  (and a step size fp∆ ) over which to solve a 

version of problem (7.43), a difference equation approximation to the original 

ODE system (7.40)–(7.42).291   

2. Fix two parameter vectors, a base case vector and a perturbed test case vector.   

3. Choose an equilibrium selection rule, operationalized in problem (7.43) via the 

choice of objective function, for selecting a single forward market SF trajectory 

from the phase space of SF trajectories that solve this problem.292   

4. Solve problem (7.43) twice using the chosen objective function, once for each 

parameter vector from step 2.  The SF selected for each firm in this problem’s 

solution will, in general, differ across the base case and test case.  This implies, 

further, that each firm’s initial quantity will also typically differ across the two 

cases.   

We may then compare each firm’s SF for the base case and the test case.  In general, the 

direction in which a firm’s SF is perturbed will not be uniform across all prices 

,f f fp p p ∈  
�

� .  That is, we observe not simply translations of the SFs, but also rotations 

and deformations of these functions, leading—after the perturbation—to higher quantities 

                                                 

291 For consistency, we choose the same grid of prices fp  (see note 279) as was used for section 

7.5’s benchmarking procedure to discretize the SFs ( )f f

iS p .   

292 Recall that problem (7.43)’s upper-level constraint “Subgame-perfect Nash equilibrium in s

iΣ  

and f

iS ” imposes the assumptions of the simplified affine example to solve the spot market problem.  We 
require no equilibrium selection procedure for the spot market under these assumptions since this affine 
equilibrium is unique.   
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at some prices, and lower quantities at other prices.293  The primary focus of this section’s 

comparative statics analysis will be to document and explain the observed changes in 

firms’ quantities under various perturbations to the system.  Where helpful in developing 

intuition, we also discuss the effects on the SFs’ slopes.294   

 The approach to comparative statics analysis outlined above incorporates both an 

equilibrium selection rule and a parameter perturbation in the base case and test case 

problems.  This strategy combines two analytic techniques for differential equations that 

are usually treated separately in the literature: (1) stability analysis, which examines the 

effects of perturbation of initial conditions, and (2) structural stability analysis, which 

examines the effects of perturbation of parameters.  Finally, since we cannot solve the 

ODE system (7.40)–(7.42) analytically to obtain an explicit expression for the trajectory 

( )f fS p , we must conduct the comparative statics analysis numerically rather than 

analytically.  Absent additional analytical results,295 moreover, the comparative statics 

analysis is valid only locally, that is, for a particular base case parameter vector baseΘ .   

 The outline of this section is as follows.  We use the discrete Excel model to 

compute the forward market SFs for the base case parameter vector in subsection 7.6.1, 

and then for various perturbed parameter vectors (“test cases”) in subsection 7.6.2.  

                                                 

293 Subject, of course, to the constraints in problem (7.43) including, in particular, that both firms’ 
SFs in both the base and test cases have non-negative slopes.   

294 In general, there exist comparative statics effects on the SFs’ higher-order derivatives as well 
(curvatures, etc.), though it is naturally more difficult to find simple intuitive explanations underlying these 
more subtle effects.   

295 The qualitative analysis of subsection 7.4.3 concludes with some conjectures concerning more 
general properties of trajectories ( )f fS p .  Further developing such conjectures, for example, may lead to 
more generally applicable comparative statics results.   
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Subsection 7.6.3 concludes, providing intuitive interpretations of the observed SF 

perturbations.   

7.6.1 Computation of forward market SFs: Base case problem  

We again reformulate problem (7.43) to obtain the following optimization problem (the 

“base case problem”) for the comparative statics analysis:  
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 (7.58) 

Comparing problem (7.58) with problem (7.56), we note four important distinctions.  

First, we drop all parameters from (7.58)’s list of decision variables, retaining as decision 

variables only the discretized forward market SFs ( )f f
iS p , 1, 2i = .  Second, problem 

(7.58)’s objective function minimizes the sum of squared proportional deviations of 

expected price and quantity from the corresponding empirical reference values for the 

spot market.  Third, because of problem (7.58)’s revised objective function, we drop the 

constraints ( ) ,E s s mean
empirp p=  and ( ) ,E s s mean

Agg empirq q=  used in (7.56).  In addition, problem 

(7.58) fixes the base case parameter vector as (2)baseΘ =Θ  (recalling eq. (7.57)) from 

problem (7.56).  Fourth and finally, we introduce the constraints 0s
iq ≥  (for all states of 

the world) to preclude negative spot market quantities for suppliers from arising in the 

model.  While the constraints 0s
iq ≥  do not bind in the optimal solution to the base case 

problem (7.58), we cannot, ex ante, rule out the possibility that they will bind in one or 
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more of the test cases considered below.  For consistency, we include these (non-binding) 

constraints here in the base case problem.296   

 The fact that 0s
iq ≥  does not bind in the base case problem reflects the positive 

forward market quantities f
iq  that result, in equilibrium, from the base case SFs ( )f f

iS p  

(see Figure 7.19 below) selected via problem (7.58).  Recalling the geometry of the spot 

market depicted in Figure 5.3, such quantities 0f
iq >  translate firms’ spot market SFs 

(and hence the aggregate spot market SF) to the right, increasing the likelihood that spot 

market quantities s
iq  are positive in equilibrium.   

 Note that because the constraints ( ) ,E s s mean
empirp p=  and ( ) ,E s s mean

Agg empirq q=  were 

satisfied in (7.56), problem (7.58)’s objective function attains a minimum of essentially 

zero (given Excel’s convergence criterion).  As a consequence, problems (7.56) and 

(7.58) have the same optimal solution.297  For the forward market, in contrast, we find the 

                                                 

296 Recall from subsection 3.1.5 that we defined each firm i’s spot market SF ( ); ,s s f f

i i jp q qΣ , for 

simplicity, as having a range of \ , that is, 3:s

iΣ →\ \ .  That subsection’s construction of this SF 

( ); ,s s s f f

i i i jq p q q= Σ  relied on evaluating firm i’s marginal cost function ( )s

i iC q′  at each equilibrium 

quantity s

iq  resulting from ( ); ,s s f f

i i jp q qΣ .  We defined the function ( )s

i iC q′  only for 0s

iq ≥  (see 

subsection 3.1.8), however, so optimality of the function ( ); ,s s f f

i i jp q qΣ  is not assured if 

( ); , 0s s f f s

i i j ip q q qΣ = < .  Thus, constraining s

iq  to be non-negative in problem (7.58) (and in problem 

(7.61) below) ensures the optimality of the spot market quantities.  The constraints 0s

iq ≥  imply that the 
duopoly suppliers are precluded from being net demanders in the spot market in this chapter’s numerical 
examples.    
 Relaxing the constraints 0s

iq ≥  is possible, in principle, at the cost of introducing some additional 
structure into the model.  Namely, absent these constraints, a supplier could become a net demander, and 
vice versa.  Making such a scenario operational computationally would entail, for example, specifying a 
utility function for consumption on the part of suppliers, and conversely, specifying an electricity 
production technology for consumers.   

297 We solve problem (7.58) without using automatic scaling in the Excel Solver (see note 284).   
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following discrepancies between expected forward market price and quantity from the 

base case problem (7.58), on the one hand, and the corresponding forward market 

empirical reference values, on the other:  

 ( ) ,E 912.95 26.60 $886.35 MWhf f mean
empirp p− = − =  (7.59) 

 ( ) ,E 4,983 4,033 950 MWhf f mean
Agg empirq q− = − = . (7.60) 

The agreement between ( )E fp  and ,f mean
empirp  is poor, but that between ( )E f

Aggq  and 

,f mean
empirq  is reasonably close in relative terms: these quantities differ by only about 24%.  

We may view the differences noted in eqs. (7.59) and (7.60) above as a measure of the 

deviation of the multi-settlement SFE model from the actual market.   
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 Figure 7.19 below plots the discretized forward market SFs solving problem 

(7.58), the comparative statics base case.   

Base Case forward market SFs for firms 1 and 2
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FIGURE 7.19: BASE CASE FORWARD MARKET SUPPLY FUNCTIONS FOR COMPARATIVE 
STATICS ANALYSIS  

The SFs depicted in Figure 7.19 for each firm are everywhere strictly increasing298 and 

moreover, yield positive forward market quantities over the range of prices fp  depicted 

there.  That is, both suppliers take short forward market positions 0f
iq >  in the base 

                                                 

298 Consistent with the constraint—implicit in problem (7.58)—that ( )f f

iS p  be strictly 
increasing.  As Figure 7.19 suggests, this constraint is binding for each firm at the highest price levels.   
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case.299  The strictly increasing SFs in Figure 7.19 correspond to an SF trajectory that lies 

entirely in Region I of the phase space’s upper partition (see, e.g., Figure 7.15 for 

$1,830 MWhfp < ).  Finally, consistent with intuition, Figure 7.19 shows that the low-

cost firm, firm 1, is more aggressive in the forward market, bidding a larger forward 

market quantity at all prices fp .   

7.6.2 Computation of forward market SFs: Test case problems  

Let θ  represent an arbitrary element of Θ .  We define the test case for the parameter θ  

as a solution of the multi-settlement SFE model (as approximated by the discrete Excel 

model) in which the parameter θ —and only that element—is perturbed from its value in 

the base case vector baseΘ  (recall eq. (7.46)).  We denote the resulting test case vector as 

the parameter vector test
θΘ  for the perturbation of the parameter θ .  The comparative 

statics analysis described below consists of perturbing each parameter θ  in Θ  from its 

value in baseΘ  with a multiplicative shock of 1.001.300  We did so one parameter at a time 

to obtain ten different test vectors test
θΘ .   

 The test case problem for parameter θ  again relies on an optimization problem 

having the general form of problem (7.43).  Beginning with problem (7.58), we replace 

baseΘ  with test
θΘ  to obtain a family of test case problems, one for each parameter θ :  

                                                 

299 Allaz’s (1992, 299ff.) observation is apropos, namely, that whether suppliers are short or long 
in the forward market is sensitive, in particular, to the type of conjectural variation as well as suppliers’ 
attitudes toward risk.   

300 That is, the parameter θ  changes by 0.1% between the vectors baseΘ  and test

θΘ .  Through 
experimentation, we find that this small multiplicative shock is large enough to avoid spurious numerical 
results, but small enough to interpret the change in the parameter as a marginal change.  See Appendix E.4 
for further details.   
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The only distinction between the base case problem (7.58) and the test case problem 

(7.61) is the perturbation of the parameter θ , that is, the use of baseΘ  versus test
θΘ .   

 Note that while the two spot market benchmarking constraints ( ) ,E s s mean
empirp p=  

and ( ) ,E s s mean
Agg empirq q=  happen to hold in the base case problem (7.58), these constraints 

are not explicitly imposed, either in the base case problem (7.58) or the test case problem 

(7.61).  In the solutions to the various test cases for arbitrary parameter perturbations, 

these constraints will not necessarily hold.  For sufficiently small parameter 

perturbations, however, we would expect the objective function in the problem (7.61) to 

be close to zero; this is indeed the case.   

7.6.3 Results and interpretation  

Table 7.2 below reports the effects of perturbing each of the ten comparative statics 

parameters on firms’ forward market quantities, that is, on the SFs ( )1
f fS p  and ( )2

f fS p  

computed from problem (7.61).301  Appendix E.4 reports the numerical results for the 

discretized SFs ( )1
f fS p  and ( )2

f fS p  in the base case and test cases.  These results form 

the basis of the qualitative effects reported in Table 7.2.  In the third and fourth columns 

                                                 

301 We solve problem (7.61) without using automatic scaling in the Excel Solver (see note 284).   
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of the table, we use the symbols “+” and “–” to denote an increase and a decrease, 

respectively, in a firm’s quantity attributable to the perturbation in question.  Except in 

two cases, the direction that the SFs shift in response to a perturbation is monotone, that 

is, uniform across prices fp  in the chosen range of integration.  The two exceptional 

cases in which the perturbation of one or both SFs is not monotone are (1) the change in 

( )1 1
f f fq S p=  due to perturbation of 01c , and (2) the change in ( )2 2

f f fq S p=  due to 

perturbation of Rν .  The qualitative effects in both of these cases are an increase in the 

indicated firm’s quantity at higher prices and a decrease at lower prices, which we 

indicate in Table 7.2 with the symbol “± .”   

 In contrast, in each case examined, the amount that the SFs shift in response to 

parameter perturbations does depend on price, as is evident from the quantities in the 

columns of Table E.1 labeled “∆ ” (see Appendix E.4).  In general, therefore, these 

parameter variations change the slopes as well as higher derivatives of the SFs.  The 

present discussion of comparative statics effects largely abstracts, however, from such 

higher-order changes in the SFs, focusing instead on the changes in quantities 

summarized in Table 7.2 below.   
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TABLE 7.2: COMPARATIVE STATICS ANALYSIS: EFFECTS OF PARAMETER 
PERTURBATIONS ON FIRMS’ QUANTITIES SUPPLIED IN THE FORWARD 

MARKET, ( )1 1
f f fq S p=  AND ( )2 2

f f fq S p=   

Parameter 
θ a Descriptionb 

Effect on 
( )1 1

f f fq S p= c 
Effect on 

( )2 2
f f fq S p= c

01c  Price-axis intercept of firm 1’s 
marginal cost function ±  + 

02c  Price-axis intercept of firm 2’s 
marginal cost function + + 

1c  Slope of firm 1’s marginal cost 
function – – 

2c  Slope of firm 2’s marginal cost 
function – – 

s
deme  Spot market demand elasticity + + 

Rη  Mean of  
representative consumer R’s signal Rη

+ + 

2
Rη

σ  Variance of  
representative consumer R’s signal Rη

+ + 

Rν  Mean of  
spot market noise parameter Rν  + ±  

2
Rν

σ  Variance of  
spot market noise parameter Rν  – – 

Rλ  
Representative consumer R’s  

parameter of constant absolute risk 
aversion (CARA) 

– – 

Notes:  
 a See eq. (7.46) for the base case values baseΘ  of each parameter θ .   
 b Recall from eq. (7.46) that firm 1 is a low-cost firm and firm 2 a high-cost firm.  
 c The symbols “+” and “–” denote an increase and a decrease, respectively, in a firm’s quantity (at 
all prices fp ) attributable to the perturbation under study.  The symbol “ ± ” denotes an increase in the 

firm’s quantity at higher prices fp  and a decrease in this quantity at lower prices.   
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 In the bulleted paragraphs that follow, we provide intuition underlying the 

comparative statics effects documented in Table 7.2 above.302  This discussion relies 

upon several properties of the multi-settlement SFE model and its solution.  Among these 

properties are the elasticities of supply functions and demand functions in each market, 

the asymmetry of the two firms, endogeneity of forward market demand, and the risk 

preferences of the market participants.  We appeal repeatedly to these features of the 

model in the following discussion.   

•  An increase in firm 1’s marginal cost function intercept 01c  has a price-dependent 

effect on ( )1
f fS p .  Namely, ( )1

f fS p  rotates clockwise, implying an increase in 

1
fq  at higher prices fp , and a decrease in 1

fq  at lower prices.  The effect on 

( )2
f fS p , in contrast, is monotone, shifting this forward market SF to the right.   

Consider first firm 1.  We begin by accounting for the rightward shift in ( )1
f fS p  

at higher (indeed, most) values of fp , and then consider why the direction of this 

shift may be reversed for sufficiently low fp .  From the geometry of the spot 

market examined in chapter 5, an increase in 01c  will shift 1
sΣ  upward, leading to 

higher equilibrium prices sp  and lower quantities 1
sq  for every realization of sε .  

These changes due to increased 01c  imply higher point elasticities of supply, of 

demand, and hence of residual demand.  As a consequence, firm 1 can increase its 

                                                 

302 Table E.1 of Appendix E.4 also includes numerical comparative statics results for the effects of 
parameter variations—namely, for the parameters ic  and sγ —on SF slopes s

iβ .  These comparative statics 
effects are among results reported in section 5.3 above for the spot market.   
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spot market quantity 1
sq  with proportionally little penalty in terms of lower sp .  

Under these circumstances, it tends to be profitable for firm 1 to increase its spot 

market quantity.  One means by which it may do so is to increase its forward 

market quantity 1
fq , since 1

fq  shifts 1
sΣ  to the right, in equilibrium.  Firm 1 

accomplishes this increase—at least for higher values of fp —by shifting 

( )1
f fS p  to the right.   

 Next, we examine why the direction of firm 1’s incentive as sketched 

above might be reversed for sufficiently low fp , causing instead a leftward shift 

in ( )1
f fS p  at such prices (and leading, in effect, to the clockwise rotation of 

( )1
f fS p ).  The increase in 01c  implies a uniform increase in firm 1’s marginal 

cost, making it a less aggressive competitor, manifested in part by the 

aforementioned upward shift in 1
sΣ .  If, in addition, forward market demand is 

weak, then the equilibrium forward market price fp  will be low.  This implies, in 

turn, that ( )E sp  is also low.  Under these circumstances, returns to firm 1 from 

decreasing 1
fq  to support fp  could outweigh the prospects for increased expected 

spot market profits described in the foregoing paragraph.  Accordingly, at 

sufficiently low values of fp , firm 1 shifts its forward market SF to the left.303  

The net effect is the clockwise rotation of ( )1
f fS p .   

                                                 

303 Specifically, from the “ 01c ” scenario in Table E.1 of Appendix E.4, this is the case for 

$250 MWhfp ≤ .   
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 Consider now the reaction of firm 2 to the increase in 01c .  Firm 2 does not 

change its spot market SF 2
sΣ  directly in response to firm 1’s cost increase.304  

The upward shift in 1
sΣ , however, shifts firm 2’s spot market residual demand 

function 2
sRD  upward, as well, increasing for each sε  the equilibrium price sp  

that firm 2 faces.  In response, it is profitable for firm 2 to increase its equilibrium 

quantity 2
sq .  Firm 2 can do this (analogously to the argument above for firm 1) 

by increasing 2
fq .  The firm does so, in turn, by shifting its forward market SF 

( )2
f fS p  to the right.   

 Now compare the relative responses of the two firms to the increase in 01c .  

Note from Table E.1 in Appendix E.4 that firm 1 increases its forward market 

quantity by a lesser amount at each price than does firm 2, so that the overall 

effect of increasing 01c  is for firm 1 to cede some market share to firm 2 in both 

markets.  Finally, we consider why increased 01c  might cause firm 1 to decrease 

( )1
f fS p  at low fp , while firm 2’s forward market SF ( )2

f fS p , in contrast, 

increases over the entire range of fp  considered here.  One conjecture arises, 

naturally, from the asymmetry in firms’ marginal cost functions.  Since firm 2 is 

the high cost firm, we have that 2
sΣ  is steeper than 1

sΣ .  This differential in the 

slopes of the spot market SFs means that the slopes of firms’ spot market residual 

                                                 

304 Though 2

sΣ  does shift to the right with the increase in 2

fq  that we describe below, in 
accordance with the analysis of chapter 5.   
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demand functions s
iRD  have the opposite relationship.  That is, 1

sRD  is steeper 

than 2
sRD , and thus the magnitude of firm 2’s residual demand elasticity tends to 

be greater than that for firm 1.  The relatively inelastic function 1
sRD  implies that 

firm 1 is more likely than firm 2 to profit from decreasing its spot market 

quantity, thereby driving up the equilibrium price sp .  In some states of the 

world—namely, at low fp , as argued above, where forward market marginal 

revenues are relatively low—it is profitable for firm 1 to do just this by decreasing 

( )1 1
f f fq S p= , thus shifting 1

sΣ  to the left.   

•  An increase in firm 2’s marginal cost function intercept 02c  shifts both firms’ 

forward market SFs to the right.   

For each firm, the argument here is analogous to that for firm 2 in the above 

discussion regarding the effects of increased 01c .  Other things equal, the increase 

in 02c  increases sp .  Both firms have an incentive to profit from increased spot 

market prices by increasing equilibrium quantities s
iq .  Each firm can do this by 

increasing its forward market quantity f
iq .  The firms do so, in turn, by shifting 

their forward market SFs ( )f f
iS p  to the right.   

 Similar to the argument for 01c  above, Table E.1 in Appendix E.4 

indicates that firm 2 increases its forward market quantity by a lesser amount at 

each price than does firm 1.  The overall effect of increasing 02c , therefore, is for 

firm 2 to cede some market share to firm 1 in both markets.   
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•  An increase in firm 1’s marginal cost function slope 1c  shifts both firms’ forward 

market SFs to the left.   

The effects of the increase in 1c  include decreases in both 1
sβ  and 2

sβ , that is, 

steeper spot market SFs s
iΣ .  Steeper SFs s

iΣ —in effect, a counter-clockwise 

rotation of these functions s
iΣ —are less elastic, and lead also to less elastic spot 

market residual demand functions.  Such low elasticities in the spot market tend to 

make increases in the expected spot market price ( )E sp  profitable.305  In this 

scenario, less elastic SFs s
iΣ  imply that it would be profitable for firms to 

decrease their forward market quantities via a leftward shift in ( )f f
iS p .  This is 

because even only a small decrease in f
iq  will drive ( )E sp  markedly higher, 

with little change in s
iq  and relatively little sacrifice in forward market revenue.   

•  An increase in firm 2’s marginal cost function slope 2c  shifts both firms’ forward 

market SFs to the left.   

The effects of the increase in 2c  are analogous to those for increased 1c , discussed 

above.  That is, less elastic SFs s
iΣ  imply that it would be profitable for firms to 

decrease their forward market quantities via a leftward shift in ( )f f
iS p .   

                                                 

305 Note that with the rotation of the functions s

iΣ , the size of the price increase for a given 

increment in 1c  increases with the initial value of ( )E sp .   
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•  An increase in the magnitude of the spot market demand elasticity s
deme  shifts both 

firms’ forward market SFs to the right.   

As the spot market demand elasticity s
deme  increases in magnitude, both firms will 

face a lower penalty in the expected spot market price ( )E sp  from expansion of 

their respective spot market outputs.  This change increases the elasticity of each 

firm’s spot market residual demand function, implying that greater expected spot 

market quantities are now profitable.  Given that, for each firm, f
iq  shifts s

iΣ  to 

the right, it is optimal for firms to increase f
iq  in response to the increase in s

deme .  

This implies that ( )f f
iS p  shifts to the right.   

•  An increase in the mean Rη  of the representative consumer R’s signal shifts both 

firms’ forward market SFs to the right.   

The parameter Rη  does not appear in the firms’ forward market equilibrium 

optimality conditions, eqs. (7.11) and (7.12).  As a consequence, a shock to Rη  

while holding constant the initial conditions for the SFs ( )f f
iS p  leaves these SFs 

unaffected.306  Note, however, that an increase in Rη  does affect the unconditional 

expectations of spot market price ( )E sp  and quantity ( )E s
Aggq  in the objective 

functions of the base case problem (7.58) and the test case problem (7.61).  In this 

way, the equilibrium selection algorithm in these problems depends on Rη ’s 

                                                 

306 This must be the case given that we derived the optimality conditions for the forward market 
problem conditional on fp  and Rη .  Conditioning on the realization Rη  renders the solution invariant to 

changes in Rη ’s distribution.   
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distribution; in particular, the equilibrium selected by this problem varies with 

Rη .  The important general result here is that—apart from equilibrium selection 

considerations—the forward market SFs are independent of the distribution of the 

signal Rη .   

 To understand the intuition behind the rightward shift in the SFs observed 

for an increase in Rη , begin by recalling the simple additive relationship 

s
R Rε η ν= +  among the means of the stochastic parameters (see eq. (6.55)).  From 

this equality, an increase in Rη  (holding constant, for the moment, the forward 

and spot market SFs) increases both the expected spot market price ( )E sp  and 

the expected aggregate spot market quantity ( )E s
Aggq .  Due, however, to the 

inelastic spot market demand function ( ),s s sD p ε , the proportional change307 in 

( )E sp  is much greater than that in ( )E s
Aggq , which remains approximately 

constant (and can hence be neglected in this discussion).  If we now solve the test 

case problem (7.61) given the increase in Rη , the SFs ( )f f
iS p  change so as to 

minimize the objective function of this problem.  To minimize this function, 

( )E sp  must decrease to offset the increase in ( )E sp  which would otherwise 

occur, as noted above.  To effect this decrease in ( )E sp , forward market 

quantities must increase, corresponding to rightward shifts in the SFs ( )f f
iS p .   

                                                 

307 It is the proportional change in ( )E sp  or ( )E s

Aggq  that is relevant for the objective functions 
of problems (7.58) and (7.61).   
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•  An increase in the variance 2
Rη

σ  of the representative consumer R’s signal shifts 

both firms’ forward market SFs to the right.   

The intuition in this case is very similar to that in the preceding case investigating 

the effects of an increase in Rη .  That is, like Rη , the parameter 2
Rη

σ  does not 

appear in the firms’ forward market equilibrium optimality conditions, eqs. (7.11) 

and (7.12).  As a result, a shock to 2
Rη

σ  while holding constant the initial 

conditions for the SFs ( )f f
iS p  leaves these SFs unaffected.  As with Rη , the 

increase in 2
Rη

σ  does affect the unconditional expectations of spot market price 

( )E sp  and quantity ( )E s
Aggq  in the objective functions of the base case problem 

(7.58) and the test case problem (7.61), so that the equilibrium selected by these 

problems varies with 2
Rη

σ .   

 We may show numerically that an increase in 2
Rη

σ  (holding constant, at 

first, the forward and spot market SFs) increases the unconditional expected spot 

market price ( )E sp  and decreases the unconditional expected spot market 

quantity ( )E s
Aggq .  Due to the inelastic spot market demand function ( ),s s sD p ε , 

the proportional change in ( )E sp  is again much greater than that in ( )E s
Aggq , 

which remains approximately constant (and can again be neglected in this 

discussion).  Solving the test case problem (7.61) given the increase in 2
Rη

σ , the 

SFs ( )f f
iS p  change so as to minimize the objective function of this problem.  To 

minimize this function, ( )E sp  must decrease to offset the increase in ( )E sp  
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which would otherwise occur, as noted above.  To effect this decrease in ( )E sp , 

forward market quantities must increase, corresponding to rightward shifts in the 

SFs ( )f f
iS p .   

•  An increase in the mean Rν  of the spot market noise parameter has a monotone 

effect on ( )1
f fS p , shifting this forward market SF to the right.  The effect on 

( )2
f fS p , in contrast, is price-dependent.  Namely, ( )2

f fS p  rotates clockwise, 

implying an increase in 2
fq  at higher prices fp , and a decrease in 2

fq  at lower 

prices.   

Below, we first explain the effect—predominant for both firms, at most prices—

of increasing ( )f f f
i iq S p= , and then address the question of firm 2’s distinct 

forward market behavior at low fp .   

 Since s
R Rε η ν= + , the increase in Rν  increases expected spot market 

demand, shifting the function ( )( )E ,s s sD p ε  to the right.  Moreover, we may 

show numerically that the increase in Rν  shifts the expected forward market 

demand function ( )( )0E ,f f fD p ε  to the left at higher (and indeed, most) prices 

fp , and to the right at sufficiently low fp  (i.e., at $250 MWhfp ≤ ), effectively 

rotating ( )( )0E ,f f fD p ε  counterclockwise.  These changes in ( )( )0E ,f f fD p ε  

make this function more elastic and decrease the expected forward market price 

( )E fp .  Consistent with these changes, the ( )f f
iS p  also become more elastic.  
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Moreover, for any realization of 0
fε , the functions ( )0,f f fD p ε  and ( )f f

iS p  are 

negatively related (ceteris paribus), and thus the ( )f f
iS p  tend to shift to the right, 

in opposition to the shift in ( )0,f f fD p ε .  The aforementioned shifts in ( )f f
iS p  

and ( )0,f f fD p ε  imply that the forward market equilibrium moves toward the 

elastic range of both of these functions (i.e., to lower values of the equilibrium 

forward market price fp ).  As a consequence, suppliers may increase their 

forward market quantities f
iq  with little downward pressure on fp .  Forward 

market revenue generally increases with such an increase in f
iq , and thus a 

rightward shift in ( )f f
iS p  tends to be profitable for each supplier.   

 Consider now firm 2’s distinct reaction at low forward market prices fp  

to increased Rν .  Recall that firms 1 and 2 have asymmetric cost functions.  As 

the higher cost firm, firm 2 is a less aggressive competitor than is firm 1.  To be 

profitable, firm 2 requires a higher equilibrium price (in either market) than does 

firm 1.  When firm 1 puts downward pressure on an already low forward market 

price fp  by increasing 1
fq , firm 2’s optimal response may be to decrease 2

fq  to 

support fp  (and also sp ).  In some states of the world—namely, at low fp , 

where firms’ forward market marginal revenues are relatively low—it is 

profitable for firm 2 to respond in exactly this way by shifting ( )2
f fS p  to the left.   

 Finally, we compare the relative responses of the two firms to the increase 

in Rν .  Table E.1 in Appendix E.4 indicates that firm 1 increases its forward 
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market quantity by a greater amount at each price than does firm 2.  Accordingly, 

the overall effect on forward market competition of increasing Rν  is for firm 2 to 

cede some market share to firm 1 in the forward market.   

•  An increase in the variance 2
Rν

σ  of the spot market noise parameter shifts both 

firms’ forward market SFs to the left.   

The two suppliers are risk neutral, and care only about an increase in 2
Rν

σ  through 

its effect on demand and on expected spot market prices (see eqs. (7.8) and (7.9)).  

A risk-averse consumer, on the other hand, does respond directly to the change in 

2
Rν

σ , and a change in the forward market demand function will affect the 

simultaneously-determined SFs ( )f f
iS p .   

 By the above reasoning, it is useful to begin by considering the effect of 

2
Rν

σ  on forward market demand ( )0,f f fD p ε .  We can show numerically at base 

case parameter values that, for a given realization of 0
fε , increasing 2

Rν
σ  shifts 

( )0,f f fD p ε  to the right and makes this demand function less elastic at all prices.  

The intuition underlying these effects is as follows.  Since 2
Rη

σ  is held constant in 

this scenario, the posited increase in 2
Rν

σ  increases the relative risk of the spot 

market.  This change, in turn, leads a risk-averse consumer, ceteris paribus, to 

reduce her exposure to the spot market price.  Accordingly, the consumer then 

demands higher forward market quantities, and forward market demand becomes 

less price-sensitive.   
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 Consistent with these changes, the ( )f f
iS p  also become less elastic.308  

Moreover, because ( )0,f f fD p ε  and ( )f f
iS p  are negatively related (ceteris 

paribus), the ( )f f
iS p  shift to the left.  The aforementioned shifts in ( )f f

iS p  and 

( )0,f f fD p ε  imply that the forward market equilibrium moves toward the 

inelastic range of both of these functions, and the equilibrium forward market 

price fp  is driven up.  When both ( )f f
iS p  and ( )0,f f fD p ε  are inelastic, 

decreasing ( )f f
iS p  increases markedly the equilibrium forward market price 

fp .  This change in ( )f f
iS p  increases firms’ forward market revenues, and 

hence the leftward shift in ( )f f
iS p  is profitable for each supplier.   

•  An increase in the representative consumer R’s CARA parameter Rλ  shifts both 

firms’ forward market SFs to the left.   

As in the above analysis for shocks to the parameters Rν  and 2
Rν

σ , it is useful to 

begin analysis of this scenario by considering the effect of Rλ  on forward market 

demand ( )0,f f fD p ε .  Increased Rλ  implies that the representative consumer R is 

more sensitive to risk.  Since risk in this problem may be proxied by 2
Rν

σ , the 

effect of increased sensitivity to 2
Rν

σ  is qualitatively equivalent to the effect of 

increased 2
Rν

σ  (with constant Rλ ), analyzed above.   

                                                 

308 Except perhaps at the highest prices fp .   
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 Accordingly, we can show numerically at base case parameter values that, 

for a given realization of 0
fε , increasing Rλ  shifts ( )0,f f fD p ε  to the right and 

makes this demand function less elastic at all prices.  The intuition here is that an 

increasingly risk-averse consumer demands higher forward market quantities, and 

that forward market demand becomes less price-sensitive as consumers’ risk 

aversion increases.  Consistent with these changes, because ( )0,f f fD p ε  and 

( )f f
iS p  are negatively related (ceteris paribus), the ( )f f

iS p  shift to the left.  

The aforementioned shifts in ( )f f
iS p  and ( )0,f f fD p ε  imply that the forward 

market equilibrium moves toward the inelastic range of both of these functions, 

and the equilibrium forward market price fp  is driven up.  When both ( )f f
iS p  

and ( )0,f f fD p ε  are inelastic, decreasing ( )f f
iS p  increases markedly the 

equilibrium forward market price fp .  This change in ( )f f
iS p  increases firms’ 

forward market revenues, and hence the leftward shift in ( )f f
iS p  is profitable for 

each supplier.   

 As a unifying framework for understanding the comparative statics results 

documented in this subsection, we may focus on the effect of parameter shocks on the 

elasticity of residual demand functions in each market at the respective equilibrium 

points.  From the qualitative analysis of this subsection, we may conclude that the 

elasticity of spot market residual demand increases for increases in 0ic  and s
deme , while 

this elasticity decreases for increases in ic .  Similarly, the elasticity of forward market 
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residual demand generally increases for increases in Rη , 2
Rη

σ , and Rν , while this 

elasticity decreases for increases in 2
Rν

σ  and Rλ .  Parameter changes that increase the 

elasticity of residual demand in either the forward or spot markets tend, in general, to 

make firms more aggressive in the forward market in that they bid higher quantities at 

each price.  That is, rightward shifts in ( )f f
iS p  are the result of such changes.  The 

converse is true for parameter changes that decrease the elasticity of residual demand in 

either market.  In other words, such changes cause leftward shifts in ( )f f
iS p .  This 

behavior is consistent with intuition regarding a profit-maximizing firm’s best responses 

to such shocks.   

7.7 Comparison of expected aggregate welfare under alternative 

behavioral assumptions and market architectures  

We conclude this chapter by comparing expected aggregate welfare for the multi-

settlement SFE model with that obtained from models employing alternative behavioral 

assumptions and market architectures.  In particular, we compare the multi-settlement 

SFE model to two alternative single-market models:309  

1. Single-market SFE:  We assume away the forward market, and assume further (as 

in the multi-settlement SFE model) that firms bid affine SFs in the spot market.310   

                                                 

309 Like the multi-settlement SFE model, both alternative models assume duopoly suppliers.   

310 This is the scenario that Klemperer and Meyer (1989) examine.   
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2. Perfect competition (single market):  Again, we assume away the forward market, 

and moreover, assume that firms behave competitively, bidding their marginal 

cost functions in place of supply functions in the spot market.   

 To compute a welfare measure for the multi-settlement SFE model, we assume a 

risk-neutral social planner who assesses welfare ex ante under uncertainty using the 

mathematical expectation of a utilitarian social welfare function.  In the partial 

equilibrium framework invoked here, only electricity is produced and consumed (apart 

from the numeraire good m).  Therefore, in either the multi-settlement SFE model or the 

two alternative models noted above, expected aggregate welfare ( )E AggW  consists of two 

components:  

1. the expected utility ( )E Rxφ    of the representative consumer R’s consumption of 

amenity Rx  (produced using electricity as an input, recalling eqs. (6.2) and (6.1)) 

and  

2. the expected total cost of production ( )E s
RC q    of the equilibrium quantity of 

electricity s
Rq  used by R, where  

 ( ) ( ) ( )
2 2

0
1 1

E E E
s
iqs s s s

R i i i i i
i i

C q C q C q dq
= =

    ′  = =           
∑ ∑ ∫   

and eq. (5.1) gives each firm i’s affine marginal cost function ( )s
i iC q′ .  Algebraically, 

( )E AggW  is the difference of the utility and total cost terms above, that is,311  

                                                 

311 In eq. (7.62), we compute expectations with respect to both spot and forward market sources of 
uncertainty via the discrete Excel model (see subsection 7.3.2).   
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 ( ) ( ) ( )
2

0
1

E E E
s
iq s s

Agg R i i i
i

W x C q dqφ
=

  ′= −        
∑ ∫ . (7.62) 

By definition, expected aggregate welfare in eq. (7.62) does not account for transfers—

due, in particular, to forward market activity—between consumers and producers.  If 

such distributional effects are also of interest to policy makers, it is straightforward, for 

example, to use the present model to compute moments of the distribution of consumers’ 

forward market payments to suppliers.   

 In Table 7.3 below, we use eq. (7.62) to compute expected aggregate welfare 

( )E AggW  for the multi-settlement SFE model and the two alternative models noted above.   

TABLE 7.3: EXPECTED AGGREGATE WELFARE ( )E AggW  FOR THE MULTI-
SETTLEMENT SFE MODEL AND ALTERNATIVE MODELS  

Modela Expected aggregate 
welfare ($)b 

Percentage of expected 
aggregate welfare in 
perfectly competitive 

model 
Multi-settlement SFE 302,265.90 94.75% 
Single-market SFE  294,505.97 92.32% 
Perfect competition (single 
market) 319,003.66 100.00% 

Notes:  
 a Each model assumes base case parameters baseΘ  from eq. (7.46).   
 b We compute expected aggregate welfare assuming the following values for the parameters of the 
representative consumer R’s amenity production function ( ),s

R Rf q T  and utility function ( )Rxφ : 0 2a = , 

1 40a = , 2 0.4a = , and 225b ≈  (recall that b is endogenous to the slope sγ  of the spot market demand 
function; see section 6.4 for details).  The relative welfare ranking of the various models does not change, 
however, for alternative choices of these parameters.   

 As intuition would suggest, Table 7.3 indicates that the perfectly competitive 

scenario has the highest value of expected aggregate welfare.  The multi-settlement SFE 

model has the next highest figure for expected aggregate welfare, and the single-market 

SFE the smallest.  Comparing the multi-settlement SFE model with the single-market 
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SFE model, we see that—as we would expect for a one-shot equilibrium analysis—

introducing a forward market has a welfare-enhancing effect.312  Namely, expected 

aggregate welfare for the multi-settlement SFE model exceeds that for the single-market 

SFE model by $7759.93 (2.63%).  Recall from eq. (7.46) for baseΘ  that the spot market 

demand function underlying Table 7.3’s scenarios is nearly perfectly inelastic (i.e., 

5.95e-5s
deme = − ).  If this function were more elastic, then the deviation of expected 

aggregate welfare between each SFE scenario in Table 7.3, on the one hand, and perfect 

competition, on the other, would be greater.  Finally, we note that the welfare-enhancing 

property of forward markets is consistent with previous literature on multi-settlement 

markets reviewed in chapter 1, in particular, Allaz (1987), Allaz and Vila (1993), Powell 

(1993), Green (1999a), and Kamat and Oren (2002).   

                                                 

312 This conclusion does not necessarily apply in a repeated game setting.   
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[M]onopoly, in all its forms, is the taxation of the industrious for the support of 
indolence, if not of plunder.   

—John Stuart Mill, Principles of Economy 
 

[I]ndustries differ one from the other, and the optimal mix of institutional arrangements 
for any one of them cannot be decided on the basis of ideology alone.  The “central 
institutional issue of public utility regulation” remains . . . finding the best possible mix 
of inevitably imperfect regulation and inevitably imperfect competition.   

—Alfred E. Kahn, The Economics of Regulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 Discussion, conclusions, and further research  

THIS CHAPTER begins in section 8.1 below by examining market participants’ motives for 

forward market activity in the multi-settlement SFE model.  Next, section 8.2 highlights 

potential avenues for future research by offering some preliminary conjectures on the 

implications of relaxing various model restrictions.  Section 8.3 concludes the chapter by 

outlining how the results of the multi-settlement SFE model might be extended in further 

research to contribute to a framework for market power analysis.   

8.1 Motives for forward market activity  

Recalling from subsection 1.5.2 Allaz’s (1987, 18) taxonomy of hedging, speculative, 

and strategic motives for forward market activity, this subsection examines which of 

these effects are present in the multi-settlement SFE model.  Hedging and speculative 
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motives are relatively transparent in this model, and hence easy to identify.  We devote 

most of this section, accordingly, to analyzing strategic motives for forward market 

participation by the duopoly suppliers in the multi-settlement SFE model.   

 Because the suppliers are risk neutral in the present model, they do not exhibit 

hedging motives.313  In contrast, speculative motives for suppliers to participate in the 

forward market do exist, since the conditional expectation of the forward contract cash 

flow ( )f s f
i iCF p p q= −  enters firm i’s profit maximization problem (eqs. (3.39) 

–(3.41)).314  Finally, strategic motives are present for suppliers, as we explain below.   

 To motivate the discussion of strategic motives for suppliers’ forward market 

activity, consider Green’s (1999a, 115) observations that “a risk-neutral firm will not 

want to use a [forward] contract market unless this will affect its rival’s strategy.  By 

selling forward, a firm can increase its equilibrium output, but it will also reduce the 

price, just as if it had adopted a more aggressive strategy in the spot market.  Since the 

firm could have adopted such a spot market strategy regardless of its position in the 

[forward] contract market, there has to be another mechanism at work to make selling 

contracts attractive.  The opportunity to affect its rival’s strategy is just such a 

mechanism.”  The multi-settlement SFE model, however, more closely resembles a 

                                                 

313 We could instead assume that suppliers are risk averse.  It would then be appropriate for 
suppliers to maximize a utility function (e.g., of the mean-variance type) rather than simply to maximize 
profits.  This change in objective function would produce hedging motives for suppliers.  The ultimate 
effect on suppliers’ forward market participation would then likely depend on the relative degree of 
uncertainty in the forward and spot markets.   

314 Subsection 7.6.1 noted that 0f

iq >  for base case parameter values over the range of forward 

market prices of interest.  We conclude that the conditional expectation E f

iCF p    

( )E 0f s f f

ip p p q= − >    since ( )E 0f s fp p p− >    from inequality (7.51).   
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variant of Green’s main model which he develops in an appendix to his 1999 paper 

(Green 1999b).  In Green’s alternative model, buyers are risk averse, which leads them in 

equilibrium to pay a hedging premium to suppliers in the forward market.  As a 

consequence, the forward price exceeds the expected spot price.  Under these 

circumstances, Green (1999b, 4) concludes that “[t]he ability to earn a hedging premium 

gives another motive for selling contracts, so that a firm will now hedge part of its output, 

even if this does not affect its rival’s strategy and reduces its spot market profits, in order 

to earn a hedging premium.”  Due to the presence of risk-averse consumers and strategic 

suppliers in the multi-settlement SFE model, we find a set of incentives analogous to 

those in Green’s alternative model with risk-averse buyers.  Namely, we find that a risk-

neutral firm has an incentive to participate in the forward contract market, in part to earn 

a hedging premium, and also to affect its rival’s spot market stage game action.  In the 

following subsections, we explore how this latter strategic motive for suppliers’ forward 

market activity arises in the multi-settlement SFE model.   

8.1.1 Effects of a supplier’s forward market activity on equilibrium quantities  

Given an arbitrary SF for firm 2, ( )2
f fS p , let firm 1’s best response to ( )2

f fS p  be 

( )1
f fS p .315  For a shock 1 0δ > , define from ( )1

f fS p  a “base” forward market SF 

( ) ( )1 1 1
f f f fS p S p δ≡ −  for firm 1, so that  

 ( ) ( )1 1 1
f f f fS p S p δ= + . (8.1) 

                                                 

315 Note that we refer here to an optimal—though not necessarily equilibrium—SF for firm 1, and 
hence use the notation ( )1

f fS p  and 1

fq  without the overbars “ ” that denote equilibrium functions and 
quantities.   
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Given the decomposition of ( )1
f fS p  in eq. (8.1), we examine the effects of a differential 

shock 1dδ  to firm 1’s forward market SF bid, translating ( )1
f fS p  to the right.  

Consistent with the development of the firm’s forward market optimization problem in 

chapter 4, assume further that firm 1 imputes to firm 2 a fixed (disequilibrium) strategy of 

( ) ( ){ }2 2 2 1, ; ,f f s s f fS p p q qΣ .  Consider first the effects of the shift 1dδ  in ( )1
f fS p  on 

forward market competition.  Obviously, this change increases firm 1’s forward market 

quantity 1
fq  at each price fp .  The rightward shift in ( )1

f fS p  also causes firm 2’s 

forward market residual demand function, ( ) ( ) ( )2 0 0 1, ,f f f f f f f fRD p D p S pε ε≡ − , to 

shift to the left for fixed 0
fε .316  The function ( )2 0,f f fRD p ε , of course, is the set of price-

quantity tradeoffs that firm 2 faces in the forward market.  For the present, suppose that 

( )2
f fS p  does not change.  For fixed ( )2

f fS p  and a leftward shift in ( )2 0,f f fRD p ε , the 

quantity-price pair ( )2 ,f fq p  facing firm 2 moves downward and to the left.  

Accordingly, firm 2’s forward market quantity 2
fq  decreases, while the forward market-

clearing price ( )*
0

f f fp p ε=  decreases, as well.   

 Next, we examine the effects of the rightward shift in ( )1
f fS p  on spot market 

competition.  As shown in chapter 5 (see eq. (5.13) and Figure 5.1), this shift in ( )1
f fS p  

                                                 

316 From the forward market analysis of chapter 7, the rightward shift in ( )1

f fS p  affects 

( )2 0,f f fRD p ε  both directly, and through ( )0,f f fD p ε .  Since ( )0,f f fD p ε  is endogenous (and 

negatively related) to the SFs ( )f f

iS p  (recall eqs. (6.76) and (6.78)), the rightward shift in ( )1

f fS p  shifts 

( )0,f f fD p ε , and hence ( )2 0,f f fRD p ε , to the left.   
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translates, in turn, firm 1’s spot market SF ( )1 1 2; ,s s f fp q qΣ  to the right, increasing the 

firm’s spot market quantity 1
sq  for each sp .  This change in ( )1 1 2; ,s s f fp q qΣ  implies 

further that firm 2’s spot market residual demand function, ( )2 2 1, ; ,s s s f fRD p q qε  

( ) ( )1 1 2, ; ,s s s s s f fD p p q qε≡ −Σ , shifts to the left for fixed sε  (whereby ( ),s s sD p ε  is 

fixed).  The function ( )2 2 1, ; ,s s s f fRD p q qε , of course, is the set of price-quantity tradeoffs 

that firm 2 faces in the spot market.  The aforementioned decrease in 2
fq  also shifts firm 

2’s spot market SF ( )2 2 1; ,s s f fp q qΣ  to the left (see eq. (5.13)).317  Since both 

( )2 2 1; ,s s f fp q qΣ  and ( )2 2 1, ; ,s s s f fRD p q qε  shift to the left, firm 2’s spot market quantity 2
sq  

decreases (as we may confirm from the analysis of chapter 5).  That is, we have that  

 
( )2

2

1  fixed

0
f

s

S

dq
dδ

<
i

. (8.2) 

The sign of the net effect of leftward shifts in ( )2 2 1; ,s s f fp q qΣ  and ( )2 2 1, ; ,s s s f fRD p q qε  on 

the spot market-clearing price sp , however, is ambiguous in the general case.318  In 

contrast, the sign of the effect of the rightward shift in ( )1
f fS p  on firm 1’s spot market 

quantity 1
sq  is well-defined.  Even if sp  should decrease, thereby putting downward 

                                                 

317 This is the effect of firm 1’s forward market action (the change in which is the increment 1dδ ) 

on firm 2’s spot market action, ( )2 2 1; ,s s f fp q qΣ .  See the quotation from Green (1999a, 115) beginning on 
page 327.   

318 In particular, this effect on sp  depends on the relative magnitudes of 1φ  and 2φ  as well as on 
the particular forward market SFs selected.   
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pressure on 1
sq , we may show from the analysis of chapter 5 that the net effect of 

increased 1
fq  on 1

sq  is positive, that is,319  

 
( )2

1

1  fixed

0
f

s

S

dq
dδ

>
i

. (8.3) 

 Of course, firm 2’s forward market SF ( )2
f fS p  need not—and in general will 

not—remain fixed (as in firm 1’s imputation above) in response to 1dδ .  Rather, firm 2 

chooses its SF (given the new SF for firm 1 ( )1 1
f fS p dδ+ ) according to the forward 

market optimization problem detailed in chapter 4 and sketched for firm 1 briefly above.  

In doing so, firm 2 faces a completely analogous set of incentives as those described 

previously for firm 1.  Without repeating chapter 4’s analysis, we next consider the likely 

nature of firm 2’s best response to the increment 1dδ  in firm 1’s forward market SF 

posited above.   

 The preceding discussion indicated that an increment 1dδ  caused both 2
fq  and 2

sq  

to decrease, while the corresponding quantities for firm 1 increased.  In other words, with 

a fixed ( )2
f fS p , firm 2 would lose market share in both markets.  As noted above, the 

effect of 1dδ  on the spot market-clearing price sp  (with ( )2
f fS p  fixed) was ambiguous.  

We cannot be precise about firm 2’s best response to 1dδ  without (1) specifying more 

                                                 

319 To show this, differentiate eq. (5.9) totally with respect to 1δ , using eq. (5.23) for sp  and 

assuming a fixed SF ( )2

f fS p  for firm 2.  If on the other hand sp  should increase, then the movement 

along firm 1’s SF ( )1 1 2; ,s s f fp q qΣ  in the direction of increasing quantity reinforces the rightward shift in 

this function, resulting unambiguously in increased 1

sq .   
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exactly the effect of 1dδ  on the conditional expectation of sp , (2) fixing the parameter 

vector Θ , and (3) specifying the equilibrium selection rule.  It appears unlikely, however, 

that firm 2’s best response to 1dδ  would be to maintain ( )2
f fS p  fixed as it loses market 

share in both markets.  Rather, as suggested by the forward market equilibria examined in 

chapter 7,320 firm 2 will likely want to increase its forward market quantity at most, if not 

all, prices fp  in response to 1dδ .  Accordingly, we may approximate firm 2’s optimal 

response to the increment 1dδ  by a similar positive increment 2dδ  in firm 2’s forward 

market SF ( )2
f fS p .321  Such an increment 2dδ  also ultimately shifts firm 2’s spot 

market SF ( )2 2 1; ,s s f fp q qΣ  to the right.   

 At some point, naturally, rightward shifts in both firms’ forward market SFs will 

drive down prices in both markets322 to a point beyond which further increases in forward 

market quantity are not profitable for either firm.323  At this point, firms’ forward market 

                                                 

320 Namely, even for the markedly asymmetric supplier firms studied in this work, the base case 
SFs ( )f f

iS p  for each firm tended to approach each other as fp  increased, even for disparate initial 
quantities.  Moreover, in each of the comparative statics test cases, each firm’s SF moved in the same 
direction in response to parameter perturbations at almost all price levels of interest.  See Table E.1.   

321 While we assume for simplicity that the approximation 2dδ  is constant for all fp , the exact 

optimal response of firm 2 need not, of course, be constant with fp .   

322 Note that when both firms increase their forward market quantities, both spot market SFs—and 
hence also the aggregate spot market SF—shift outward.  As a result, the effect on the spot market-clearing 
price is then unambiguous: sp  decreases.   

323 From eq. (C.9) in Appendix C, this optimal point (for either firm) is where the derivative of 
forward market revenue with respect to fp  and marginal expected optimal provisional spot market profits 
sum to zero.   
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SFs are the equilibrium forward market SFs ( )1
f fS p  and ( )2

f fS p  from the subgame 

perfect Nash equilibrium derived in chapter 4.   

 The key results from the above discussion are the inequalities (8.2) and (8.3) 

indicating the opposing effects on firms’ spot market quantities of a rightward shift in 

( )1
f fS p  (and analogously for a rightward shift in ( )2

f fS p ).  Consistent with the 

opposite signs of these effects, we could characterize the strategic interactions discussed 

above as a “battle for expected market share” in the spot market, waged with forward 

market SFs.  Moreover, firms’ market shares in the forward market are obviously also 

affected by firms’ relative aggressiveness in forward market bidding.  Similar to the 

results of Allaz and Vila (1993, 3), therefore, the potential in the multi-settlement SFE 

model for forward trading by both firms leads to a prisoners’ dilemma effect: each firm 

has an incentive to trade in the forward market, but when both firms do so, both end up 

worse off in that their price-cost margins are smaller.  This effect is due only to the 

potential for forward trading by the duopolists, and is independent of the particular 

behavioral assumptions in either the forward or spot markets, provided that such 

assumptions do not suppress forward trading itself.324   

Over the relevant range of prices [ ]0, 2,500 $ MWhfp ∈  for the California PX, 

chapter 7’s equilibria showed that strictly increasing forward market SFs yield positive 

forward market quantities.  That is, for the numerical examples of the multi-settlement 

                                                 

324 As is the case for Green’s (1999a, 115) finding that a firm having Cournot conjectures in the 
forward market and using affine SFs in the spot market will sell no forward contracts.   
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SFE model examined here, firms’ optimal behavior corresponds to short positions in the 

forward market.325   

 It is instructive to note that the output-enhancing property (which translates, 

generally, to increased aggregate welfare) of forward contracts does not rely on these 

being vesting contracts, that is, contracts whose terms and conditions are subject to 

regulatory control.  Rather, allocating forward contracts via a market-based mechanism—

as in the forward market of the multi-settlement SFE model—is sufficient to realize 

welfare benefits from such contracts.  Moreover, in this modeling framework, imposing 

price controls on forward contracts would lead (if such controls are binding) to smaller 

forward market positions by suppliers.  This outcome, in turn, would result in a lower 

level of expected aggregate spot market output than in the absence of such price controls.  

This suggests, further, that such regulation of forward market contracts may lead to lower 

levels of aggregate welfare.326  This argument, of course, does not militate against 

possible distributional rationales for regulatory intervention in the forward market.  For 

example, unregulated forward market prices that are significantly higher than expected 

spot market prices would create large transfers from consumers to producers, which may 

be politically undesirable.   

                                                 

325 The finding that short positions in the forward market are optimal for suppliers—i.e., 
0f

iq > —may be contingent on our choice of base case parameter vector baseΘ ; section 7.6’s comparative 
statics analysis investigated model solutions within a small neighborhood of this vector.  Outside of this 
region of the parameter space, we may find that we select forward market SFs such that 0f

iq < .  Given 
that we restricted our attention to strictly increasing SFs (in the upper partition, such SFs lie in Region I), 
this result does not appear to be sensitive to the properties of the equilibrium selection procedure for the 
forward market.  As Figure 7.15 suggests, Region I is contained within the positive orthant of the phase 
space.   

326 A more sophisticated analysis of the welfare effects of forward contracting would require a 
dynamic analysis in a repeated game setting.   
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8.1.2 Effect of a supplier’s forward market activity on its rival’s profits  

This subsection demonstrates how forward market activity by a supplier decreases its 

rival’s profits.  We use the same technique as in subsection 8.1.1 of a perturbation (not 

necessarily in equilibrium) of a firm’s forward market SF.  Rather than quantity effects, 

however, the question of interest here is the effect of the SF perturbation on the rival 

firm’s profits.  For concreteness, consider a shock 2 0δ >  to firm 2’s forward market SF.  

Define a base forward market SF ( ) ( )2 2 2
f f f fS p S p δ≡ −  for firm 2, so that  

 ( ) ( )2 2 2
f f f fS p S p δ= + . (8.4) 

Given the decomposition of ( )2
f fS p  in eq. (8.4), a differential shock 2dδ  to firm 2’s 

forward market SF bid translates ( )2
f fS p  to the right.  We examine the effects of this 

shock to ( )2
f fS p  on firm 1’s total profits *

1
totπ , whereby this denotes firm 1’s optimal 

(but not necessarily equilibrium) profits.  In what follows we assume, naturally, that firm 

1 imputes to firm 2 the SF ( )2
f fS p  in eq. (8.4), and in addition imputes the equilibrium 

spot market SF ( ) ( ) ( ){ }2 2 0 2; , ,s s f f f f f f fp S p D p S pε Σ −  .   

 Adapting the forward market optimization problem for the imputation (8.4), we 

may combine eqs. (4.16)–(4.18) to express *
1
totπ  as a function of ( )2

f fS p , 2δ , and 0
fε  as 

follows:  



 

  336 

     

( ){ }
( ) ( )

( ) ( ) ( ){ }( )

*
1 2 2 0

0 2 2

*
1 0 2 2 2 2 0

, ,

max ,

E , , , ,

f

tot f f

f f f f f f

p

s f f f f f f f s f

S

p D p S p

D p S p S p

π δ ε

ε δ

π ε δ δ ε ε

  = − − 

 + − − +  

i

 (8.5) 

where  

 

( ) ( ) ( ){ }
( ) ( ) ( ){ }{

( ) ( ) }

*
1 0 2 2 2 2

1 2 2 2 0 2 2

0 2 2

, , ,

max , ; , , ,

, ,

s

s f f f f f f f s

s s s s f f f f f f f

p

f f f f f s

D p S p S p

p p S p D p S p

D p S p

π ε δ δ ε

π δ ε δ

ε δ ε

 − − + 

 = Σ + − − 

 − − 

 (8.6) 

and  

 

( ) ( ) ( ){ }{
( ) ( ) }

( ) ( ) ( ) ( ){ }( )
( ) ( )
( ) ( ) ( ) ( ){ }( )

1 2 2 2 0 2 2

0 2 2

2 2 2 0 2 2

0 2 2

1 2 2 2 0 2 2

, ; , , ,

, ,

, ; , ,

,

, ; , , .

s s s s f f f f f f f

f f f f f s

s s s s s s f f f f f f f

s f f f f f

s s s s s f f f f f f f

p p S p D p S p

D p S p

p D p p S p D p S p

p D p S p

C D p p S p D p S p

π δ ε δ

ε δ ε

ε δ ε δ

ε δ

ε δ ε δ

 Σ + − − 

 − − 

 = ⋅ −Σ + − − 

 − − − 

 − −Σ + − − 

 (8.7) 

Taking the derivative of eqs. (8.5) with respect to 2δ  (using eqs. (8.6) and (8.7) and the 

envelope theorem), we get  

 

( ){ }

{ } ( ) { }

*
1 2 2 0

2

2 2
1 1 0

2 2

, ,

E ,

tot f f

s s
f s s s f

S

d d
p p p C q

d d

π δ ε
δ

ε
δ δ

∂

∂

  Σ Σ′ = − + − + − −    

i

" "
 (8.8) 

where we have abbreviated the arguments of 2
sΣ  in eq. (8.8) as “" .”   
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 Under the assumptions of the simplified affine example, we may evaluate the 

derivative { }2 2
sd dδΣ "  in eq. (8.8) using eq. (5.13) as  

 { } ( ) ( ) ( ){ }2 2 2 0 2 22
2

2 2

; , ,s s f f f f f f fs d p S p D p S pd
d d

δ ε δ
φ

δ δ

 Σ + − −Σ  = =
"

. (8.9) 

Using eq. (8.9) and conditioning instead on a market-clearing price ( )*
0

f f fp p ε= , we 

may rearrange eq. (8.8) as  

 

( ){ }

( ) ( )( ) ( )

*
1 2 2 0

2

2 1 1

, ,

E E E .

tot f f

s f s f f s f

S

p p C q p p p p

π δ ε
δ

φ

∂

∂

 ′= − − − +  

i

 (8.10) 

As in the derivation of eq. (5.37) (which relied on the simplified affine example), we may 

write the expected price-cost margin ( ) ( )( )1 1E Es f s fp p C q p′−  in eq. (8.10) as  

 ( ) ( )( ) ( ) ( )( )1 1 1 01 1 1E E Es f s f s f f fp p C q p p p c c S pφ  ′− = − +  . (8.11) 

Using eq. (8.11), we may then recast eq. (8.10) as  

 

( ){ }

( ) ( )( ) ( ){ }

*
1 2 2 0

2

1 2 01 1 1

, ,

E E .

tot f f

s f f f f s f

S

p p c c S p p p p

π δ ε
δ

φφ

∂

∂

   = − − + + −  

i

 (8.12) 
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While the sign of the right-hand side of eq. (8.12) depends on the particular SFs ( )f f
iS p  

selected in the forward market,327 we are able to determine this sign for cases of interest 

by the following argument.  First, comparing eqs. (7.1) and (7.41) in the previous chapter, 

we have that  

( ) ( )( ) ( ) ( ) ( )1 2 01 1 1 21E Es f f f f s f f f f fp p c c S p p p p S p S pφφ ++ ++   − + + − =   Q
®

. (8.13) 

Second, in note 267 of that chapter, we argued that everywhere within the phase space’s 

upper partition on which we focus in this work, the quadratic form 

( ) ( )21
f f f fS p S p++ ++Q

®

 has a positive sign,328 that is,  

 ( ) ( )21 0f f f fS p S p++ ++ >Q
®

. (8.14) 

Combining the expressions (8.12)–(8.14), we may conclude that  

 
( ){ }*

1 2 2 0

2

, ,
0

tot f fSπ δ ε
δ

∂
<

∂

i
, (8.15) 

which says that an increase in forward market activity by firm 2 decreases firm 1’s total 

profits *
1
totπ  at an optimum.   

 We may interpret inequality (8.15) using Tirole’s (1988) terminology from his 

                                                 

327 In addition to the explicit appearance of ( )1

f fS p  in eq. (8.12), recall from eq. (7.9) that the 

conditional expected spot market price ( )E s fp p  itself depends on both firms’ forward market SFs.   

328 This is because the equation ( ) ( )21 0f f f fS p S p++ ++ =Q
®

 characterizes the singular locus, 
while the upper partition lies entirely on one side (the “positive” side) of the singular locus.   
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two-period, two-firm model—modified appropriately329—analyzing business strategies 

and strategic interaction.330  In period 1 of Tirole’s modified model, only firm 2—the 

incumbent—is present in the market.331  Firm 2 chooses a variable, which Tirole calls an 

“investment,” denoted as 2K  ( 2K  could be productive capacity, for example, although in 

general 2K  might be any variable affecting period 2 competition).  In period 2, firm 1 

observes 2K  and decides to either enter, or not to enter, the market.  Tirole (1988, 325) 

classifies competitive scenarios in terms of the effect of firm 2’s investment 2K  on firm 

1’s profits (in the “entry-deterrence”332 case).  Denoting firm 1’s total profits as 1Π , 

Tirole associates the condition  

 
1

2

0d
dK
Π <  (8.16) 

                                                 

329 In the following account of Tirole’s model, we exchange the (arbitrary) subscripts 1 and 2 
labeling Tirole’s firms—so that firm 2 is the incumbent—for consistency with the foregoing analysis of the 
multi-settlement SFE model.  The objective here is to show that inequality (8.15) above is consonant with 
Tirole’s analysis in terms of the effect of one firm’s first-period (e.g., forward market) action on its rivals’ 
profits.   

330 Tirole’s analysis expands on that of Fudenberg and Tirole (1984) and Bulow, Geanakoplos, and 
Klemperer (1985).  The classic example of such a model is a two-period entry deterrence/accommodation 
game between an incumbent and a potential entrant, but the problem’s basic structure applies to a 
considerable range of interesting economic problems; in addition to Tirole (1988), see Bulow, 
Geanakoplos, and Klemperer (1985) for many other examples.   

331 The presence of only a single incumbent firm in period 1 is a critical distinction between 
Tirole’s model and the multi-settlement SFE model of this thesis, in which (as thesis chapter 7’s various 
numerical examples show) each firm is active in both the forward and spot markets.  In our setting, both 
firms can and do make strategic choices in period 1, and hence the incumbent-entrant distinction is not 
relevant in the multi-settlement SFE model.  See also note 329 regarding the labeling of the two firms in 
this discussion of Tirole’s model.   

332 Denote firm 1’s total profits as 1Π .  For the incumbent firm 2 to (just) deter firm 1’s entry, firm 
2 chooses 2K  so that 1 0Π = .  Hence, in the case of entry deterrence in Tirole’s model, it is the effect of 
the incumbent’s period 1 action on the potential entrant’s total profits that determines the entry decision.   
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with the case in which investment (i.e., increasing 2K ) makes firm 2 “tough”333 in 

Tirole’s terminology.  If, on the other hand, we have that  

 
1

2

0d
dK
Π > , (8.17) 

Tirole characterizes this situation as the case of investment making firm 2 “soft.”334   

 Making the analogy between Tirole’s framework and the present multi-settlement 

SFE model (and arbitrarily taking firm 2 to be the “incumbent” in the latter model—see 

note 331), it is natural to view firm 2’s forward market activity ( )2 2
f fS p δ+  as 

analogous to an investment for that firm, to use Tirole’s terminology.  Appealing to this 

analogy, we see from inequalities (8.15) and (8.16) above that the profit derivatives 

( ){ }*
1 2 2 0 2, ,tot f fSπ δ ε δ∂ ∂i  and 1

2d dKΠ  correspond to each other.  In particular, note 

that the sign of both of these derivatives is negative.  These observations suggest that we 

may also apply Tirole’s terminology to the multi-settlement SFE model.  Namely, we 

could interpret the negative effect on firm 1’s profits (i.e., inequality (8.15)) as the 

forward market action ( )2 2
f fS p δ+  making firm 2 tough (or, recalling note 333, 

“disadvantaging firm 1”).  This is consistent with the intuition from previous chapters 

that increasing 2δ  (ceteris paribus) shifts firm 2’s spot market SF 

( ) ( ) ( ){ }2 2 2 0 2 2; , ,s s f f f f f f fp S p D p S pδ ε δ Σ + − −   to the right, thereby making that firm 

                                                 

333 Perhaps more evocatively, we might instead characterize 1

2 0d dKΠ <  (inequality (8.16)) as a 
situation of the investment K “disadvantaging one’s competitor.”   

334 Conversely to note 333, we could instead say that 1

2 0d dKΠ >  (inequality (8.17)) 
exemplifies the case of the investment K “favoring one’s competitor.”   



 

  341 

more aggressive in the spot market in that it bids a larger quantity at each price.  

Naturally, increasing 2δ  makes firm 2 a more aggressive competitor in the forward 

market in the same sense, as well.   

Competition in supply functions is distinct, naturally, from competition in 

quantities à la Cournot.  Nevertheless, the multi-settlement SFE model also reflects 

Tirole’s (1988, 336) generalization that two-period quantity games are often more 

competitive than their static (one-period) counterparts.  We see evidence of this more 

competitive property in the tendency of forward market activity to increase one’s own 

spot market quantity (as in inequality (8.3)), as well as in the analysis of expected welfare 

of section 7.7.  In these welfare computations, we found that expected aggregate welfare 

of the multi-settlement SFE model exceeded that for the single-settlement SFE model, 

due, in part, to the larger expected spot market quantities in the multi-settlement model.   

8.1.3 Decomposition of suppliers’ incentives for forward market activity  

In his model, Tirole (1988) emphasizes the role of investments as commitments, in 

particular, “commitments that matter because of their influence on the rivals’ actions” 

(p. 323).  Likewise, we may usefully view forward market positions in the multi-

settlement SFE model as strategic commitments; these similarly influence rivals’ actions 

as we explain below.   

In this subsection, we sharpen the focus on strategic considerations and examine 

in more detail how strategic motives affect firms’ forward market decisions.  The analysis 

here is not fundamentally new; rather we simply parse firm 1’s forward market 

equilibrium optimality condition (5.37) in a new way.  Namely, we decompose a version 
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of firm 1’s forward market equilibrium optimality condition so as to emphasize firm 2’s 

impact, via each market, on firm 1’s forward market action.   

 We begin by rewriting firm 1’s forward market equilibrium optimality condition 

(5.37) as eq. (8.18) below:  

 
( ) ( )( ) ( ){ } ( )

( ) ( ) ( )
1 2 01 1 1 2

1 0

E E

E .

s f f f s f f f f

f f f f s f f

p p c c S p p p p S p

S p D p p p p

φφ     ′− + − −  

 ′= − − 

 (8.18) 

Equation (8.18) is a version of firm 1’s first-order necessary condition for its forward 

market optimization problem (eqs. (4.16)–(4.18)) under the assumptions of the simplified 

affine example.335  We may re-introduce the derivative ( )( )1 2,tot f f f fd p S p dpπ �� , 

rearrange the terms in eq. (8.18), and decompose the new expression into terms that we 

label the direct effect, the settlement effect, and the strategic effect, as follows:336  

                                                 

335 Equation (8.18) reflects (1) the substitution of ( )1

f fS p  for ( ) ( )0 2,f f f f fD p S pε −  from the 

market-clearing condition for the forward market, as well as (2) the substitution of ( )0

f fD p′  for 

( )0,f f fD p ε′  from eq. (3.13).  Recall also that in the simplified affine example, firms’ marginal cost 
functions and spot market SFs as well as spot market demand functions all possess affine functional forms.   

336 The reader is warned that the direct effect and the strategic effect defined in eq. (8.19) for the 
multi-settlement SFE model are in the same spirit as—but distinct from—the “direct effect” and “strategic 
effect” identified in Fudenberg and Tirole (1984, 363) and later, Tirole (1988, sec. 8.3).  In the present 
work, we define these effects via differentiation with respect to a price fp  in eq. (8.19), consistent with the 
derivation of the SFs.  The other authors cited motivate the definition of these effects by differentiating 
with respect to a (firm-specific) quantity.   
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( )( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

1 2
1 0 2

Direct effect

0 2

Settlement effect

1 2 2 01 1 1

Strategic effect

,

E

E

0.

tot f f f
f f f f f f f

f

s f f f f f

f f s f f f

d p S p
S p p D p S p

dp

p p D p S p

S p p p c c S p

π

φφ

 ′ ′= + −
 

 ′ ′− −
 

 ′− − + 

=

��

�������	������


�������	������


���������	��������


 (8.19) 

Below, we discuss how each of the three constituent effects in eq. (8.19) shaping firm 1’s 

forward market behavior arises.   

 We call the term  

 ( ) ( ) ( )1 0 2
f f f f f f fS p p D p S p ′ ′+ −

 
 (8.20) 

on the right-hand side of eq. (8.19) the direct effect since it represents firm 1’s response 

to its forward market residual demand function, ( ) ( ) ( )1 0 0 2, ,f f f f f f f fRD p D p S pε ε≡ − , 

considering the forward market in isolation.  Given that firm 1 faces this residual demand 

function, the expression (8.20) is the derivative of firm 1’s forward market revenue, 

( ) ( )0 2,f f f f f fp D p S pε −  , with respect to fp  (using again the substitutions of note 

335).337   

                                                 

337 Before imposing Nash equilibrium, firm 1 solves its forward market problem, given 0

fε  (as 

detailed in chapter 4), to yield a—firm-specific—optimal price ( )*

1 0

f fp ε .  In Nash equilibrium, naturally 

(see note 141), firms construct their forward market SFs such that ( ) ( )* *

1 0 2 0

f f f fp pε ε=  ( )*

0

f fp ε≡ , which 

we denote in equilibrium as simply the forward market price fp .  Consistent with previous chapters’ 
conventions, we interpret eq. (8.19) and the associated analysis as applying to such an equilibrium 
outcome, though we could just as well recast the above discussion in terms of firm 1’s optimal—though not 
necessarily equilibrium—price ( )*

1 0

f fp ε .   
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 The settlement effect  

 ( ) ( ) ( )0 2E s f f f f fp p D p S p ′ ′− −
 

 (8.21) 

on the right-hand side of eq. (8.19) is the expected change in firm 1’s settlement payment 

1
s fp q  made in the spot market for a marginal change in fp , again given its forward 

market residual demand function ( )1 0,f f fRD p ε .  The settlement effect depends on the 

expected (optimal) spot market price ( )E s fp p , conditional on fp .   

 Finally, the strategic effect  

 ( ) ( ) ( )( )1 2 2 01 1 1Ef f s f f fS p p p c c S pφφ  ′− − +   (8.22) 

on the right-hand side of eq. (8.19) arises due to the conjectured spot market response of 

firm 2 to firm 1’s choice of (optimal) price fp  ( ( )*
1 0
f fp ε= ).  Looking back at chapter 

4’s analysis, we may show that the strategic effect of eq. (8.22) is simply the expression 

( )f
i pψ  in eq. (4.42) under the assumptions of the simplified affine example.  As 

observed in Appendix C, we may interpret ( )f
i pψ , in turn, as the expected change in the 

difference between firm 1’s equilibrium spot market revenue and production cost 

(evaluated at its equilibrium contract quantity ( )1
f fS p ) for a marginal change in fp .   

 To understand how the strategic effect arises, begin by rewriting eq. (5.13) for 

firm 2 as eq. (8.23) below:  

 
( )2 2 1

2
2

; ,s s f f

f

p q q
q

φ
∂Σ

=
∂

. (8.23) 
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Equation (8.23) expresses the marginal effect of changes in firm 2’s equilibrium forward 

market quantity 2
fq  (ceteris paribus) on its spot market quantity for an arbitrary price 

sp .338  Firm 2’s spot market SF ( )2 2 1; ,s s f fp q qΣ  appears in firm 1’s spot market residual 

demand function  

 ( ) ( ) ( ) ( ){ }1 2 2 0 2, ; , ,s s s s s s f f f f f f fq D p p S p D p S pε ε = −Σ −   (8.24) 

in problem (4.18) (taking ( ) ( )2 2
f f f fS p S p=� , in equilibrium).  Firm 1 conjectures that, in 

equilibrium, firm 2 responds to marginal changes in fp  according to the function 

( )2
f fS p .  Firm 1 induces firm 2 in this way to change 2

fq  (and hence 2
sq ), as already 

described in subsection 8.1.1 above.  This is the heart of the strategic effect.  With these 

considerations, eqs. (8.23) and (8.24) imply that the change in 1
sq  for a marginal change 

in fp  given the functions ( )2
f fS p  and ( ) ( ) ( ){ }2 2 0 2; , ,s s f f f f f f fp S p D p S pε Σ −   and 

holding sp  fixed is  

 ( )
2 22 2

1 1 2 2
2 2

2 2, , ,f fs s s s s

s s s f
f f

f s f f
S p Sp p

dq q dq S p
dp q q dp

φ
Σ Σ

   ∂ ∂Σ    ′ = = −
   ∂ ∂   

, (8.25) 

                                                 

338 Recall that the simplicity of the (constant) expression for the derivative in eq. (8.23) depended 
critically on the assumption of ( )2 2 1; ,s s f fp q qΣ  being affine in sp .  In the affine case, ( )2 2 1; ,s s f fp q qΣ  is, 

in fact, independent of 1

fq .  This suggests that if we extended the investigation to include non-affine SFs 

( ); ,s s f f

j j ip q qΣ , we would observe an additional term in the strategic effect for firm i.  This term would 

correspond to a shift in ( ); ,s s f f

j j ip q qΣ  due to ( ) ( )0,f f f f f f

i jq D p S pε −=  also changing with fp .   
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as reflected in the expression (8.22) for the strategic effect.  Finally, we note that the 

strategic effect is proportional339 to firm 1’s (conditional) expected price-cost margin  

 ( ) ( )( )01 1 1E s f f fp p c c S p− +  

in the spot market, evaluated at its equilibrium forward market quantity 1 1
s fq q=  

( )1
f fS p= .   

 If we rewrite firm 1’s FOC, eq. (8.19), setting the strategic effect to zero, the 

revised FOC assuming “zero strategic effects”340 is as follows:  

 

( )( ) ( ) ( ) ( )

( ) ( ) ( )

1 2
1 0 2

Zero strategic Direct effecteffects

0 2

Settlement effect

,

E

0.

tot f f f
f f f f f f f

f

s f f f f f

d p S p
S p p D p S p

dp

p p D p S p

π
 ′ ′= + −
 

 ′ ′− −
 

=

��

�������	������


�������	������

 (8.26) 

A full accounting of the influence of the strategic effect on the forward market 

equilibrium would require computing new forward market SFs from the FOC (8.26) (and 

the symmetric condition for firm 2).  In particular, the functions ( )E s fp p  and 

( )0,f f fD p ε , derived analytically and computed numerically in chapters 6 and 7, both 

depend endogenously on the functions ( )f f
iS p .   

                                                 

339 With constant of proportionality ( )1 2 2

f fS pφφ ′−  (given fp ), from the expression (8.22).   

340 This would be the case if the derivative ( )2 2 1 2; ,s s f f fp q q q∂Σ ∂  from eq. (8.23) and its analog 

for firm 1 were equal to zero, implying that 1 2 0φ φ= = .   
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8.1.4 Motives for forward market activity by consumers  

To conclude this section, we turn briefly to the demand side of the market to consider 

consumers’ motives for forward market participation in the multi-settlement SFE model.  

In contrast to the treatment of suppliers, we take consumers to be risk averse in this 

model.  Accordingly, consumers pay a risk (or hedging) premium to suppliers in 

purchasing forward contracts at a price fp  typically in excess of ( )E s fp p .  Hedging is 

thus a motive for consumers’ participation in the forward market, as chapter 6 analyzed 

in detail.  Speculative motives also exist for consumers in the forward market.  

Assuming—for a representative consumer R—a forward contract quantity f
Rq , the 

conditional expectation of the term ( )s f f
Rp p q−  enters the objective function of her 

nested maximization problem (6.30) (letting j R= ) for the multi-settlement SFE model.  

The presence of this term indicates that the representative consumer R speculates on the 

(conditional) expected price difference s fp p− .  Finally, because consumers take prices 

as parametric in problem (6.30), they do not behave strategically in the present model.  

Therefore, consumers face no strategic motives for forward market participation.   

8.2 Further research: Relaxing restrictions imposed in the model  

8.2.1 Number of competitors n  

Throughout this investigation, we have assumed that we have a duopoly on the supply 

side of the market—that is, 2n = .  In this section, we consider what increasing n would 

entail, and how the results of the multi-settlement SFE model might be affected.   

 The equilibrium optimality conditions for the case of larger n are easy to express.  

The major structural change is to replace (in firm i’s optimization problem) the SFs 
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( )f f
jS p  and ( ); ,s s f f

j j ip q qΣ  with the sums ( )f f
j

j i

S p
≠
∑  and ( ); ,s s f f

j j i
j i

p q q
≠

Σ∑ , 

respectively, reflecting the actions of all of firm i’s rivals in i’s residual demand functions 

for each market.  The difficulties that are likely to arise for larger n appear to be largely 

computational.  Preliminary investigations show that our chosen numerical analysis 

package, MATLAB (and the MAPLE symbolic algebra kernel),341 has difficulty solving 

the spot market problem342 symbolically in the affine case for 6n > .  This may be 

because a solution simply does not exist, because the problem is ill-posed given the 

solver’s algorithm, or that the solver—as currently configured—is unable to solve it.  

Numerical solutions, in contrast, may of course be easier to find.   

 We have not yet attempted to find solutions of the forward market problem for 

2n >  firms.  While visualization of such trajectories becomes more difficult for such 

larger n, we anticipate no fundamental obstacle to applying the MATLAB- or Excel-

based models to cases of larger n.  Obtaining a solution for a larger value of n would 

offer a considerable improvement in verisimilitude over the current duopoly case in view 

of the structure of actual electricity markets.  Moreover, a larger n would permit 

modeling of various scenarios encompassing firm entry, exit, generation plant divestiture, 

and mergers and acquisitions.  Finally, if we are able to model cases in which n gets 

large, it would be interesting to see whether spot and forward market SFs approach a 

competitive limit.  We might obtain some insight into the nature of such a competitive 

limit from the symmetric—and computationally far simpler—case with n identical firms.   

                                                 

341 The MathWorks (2001) and Maplesoft (2002).   

342 In the affine case, solving this problem entails solving a nonlinear system of algebraic—not 
differential—equations.   
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8.2.2 Affine functional form restrictions  

Beginning with the simplified affine example of chapter 5, much of the analysis is 

restricted to the case in which the spot market demand function, both firms’ marginal cost 

functions, and spot market SFs have an affine functional form.  Suppose, in contrast, that 

we broaden the focus from affine spot market SFs to consider also non-affine SFs arising 

from the spot market equilibrium optimality conditions, eqs. (4.13) and (4.14).  In this 

case, however, these conditions would no longer yield a system of simultaneous algebraic 

equations for spot market SF slopes (eqs. (5.6) and (5.11)); instead, a differential 

equation system343 will characterize the spot market SFs.  Because in this case the spot 

market SFs will no longer be unique, issues of equilibrium selection and coordination 

between firms would arise in the spot market as well, leading to the compound problem 

that Newbery (1998, 733) has characterized as a “double infinity of solutions.”344  Failure 

of the firms to coordinate successfully on an equilibrium would not necessarily lead to 

market instability, but it would imply that firms are almost certainly not supplying ex 

post optimal quantities, given their rival’s actions and realizations of stochastic 

parameters.  Provided that the firms realize that their behavior is suboptimal, we could 

surmise that they might engage in a heuristic search process in their strategy spaces in an 

attempt to improve their profits.   

 We could go further in generalizing the affine case, and assume only strictly 

increasing marginal cost and downward-sloping spot market demand.  Under these 
                                                 

343 Similar to the forward market problem in the present version of the multi-settlement SFE 
model.   

344 Other criteria for equilibrium selection (e.g., Pareto optimality, rationalizability—recall n. 
123—might be invoked, but the theory here is generally inconclusive and somewhat controversial (see 
Fudenberg and Tirole 1991, 48–53).   
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assumptions, not only would we again have a continuum of nonlinear equilibrium SFs in 

the spot market, but the existence of an affine equilibrium in spot market SFs would not 

be assured.  Nonetheless, given any differentiable marginal cost and demand functions, it 

is straightforward as an analytical matter to generalize the (necessary) equilibrium 

optimality conditions for both markets.  Then, assuming some procedure for equilibrium 

selection in each market, it should be possible to solve the resulting systems of ODEs 

numerically using the methods of chapter 7.  Extreme functional forms, however—for 

example, demand that is too convex, or marginal costs that are too steep or nonconvex—

may cause a multi-settlement market equilibrium with strictly increasing forward market 

SFs not to exist, or to exist only on a sharply restricted price domain or region of the 

parameter space.   

8.2.3 Role of perfect observability of forward market actions  

Beginning with the specification of the multi-settlement SFE model’s information 

structure in subsection 3.1.1, we have assumed throughout this thesis that firms’ 

equilibrium forward market actions—that is, the SFs ( )f f
iS p —are perfectly observable 

as they formulate their spot market SFs.  In section 3.3, however, we showed that firm i’s 

spot market SF is a function of the spot market price, sp , and also (in general) each 

firm’s forward market quantity, f
iq  ( 1, 2i = ).  Hence, we wrote firm i’s (equilibrium) 

spot market SF as a function ( ); ,s s f f
i i jp q qΣ  ( , 1, 2;i j i j= ≠ ).345  From this 

specification, it is clear that we may weaken the observability assumptions from 
                                                 

345 Where firms’ respective equilibrium forward market quantities coincide with the optimal as 
well as the imputed quantities, so that we may write f f f

i i iq q q= = � .   
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observing forward market actions (the SFs ( )f f
iS p ) to simply observing forward market 

equilibrium quantities f
iq .  Observability of the f

iq  is crucial to the model, however.  

Weakening the model’s assumptions further in this respect by permitting less-than-

perfect observability of f
iq  would likely have a critical effect on the model’s results, 

particularly on the strategic incentives that arise between markets as discussed in 

subsection 8.1.3 above.  In this subsection, we examine some related literature that 

suggests how introducing imperfect observability of forward market outcomes might 

affect solutions of the multi-settlement SFE model.   

 Hughes and Kao (1997) study a two-stage Cournot duopoly game with forward 

contracting in the first stage and production in the second stage.  The authors examine 

how observability of contract positions affects strategic and hedging motives for forward 

contracting; they consider cases in which the competitors are risk neutral, and in turn, risk 

averse.  Table 8.1 below summarizes Hughes and Kao’s main results.   

TABLE 8.1 MOTIVES FOR FORWARD MARKET PARTICIPATION AS A FUNCTION OF 
OBSERVABILITY OF CONTRACT POSITIONS AND RISK PREFERENCES 
(Hughes and Kao 1997)  

  Risk 
Observa- preferences 
bility of  
contract positions 

Risk neutral Risk averse 

Perfectly observable Strategic motive only Hedging motive 
Strategic motive 

Not observable No forward contractinga Hedging motive 
Strategic motiveb 

Notes:  
 a Hughes and Kao require conjectures to be consistent with firms’ actions; accordingly, the only 
consistent conjecture for the forward market in this case is 1 2 0f fq q= =� � .   

 b Here, the strategic motive is weaker than that in the cell above.   
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The intuition for the absence of forward contracting in the (Not observable, Risk neutral) 

cell of Table 8.1 is as follows, letting i and j index the two firms ( , 1, 2;i j i j= ≠ ) 

(Hughes and Kao 1997, 125): If firm j conjectures that firm i does not take a forward 

position, then firm i has no incentive to deviate from this conjecture.  In essence, absent 

observability, there is no means for firm i to alter firm j’s beliefs.  Finally, the presence of 

a strategic motive for forward market activity in the (Not observable, Risk averse) cell of 

Table 8.1 bears some explanation.  To see that a strategic motive is present in this case 

despite unobservable contract positions, note that the risk-averse firm i is aware that firm 

j expects it to hedge price uncertainty via forward contracts.  As a consequence, firm j’s 

residual demand function shifts to the left, causing firm j to concede market share in the 

second stage.  In this way, hedging behavior can have strategic consequences.346   

 Consider now the implications of the above findings for the multi-settlement SFE 

model using supply functions.  The behavioral assumption of supply functions invoked in 

the present work is significantly more flexible than the Cournot conjectures used by 

Hughes and Kao.  The slope of firm j’s imputed forward market SF at an arbitrary price 

fp , ( )f f
jS p′� , is firm i’s conjecture regarding how firm j would respond (locally, near 

fp ) to a change in forward market price.  Under our assumed market rules, this slope 

may lie anywhere on the positive real line (including zero).  This significantly greater 

degree of flexibility may permit consistent conjectures in the SFE case where this was not 

                                                 

346 Allaz (1987, 42, n. 43) also alluded to this phenomenon when he observed that strategic and 
hedging motives “partly overlap.”   
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possible under Cournot.347  Without more careful investigation we cannot be sure, but 

there is sufficient reason to be skeptical that the “No forward contracting” result in the 

(Not observable, Risk neutral) cell of Table 8.1 will also obtain under the SFE 

assumption used in the multi-settlement SFE model.   

 Rather than positing uncertainty in demand as we do in the present work, Hughes 

and Kao suppose (in one part of their analysis) that a pair of Cournot duopolists face 

uncertainty in their costs that is resolved after the forward market clears, but before firms 

act in the spot market.  In this setting, the authors consider in turn the cases of perfectly 

observable forward contract positions, and unobservable contract positions.  For the case 

of perfectly observable contract positions, the authors make a further distinction with 

regard to risk preferences.  For firms that are risk neutral to moderately risk averse, 

selling forward contracts is optimal, whereas if firms’ risk aversion is sufficiently great, 

firms buy forward contracts.348  For unobservable forward contract positions, on the other 

                                                 

347 As is well-known, the Cournot model has inconsistent conjectures.  In contrast, given constant 
marginal cost, the Bertrand model has consistent conjectures.  See Bresnahan (1981) for details.   

348 Here, the intuition is that the strategic and hedging effects facing each firm go in opposite 
directions.  The firm’s risky costs create variance in its profits.  This motivates the firm to decrease 
production, which it can do, effectively, by buying forward contracts.  On the other hand, the firm’s 
quantity decisions are made, naturally, based on this uncertain cost; these quantity decisions, in turn, affect 
price, making price risky as well.  This effect on price creates an incentive for the risk-averse firm to sell 
forward contracts to lock in sales at a certain price.  Unlike the aforementioned effect on cost, this effect on 
price also naturally affects the profits of the rival, so that the price risk entails a strategic as well as a 
hedging component.  When the firm’s risk aversion is sufficiently low, the strategic effect dominates, and 
the firm sells forward contracts.  When on the other hand the firm’s risk aversion is sufficiently high, 
hedging is the dominant effect, and the firm buys forward contracts.    
 With respect to hedging, this behavior is borne out on the demand side of the multi-settlement SFE 
model.  Specifically, subsection 7.6.3 discusses the effect of increasing the representative consumer’s risk 
aversion coefficient Rλ  on the forward market equilibrium.  There, we noted that increased Rλ  causes 

( )0,f f fD p ε  to shift to the right, that is, increased consumer risk aversion increases the demand for 
forward contracts.   
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hand, Hughes and Kao find that the strategic effects—while present—are sufficiently 

attenuated349 so that, provided only that the firm is risk averse, it buys forward contracts.   

 Beyond the effects of contracting, there is a wider literature on the critical role of 

observability on strategic incentives in dynamic games that is relevant to our model.  

Interestingly, some authors have generalized the simple dichotomy between perfectly 

observable and unobservable actions by introducing noisy observations of first-period 

actions, made operational via a random deviation between an observed and an actual 

parameter value representing agents’ first-period actions.  Bagwell (1995), for instance, 

has analyzed two-period Stackelberg games of quantity choice in which the follower’s 

observation of the leader’s chosen quantity is noisy.  He shows that the pure strategy 

equilibrium set of this game coincides with that for the corresponding simultaneous-move 

game (i.e., the Cournot equilibrium), even for a very small degree of noise.  The 

implication of this finding is that imperfect observability can negate the commitment 

inherent in the leader’s action for the second period’s stage game.  In a related article, 

Maggi (1999) demonstrates that permitting the leader in the aforementioned game to 

observe private information (e.g., its own cost) generally restores the Stackelberg 

outcome.350  Maggi (1999, 556) provides the intuition for this result.  Suppose that the 

leader’s private information concerns its type, for example, low-cost or high-cost.  The 

follower will then use the (noisy) observation of the leader’s quantity to attempt to infer 

the leader’s type, whereby both pooling and separating equilibria are, in general, possible.  

Given that the follower behaves in this way, the leader then has an incentive to 

                                                 

349 Recall the discussion of Table 8.1 above.   

350 See Maggi (1999) for some technical qualifications to this result.   
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manipulate the follower’s perception of the leader’s type through its quantity choice.  

Specifically, the leader’s incentive is to produce more than the Cournot output, which 

restores the Stackelberg first-mover advantage.   

 Returning to the model in the present work, the multi-settlement market studied 

here is distinct from the Stackelberg sequential-move setting in that the former model 

comprises two simultaneous-move stage games.  While sequential moves within each 

stage game would not be a realistic scenario in electricity markets, the sequence of stage 

games—the forward and spot markets—is a dynamic setting in which the insights of the 

Stackelberg game apply.  Moreover, imperfect observability of forward market positions 

would add realism to our framework.  In addition, if we were to revisit the model’s 

information structure, a more plausible assumption would be to have firms’ costs be 

private information.  With these changes, the information structure in the multi-

settlement SFE model would parallel that in Maggi (1999) discussed in the foregoing 

paragraph.  In this new setting we conjecture that, using an insight similar to that of 

Maggi, private cost information would offset imperfect observability so that strategic 

incentives are not impaired by imperfect observability of forward market contract 

positions.   

 The above discussion of the observability of forward market contract positions 

has important policy implications regarding regulatory rules for information disclosure in 

electricity markets.  Given the result of section 7.7’s welfare analysis that forward 

markets are welfare-enhancing,351 the question arises of how disclosure policies for 

                                                 

351 While this result does not hold in all cases, it is generally supported by the previous research 
discussed in section 1.5.2.  For a counter-example, see Ferreira (2003).   
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forward market positions affect firms’ participation in—and hence the welfare effects 

of—forward markets.  In Table 8.1’s summary of Hughes and Kao’s (1997) model, 

eliminating information disclosure effectively halts forward trading in the risk-neutral 

case and attenuates the strategic incentive for forward trading in the risk-averse case.  

This suggests (but does not prove, as Hughes and Kao point out (p. 130)) that disclosure 

of forward contract positions will be welfare-enhancing.352  As noted in the discussion of 

Table 8.1 above, it appears unlikely that making forward market positions unobservable 

in the SFE model will completely eliminate forward contracting in the risk-neutral case, 

although it may still weaken the incentive to contract.  If so, then disclosure may not be 

as critical under the SFE assumption as in the Cournot case.   

8.3 Further research: Market power  

The present work is only suggestive of the complexities that market power analysis in 

real-world electricity markets must confront, as Quan and Michaels (2001, 106) attest 

(with reference to California’s market):  

Over the course of a day, a generator must make (by our rough count) at least 480 price 
bid decisions at various hours.  Choosing not to participate in certain markets may require 
as much thought, and be fraught with as much risk, as choosing to bid in others.  Since 
generators actually bid hourly supply schedules with up to 15 segments in many markets, 
the potential price decisions over a day run into the thousands.  We also count 146 
capacity commitment decisions over the day . . . .   
 The analysis of market power by sellers in a system like this is so complex an 
endeavor that for all practical purposes it is impossible to perform.   

                                                 

352 In more recent work, Hughes, Kao, and Williams (2002) examine the disclosure decision from 
the firm’s perspective in an asymmetric duopoly model in which only one of the two duopolists trades in 
the forward market.  They analyze the tradeoff that disclosure presents to a firm between exploiting its 
informational advantage in the forward market, on the one hand, and influencing the later production 
decisions of rivals, on the other.  They find, unsurprisingly, that informed firms prefer non-disclosure of 
forward market positions.  In contrast, uninformed market participants (specifically, brokers who are 
constrained to break even in their trading) prefer disclosure of forward contracts.  The authors consider 
only in passing the symmetric case of competing duopolists in the forward market.  They conjecture that 
symmetry would only strengthen incentives for non-disclosure on the part of informed market participants.   
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Quan and Michaels’ rather pessimistic assessment notwithstanding, the present work has 

broken new ground in understanding strategic interaction in a multi-settlement market 

setting.  The decomposition and analysis of the incentives for forward market 

participation is a necessary and important first step toward market power analysis in this 

novel institutional environment.  The next question that we confront in this regard is how 

the present model might be used or augmented to establish a forward market perfectly 

competitive behavioral benchmark (PCBB) for market power assessment in the presence 

of risk-averse consumers.  The only alternative to forward market participation that we 

represent in the multi-settlement SFE model is, of course, the opportunity to participate in 

the spot market.  In this setting, it is natural to seek a PCBB in the form of a marginal 

opportunity cost of forward market participation involving expected spot market returns 

foregone through forward market activity.  While we reserve for future research the 

development of an explicit expression for marginal opportunity cost, we may gain some 

insight into the nature of such an opportunity cost by revisiting the relevant discussion 

from chapter 1.   

 We raised the question in chapter 1 of how to evaluate the competitiveness of the 

forward market.  In particular, we asked whether assessing market power in multi-

settlement markets required the joint evaluation of behavior in both the forward and spot 

markets, or whether we could analyze the forward market in isolation.  We now revisit 

this question.  In eq. (4.41), we found that the expected spot market price ( )E s fp p  

plays the role of marginal production cost ( )C S′  in eq. (4.15).  This structural similarity 

between the optimality conditions for the forward and spot markets suggests a natural 
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interpretation of the expected spot market price ( )E s fp p  as one contributing factor to 

the marginal opportunity cost of a supplier’s forward market activity.  In particular, the 

settlement effect defined in eq. (8.19) is proportional to the conditional expectation 

( )E s fp p .  To evaluate ( )E s fp p , naturally, we need to know the conditional 

distribution of s fp p , which in turn requires chapter 5’s analysis of how the forward and 

spot markets are coupled.353  This is not the entire story concerning marginal opportunity 

cost, however.  From expression (8.19) above, the strategic effect also affects a firm’s 

forward market SF bid through anticipated spot market outcomes.354  Like the settlement 

effect, the strategic effect depends on ( )E s fp p  and, in addition, depends on firm 1’s 

expected marginal cost given fp .  Thus, to compute the strategic effect, we again require 

information from both the forward and spot markets.  We may conclude from the 

definitions of both the settlement and strategic effects in expression (8.19) that evaluating 

the competitiveness of a firm’s forward market behavior requires considering behavior 

and market outcomes in both the forward and spot markets.  Further research should 

define more precisely the marginal opportunity cost of forward market activity in this 

model, which may then serve as an appropriate PCBB in this two-market setting.   

                                                 

353 For these purposes, we developed an expression for ( )E s fp p  in eq. (5.33), later simplified to 
eq. (7.9).   

354 Expression (8.19) also includes the direct effect ( ) ( ) ( )1 0 2

f f f f f f fS p p D p S p′ ′+ −    which, 

by inspection, we may associate with a change in forward market revenue rather than a change in the 
opportunity cost of forward market participation.   
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 On the empirical front, one interesting approach to measuring market power in a 

dynamic game setting that may prove useful in future work is that of Roeller and Sickles 

(2000).  These authors derive and estimate econometrically a structural model of the 

European airline industry that posits competition in capacities in the first period, and in 

prices in the second.  They find that firms are significantly less collusive in the two-stage 

model than under the one-stage specification.355  They conclude that collusiveness is 

overestimated whenever competition naturally occurs in two stages.  Their model, which 

links theory to empirical measures of market power, may constitute a promising approach 

to deriving an empirically-based PCBB for the multi-settlement SFE model.356  Unlike in 

Roeller and Sickles’ framework, however, intensity of competition in the present SFE-

based model cannot be captured by a simple scalar conduct parameter.  Even in the case 

of affine SFs (as for the spot market SFs in the simplified affine example), we require 

two parameters to specify uniquely a firm’s action.   

 

 

                                                 

355 This observation is consistent with Tirole’s (1988, 336) generalization regarding two-period 
quantity games.   

356 In the present setting, of course, we have focused exclusively on unilateral market power rather 
than collusion.  Also, electricity markets are characterized by repeated competitive interactions of higher 
frequency than those that plausibly exist in the airline industry.  Accordingly, electricity markets are likely 
to be more sensitive to dynamic effects than is the airline industry.   
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Prudence and justice tell me that in electricity and steam there is more love for man than 
in chastity and abstinence from meat.   

—Chekhov, Letter to A.S. Suvorin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix A: Proof that firm 1’s spot market supply function 

intersects its residual demand function exactly once    

WE BEGIN by arguing that, under our assumptions, firm 1’s residual demand function 

slopes downward.  First recall that, at the outset of text section 4.1, we defined firm 1’s 

spot market residual demand function (given arbitrary 1ˆ
fq  and 2ˆ fq , and for a particular 

sε ) as ( ) ( )2 2 1ˆ ˆ, ; ,s s s s s f fD p p q qε − Σ� .  For convenience, denote this residual demand 

function as ( )1 1 2ˆ ˆ, ; ,s s s f fRD p q qε , so that  

 ( ) ( ) ( )1 1 2 2 2 1ˆ ˆ ˆ ˆ, ; , , ; ,s s s f f s s s s s f fRD p q q D p p q qε ε≡ − Σ� . (A.1) 
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Since ( ), 0s s sD p ε′ <  (from text subsection 3.1.10) and ( )2 2 1ˆ ˆ; , 0s s f fp q q′Σ >�  (from text 

subsection 3.1.5) by assumption,357 we have from eq. (A.1) that  

 ( )1 1 2ˆ ˆ, ; , 0s s s f fRD p q qε′ <  (A.2) 

for all sp , and given sε , 1ˆ
fq , and 2ˆ fq .   

 We now prove that no two realizations of firm 1’s residual demand function 

intersect.  Assume, in contradiction, that two arbitrary residual demand functions 

( )1 1 2ˆ ˆ ˆ, ; ,s s s f fRD p q qε  and ( )1 1 2
ˆ̂ ˆ ˆ, ; ,s s s f fRD p q qε  do intersect at a price s sp p= � , where 

ˆˆ ˆs sε ε≠ .  Algebraically, this assumption is  

 ( ) ( )1 1 2 1 1 2
ˆˆ ˆˆ ˆ ˆ ˆ, ; , , ; ,s s s f f s s s f fRD p q q RD p q qε ε=� � , (A.3) 

and Figure A.1 below depicts this relationship graphically.   

                                                 

357 Where primes (“  ′ ”) denote differentiation with respect to sp .   



 

  362 

sp

1 ,s sRD ε

Spot market

( )1 1 2
ˆ̂ ˆ ˆ, ; ,s s s f fRD p q qε

( )1 1 2ˆ ˆ ˆ, ; ,s s s f fRD p q qε

s sp p= �

 

FIGURE A.1: THE FUNCTIONS ( )1 1 2ˆ ˆ ˆ, ; ,s s s f fRD p q qε�  AND ( )1 1 2
ˆ̂ ˆ ˆ, ; ,s s s f fRD p q qε�  

INTERSECT AT PRICE s sp p= �  (COUNTERFACTUAL CASE) 

Eq. (A.3), however, contradicts our assumption in subsection 3.1.10 of the text that 

( ), 0s s s s sD p pε ε∂ ∂ > ∀ , since at the point of intersection we have 

( )1 1 2ˆ ˆ ˆ, ; , 0s s s f f sRD p q qε ε∂ ∂ =� , and hence, from (A.1), ( )ˆ, 0s s s sD p ε ε∂ ∂ =� .  Thus, it 

must be that no two realizations of firm 1’s residual demand function intersect.     

 Finally, we show that ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  intersects each residual demand function 

exactly once.  Recall by the reasoning in text section 4.1 that, for each sε , there exists a 

unique optimal price sp .  For example, letting ˆs sε ε= , we have that ( )*
1 1 2ˆ ˆ ˆ; ,s s s f fp p q qε=  

for firm 1.  For any ˆs sε ε= , there also exists a unique residual demand function, since 

( )ˆ, 0s s s sD p ε ε∂ ∂ >  in the definition of firm 1’s residual demand function, eq. (A.1) 
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above.  Therefore, the residual demand function ( )1 1 2ˆ ˆ ˆ, ; ,s s s f fRD p q qε  contains—at price 

( )*
1 1 2ˆ ˆ ˆ; ,s s s f fp p q qε= —a unique ex post profit-maximizing point for firm 1.   

 Figure A.2 below illustrates these relationships.  Because we have not yet 

characterized the properties of the SF ( )1 1 2ˆ ˆ; ,s s f fp q qΣ , the figure does not depict it, but 

only indicates its point of intersection with ( )1 1 2ˆ ˆ ˆ, ; ,s s s f fRD p q qε .   

sp

1 ,s sRD ε

Spot market

( )*
1 1 2ˆ ˆ ˆ; ,s s s f fp p q qε=

( )*
1 1 2ˆ ˆ; ,s s f fp q qε

ˆsε

( )1 1 2ˆ ˆ ˆ, ; ,s s s f fRD p q qε

( )
( )

( )

1 1 2

1 1 2

1 1 2

Unique ex post profit-maximizing point 
ˆ ˆ ˆon , ; , , and also the point 

ˆ ˆat which ; ,  (not shown) 
ˆ ˆ ˆwill intersect , ; ,

s s s f f

s s f f

s s s f f

RD p q q
p q q
RD p q q

ε

ε




 Σ



 

FIGURE A.2: ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  INTERSECTS ( )1 1 2ˆ ˆ ˆ, ; ,s s s f fRD p q qε  EXACTLY ONCE  

 By construction (see text section 4.1), ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  passes through each ex post 

profit-maximizing point for firm 1 (and only these points).  Therefore, ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  

will pass through the ex post profit-maximizing point on ( )1 1 2ˆ ˆ ˆ, ; ,s s s f fRD p q qε , which lies 
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at price ( )*
1 1 2ˆ ˆ ˆ; ,s s s f fp p q qε= .  Since ( )*

1 1 2ˆ ˆ ˆ; ,s s f fp q qε  is unique, this point of intersection 

of ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  and ( )1 1 2ˆ ˆ ˆ, ; ,s s s f fRD p q qε  is itself unique.     

 A completely analogous proof applies in the forward market to show that 

( )1
f fS p  intersects firm 1’s forward market residual demand function exactly once for 

each 0
fε .   
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Like many businessmen of genius he learned that free competition was wasteful, 
monopoly efficient. And so he simply set about achieving that efficient monopoly.   

—Mario Puzo, The Godfather 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B: Second-order sufficient conditions for the optimality 

of the forward and spot market supply functions   

WE FIRST CONSIDER in section B.1 the second-order sufficient conditions for optimality in 

the spot market, followed in section B.2 by the analogous conditions in the forward 

market.   

B.1 Second-order conditions for the optimality of the spot market SF 

The proof in this section parallels that of KM for their Claim 7 (Klemperer and Meyer 

1989, 1254).  Recall from text eq. (4.3) that the FOC for the provisional spot market 

problem (assuming an interior solution) is  
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( ){ } ( ) ( )

( ) ( ){ }
( ) ( )

1 2 2 1 1
2 2 1 1

1 2 2 1

2 2 1

ˆ ˆ ˆ, ; , , ,
ˆ ˆ ˆ, ; ,

ˆ ˆ, ; ,

ˆ ˆ, ; ,

0,

s s s s f f f s
s s s s s f f f

s

s s s s s s f f

s s s s s f f

d p p q q q
D p p q q q

dp

p C D p p q q

D p p q q

π ε
ε

ε

ε

Σ
 = −Σ − 

′  + − −Σ 

 ′ ′⋅ − Σ
 

=

 (B.1) 

where the primes “  ′ ” on the spot market demand function and the SFs denote derivatives 

with respect to sp .  Differentiating eq. (B.1) again to obtain the second-order condition, 

we have  

 

( ){ }
( )

( ) ( )
( ) ( ) ( ) ( ){ }

( ) ( )
( ) ( ){ }

2
1 2 2 1 1

2

2 2 1

1 2 2 1 2 2 1

2 2 1

1 2 2 1
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ˆ ˆ, ; ,

ˆ ˆ ˆ ˆ1 , ; , , ; ,

ˆ ˆ, ; ,

ˆ ˆ, ; , ,

s s s s f f f s

s

s s s s s f f

s s s s s f f s s s s s f f

s s s s s f f

s s s s s s f f s s

d p p q q q

dp

D p p q q

C D p p q q D p p q q

D p p q q

p C D p p q q D p

π ε

ε

ε ε

ε

ε ε

Σ

 ′ ′= −Σ
 

 ′′ ′ ′ + − −Σ −Σ   

 ′ ′⋅ − Σ
 

′ ′′ + − −Σ  ( ) ( )2 2 1ˆ ˆ; , .s s s f fp q q ′′− Σ
 

 (B.2) 

Simplifying and using text eqs. (4.4)–(4.7) to replace ( ) ( )2 2 1ˆ ˆ, ; ,s s s s s f fD p p q qε − Σ   with 

( )1 1 2ˆ ˆ; ,s s f fp q qΣ  (where we have also assumed Nash equilibrium between firms 1 and 2), 

eq. (B.2) becomes  
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( ){ }
( )
( ) ( )

( ) ( ) ( )
( ){ } ( ) ( )

2
1 2 2 1 1

2

2 2 1

2

1 1 1 2 2 2 1

1 1 1 2 2 2 1

ˆ ˆ ˆ, ; , , ,

ˆ ˆ2 , ; ,

ˆ ˆ ˆ ˆ; , , ; ,

ˆ ˆ ˆ ˆ; , , ; , .

s s s s f f f s

s

s s s s s f f

s s f f s s s s s f f

s s s f f s s s s s f f

d p p q q q

dp

D p p q q

C p q q D p p q q

p C p q q D p p q q

π ε

ε

ε

ε

Σ

 ′ ′= −Σ
 

 ′′ ′ ′ − Σ −Σ   
 ′ ′′ ′′ + − Σ −Σ   

 (B.3) 

 If ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  is optimal given ( )2 2 1ˆ ˆ; ,s s f fp q qΣ , then it must satisfy eq. (B.1), 

the optimality condition for firm 1.  Again using text eqs. (4.4)–(4.7) to replace 

( ) ( )2 2 1ˆ ˆ, ; ,s s s s s f fD p p q qε − Σ   by ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  in eq. (B.1), we get  

    ( ){ } ( ) ( ) ( )1 1 1 2 2 2 1 1 1 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ; , , ; , ; ,s s s f f s s s s s f f f s s f fp C p q q D p p q q q p q qε ′ ′ ′ − Σ − Σ = − Σ   
. (B.4) 

Differentiating both sides of eq. (B.4) with respect to sp  and rearranging, we have  

 

( ){ } ( ) ( )
( )

( ) ( ){ } ( ) ( )

1 1 1 2 2 2 1

1 1 2

1 1 1 2 1 1 2 2 2 1

ˆ ˆ ˆ ˆ; , , ; ,
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ˆ ˆ ˆ ˆ ˆ ˆ1 ; , ; , , ; , .

s s s f f s s s s s f f

s s f f

s s f f s s f f s s s s s f f

p C p q q D p p q q

p q q

C p q q p q q D p p q q

ε

ε

 ′ ′′ ′′ − Σ −Σ   
′= −Σ

 ′′ ′ ′ ′ − − Σ Σ −Σ   

 (B.5) 

Substituting eq. (B.5) into eq. (B.3) yields  
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π ε

ε

ε

ε

Σ

 ′ ′= −Σ
 

 ′′ ′ ′ ′ − Σ −Σ −Σ   

′′ ′ ′ ′ − − Σ Σ −Σ  ( )1ˆ .fq 
 
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Collecting factors of ( ) ( )2 2 1ˆ ˆ, ; ,s s s s s f fD p p q qε ′ ′− Σ
 

 in the above equation, we have  
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( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

2
1 2 2 1 1
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ε

Σ

 ′ ′ ′′ ′ = −Σ ⋅ + Σ Σ  

 ′′ ′ ′ ′ − Σ −Σ −Σ   

 (B.6) 

 From eq. (B.6), we may conclude that any SF ( )1 1 2ˆ ˆ; ,s s f fp q qΣ  satisfying the spot 

market FOC (eq. (B.1)) that is also strictly increasing (i.e., ( )1 1 2ˆ ˆ; , 0s s f fp q q′Σ > ) over its 

domain is part of an SFE.  To see this, note that, given our parametric assumptions and if 

( )1 1 2ˆ ˆ; , 0s s f fp q q′Σ > , we can sign the terms in eq. (B.6) as  
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( )

( ) ( ) ( ) ( )

( ) ( )

2
1 2 2 1 1

2

2 2 1 1 1 1 2 1 1 2
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+
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′′ ′ ′ − Σ −Σ 
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 ���	��
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����	���

( ) ( )

2

2 1 1 1 2ˆ ˆ ˆ ˆ; , ; , .s f f s s f fp q q p q q
++

  ′− Σ
  ���	��
�������	������


  

Therefore, for this sp , we have that  

 
( ){ }
( )

2
1 2 2 1 1

2

ˆ ˆ ˆ, ; , , ,
0

s s s s f f f s

s

d p p q q q

dp

π εΣ
< . (B.7) 

Eq. (B.7) is the second-order sufficient condition for sp  to be a global profit maximum.   
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B.2 Second-order conditions for the optimality of the forward market SF 

The forward market FOC (text eq. (4.19)), is  

 

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }

1 2 0
0 2 0 2

*
1 0 2 2

0

, ,
, ,

, , ,
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0,
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s f f f f f f f s

f
f

d p S p
D p S p p D p S p
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π ε
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  −  +  
  

=

��
� �

� �
 (B.8) 

where the primes “  ′ ” on forward market demand and the SFs denote derivatives with 

respect to fp .358  Differentiating eq. (B.8) with respect to fp  to obtain the second-order 

condition,359 we have  
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( ) ( ) ( ){ }

( )

2
1 2 0

2

0 2 0 2

2 *
1 0 2 2

02

, ,

2 , ,

, , ,
E .

tot f f f f

f

f f f f f f f f f f f

s f f f f f f f s

f

f

d p S p
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� �

� �

 (B.9) 

The first term in eq. (B.9) is negative for strictly increasing ( )2
f fS p� , but without further 

restrictions on the functional forms of ( )1 1 2ˆ ˆ; ,s s f fp q qΣ , ( )2 2 1ˆ ˆ; ,s s f fp q qΣ , ( )0,f f fD p ε , and 

( )2
f fS p� , the second and third terms in eq. (B.9) are indeterminate in sign.   

                                                 

358 This section draws on numerous results from chapters 4 and 6.   

359 And assuming uniform convergence of the expectation integral in this equation.   
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 In this general case, we can make no further progress in signing the terms in eq. 

(B.9).  We must assume that the second and third terms in eq. (B.9) are such that 

( )( ) ( )22
1 2 0, , 0tot f f f f fd p S p dpπ ε <�� .  Under these assumptions, we conclude that fp  is 

a global profit maximum for firm 1.  In what follows, we (soon) restrict ourselves to the 

case of the simplified affine example of chapter 5.   

 To evaluate the derivative inside the expectation on the right-hand side of eq. 

(B.9), first recall text eq. (4.20):360  
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d D p S p S p
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π ε ε

 − 

 ∂ − = ⋅
∂

 ∂ − + ⋅
∂

� �

� �
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�

 (B.10) 

We ultimately want to differentiate eq. (B.10) again with respect to fp , but first use 

some results from chapters 4 and 5 to simplify this equation.   

 Namely, from chapter 4:  

•  Eqs. (4.25) and (4.26) give expressions for the derivatives of *
1
sπ  with respect to 

1
fq  and 2

fq� ;  

                                                 

360 Recalling text eqs. (3.43) and (3.42), we see that the first and second arguments of *

1

sπ  are 1

fq  

and 2

fq� , respectively.  It will be useful shorthand in eq. (B.10) to define derivatives of *

1

sπ  with respect to 
these forward market quantities.   
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•  Eqs. (4.31) and (4.32) express 1
f fdq dp  and 2

f fdq dp�  in terms of forward 

market SFs.   

Making these substitutions in eq. (B.10) yields  
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ε
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 ∂Σ ⋅⋅⋅  ′= − − −Σ ⋅⋅⋅ ⋅ −   ∂  
 ′ ′⋅ −
 
 ∂Σ ⋅⋅⋅  ′ ′+ − − −Σ ⋅⋅⋅ ⋅ ⋅   ∂  

� �

�

�
�

 (B.11) 

where we recall that, for ease of notation, we introduced { }2
sΣ ⋅⋅⋅  in chapter 4, given by  

 { } ( ) ( ) ( ){ } { }2 2 2 0 2 2 2 1; , , ; ,s s s f f f f f f f s s f fp S p D p S p p q qε Σ ⋅⋅⋅ ≡ Σ − = Σ 
� � � . (B.12) 

 Now, we restrict our focus in this discussion to the framework of the simplified 

affine example of chapter 5.  Under the assumption that { }; ,s s f f
i i jp q qΣ �  ( , 1,2;i j i j= ≠ ) 

is affine (recall the Affine Spot Market SFs assumption from section 5.1),361 we may 

evaluate the derivatives of { }2 2 1; ,s s f fp q qΣ �  in eq. (B.11) as  

 
{ }2 2 1

1

; ,
0

s s f f

f

p q q
q

∂Σ
=

∂

�
 (B.13) 

and  

                                                 

361 While chapter 5’s discussion uses equilibrium quantities 1

fq  and 2

fq , we use here the 

analogous expressions in terms of an arbitrary 1

fq  and the imputed quantity for firm 2, 2

fq� .   
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{ }2 2 1

2
2

; ,s s f f

f

p q q
q

φ
∂Σ

=
∂

�
�

. (B.14) 

Substituting eqs. (B.13) and (B.14) into eq. (B.11) yields  
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� �

�
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 (B.15) 

Differentiating eq. (B.15) with respect to fp , we have  
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   ′ ′ ′′ ′′= − ⋅ − − ⋅ −
   
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 (B.16) 

 We now apply several results from chapter 4 to simplify eq. (B.16).  Begin by 

considering the derivative ( ) { }( )2,s s s s fd D p dpε − Σ ⋅ ⋅ ⋅  on the right-hand side of eq. 

(B.16):  
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�
�

�
�

 (B.17) 

Examining various terms on the right-hand side of eqs. (B.16) and (B.17), we note the 

following simplifications under the assumptions of chapters 3 and 5:  

•  { }2 2
s s sp β∂Σ ⋅ ⋅ ⋅ ∂ ≡  given the Affine Spot Market SFs assumption (text eq.  

(5.2))  

•  { } ( ) ( ) { }2 0 2 2 1, 0s f f f f f s fD p S p qε ∂Σ ⋅⋅⋅ ∂ − = ∂Σ ⋅⋅⋅ ∂ = 
�  by differentiating text eq. 

(5.12), rewritten in terms of { }2 2 1; ,s s f fp q qΣ �   

•  { } ( ) { }2 2 2 2 2
s f f s fS p q φ∂Σ ⋅ ⋅ ⋅ ∂ = ∂Σ ⋅ ⋅ ⋅ ∂ =� �  by adapting text eq. (5.13) for 2i =   

•  ( ) { }( ) { }( ) ( )1 2 1 1 1 1 01 1 1,s s s s s s sC D p C C q c c qε′ ′ ′− Σ ⋅⋅⋅ = Σ ⋅⋅⋅ = = +  recalling the 

definition of { }1
sΣ ⋅ ⋅ ⋅ ,362 and the Affine Marginal Production Cost Functions 

assumption (text eq. (5.1))  

•  ( ) { }( ) { }( ) ( )1 2 1 1 1 1 1,s s s s s sC D p C C q cε′′ ′′ ′′− Σ ⋅ ⋅ ⋅ = Σ ⋅ ⋅ ⋅ = =  by the same reasoning as 

above  

                                                 

362 Defined symmetrically to { }2

sΣ ⋅ ⋅ ⋅  in eq. (B.12).   
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•  From the additive separability of ( )0,f f fD p ε  in text eq. (3.8), we may write 

( ) ( )0 0,f f f f fD p D pε′ ′≡   

•  By similar reasoning as above, we may write ( )0,f f fD p ε′′  more simply as 

( )0
f fD p′′   

•  ( ),s s s sD p ε γ′ = −  given the Affine Spot Market Demand Function assumption 

from section 5.1  

 Using these results to simplify eq. (B.17), we get  

 ( ) { }( ) ( ) ( )2 2 2 2,
s

s s s s s s f f
f f

d dpD p S p
dp dp

ε γ β φ ′− Σ ⋅ ⋅ ⋅ = − + ⋅ − � . (B.18) 

Using the above results along with eq. (B.18) to simplify eq. (B.16) yields  
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or, rearranging,  
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( ) ( ) ( ){ }
( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 *
1 0 2 2

2

0 2 0 2

2
2

2 1 2 2 1 2 2

2 01 1 1 2

, , ,

1

.

s f f f f f f f s

f

s
f f f f s f f f f

f

s
s s f f f f

f

s s f f

d D p S p S p

dp

dp D p S p p D p S p
dp
dp c S p c S p
dp

p c c q S p

π ε ε

φ γ β φ

φ

 − 

   ′ ′ ′′ ′′= − ⋅ − − −
   

 ′ ′ − ⋅ + + −   

′′ − − + 

� �

� �

� �

�

  

Recalling text eq. (5.4) for 1i = , we may substitute 11 φ  for ( )1 21 s sc γ β + +   in the 

above equation and collect terms to obtain  

 

( ) ( ) ( ){ }
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 *
1 0 2 2

2

2
21 2

0 2 1 2 2
1

0 2 2 01 1 1 2

, , ,

.

s f f f f f f f s

f

s
f f f f f f

f

s f f f f s s f f

d D p S p S p

dp

dp D p S p c S p
dp

p D p S p p c c q S p

π ε ε

φ φ φ
φ

φ

 − 

 −  ′ ′ ′= − ⋅ − ⋅ −    
 ′′ ′′ ′′ − − − − +  

� �

� �

� �

 (B.19) 

 Recall that we defined 1
sq  as the spot market SF { }1 1 2; ,s s f fp q qΣ � , which, using a 

variant of text eq. (5.9), we may write as  

 { } ( )1 1 1 2 1 1 01 1 1; ,s s s f f f s s sq p q q q c pφ β β≡ Σ = − +� . (B.20) 

Using eq. (B.20), we may simplify further the fourth term on the right-hand side of eq. 

(B.19).  Namely, write the leading factor of this term, ( )2 01 1 1
s sp c c qφ  − +  , as  

 ( ) ( ){ }( )2 01 1 1 2 01 1 1 1 01 1 1
s s s f s s sp c c q p c c q c pφ φ φ β β   − + = − + − +    ,  

and collect terms in sp  and 01c  to obtain  
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 ( ) ( ) ( )2 01 1 1 2 1 1 01 1 1 1 1 11 1s s s s s fp c c q c p c c c qφ φ β β φ   − + = − − − −    .  

Using text eq. (5.4) for 1i =  and letting 1
fq  ( ) ( )0 2,f f f f fD p S pε= − � , we may simplify 

the right-hand side of the above as  

 ( ) ( ) ( ){ }( )2 01 1 1 1 2 01 1 0 2,s s s f f f f fp c c q p c c D p S pφ φφ ε   − + = − + −   
� . (B.21) 

 We now consolidate the results in this section.  Begin by substituting eq. (B.21) 

into eq. (B.19):  

 

( ) ( ) ( ){ }
( )

( ) ( ) ( )

( ) ( )
( ) ( ){ }( ) ( )

2 *
1 0 2 2

2

2
21 2

0 2 1 2 2
1

0 2

1 2 01 1 0 2 2

, , ,

, .

s f f f f f f f s

f

s
f f f f f f

f

s f f f f

s f f f f f f f

d D p S p S p

dp

dp D p S p c S p
dp

p D p S p

p c c D p S p S p

π ε ε

φ φ φ
φ

φφ ε

 − 

 −  ′ ′ ′= − ⋅ − ⋅ −    
 ′′ ′′− −
 

′′ − − + − 

� �

� �

�

� �

  

Now substitute this result into the expectation term on the right-hand side of eq. (B.9), 

using ( )0
f fD p′  and ( )0

f fD p′′  in place of ( )0,f f fD p ε′  and ( )0,f f fD p ε′′ , respectively, 

as before:  
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( )( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( ){ }( ) ( ) }

2
1 2 0

2

0 2 0 2

2
21 2

0 2 1 2 2
1

0 2

1 2 01 1 0 2 2

, ,

2

E

, .

tot f f f f

f

f f f f f f f f f

s
f f f f f f

f

s f f f f

s f f f f f f f f

d p S p

dp

D p S p p D p S p

dp D p S p c S p
dp

p D p S p

p c c D p S p S p p

π ε

φ φ φ
φ

φφ ε

   ′ ′ ′′ ′′= − + −
   
  −  ′ ′ ′− ⋅ − ⋅ +      

 ′′ ′′+ −
 

′′ + − + − 

��

� �

� �

�

� �

 (B.22) 

For an equilibrium ( )*
0

f f fp p ε= , section 5.4 shows that fp  and 0
fε  are one-to-one.  

Hence, we may condition in eq. (B.22) on fp  instead of on 0
fε , as in eq. (B.9).  

Distributing the expectation operator inside of the braces in the above expression and 

rearranging, we have  

       

( )( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ){ }( ) ( )

2
1 2 0

2

0 2 0 2

2
21 2

0 2 1 2 2
1

1 2 01 1 0 2 2

, ,

2 E

E

E , .

tot f f f f

f

f f f f s f f f f f f

s f
f f f f f f

f

s f f f f f f f f

d p S p

dp

D p S p p p p D p S p

d p p
D p S p c S p

dp

p p c c D p S p S p

π ε

φ φ φ
φ

φφ ε

    ′ ′ ′′ ′′= − − − −    

 −  ′ ′ ′− ⋅ − ⋅ −    

′′ − − + − 

��

� �

� �

� �

 (B.23) 

 Consider now the signs of the five terms appearing on the right-hand side of eq. 

(B.23).  Based on various assumptions in the text, we may sign only the first and fourth 

of these terms for the general forward market problem, as indicated below:  
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( )( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1 2 0

2

0 2 0 2

2
21 2

0 2 1 2 2
1

1 2

?

?

, ,

2 E

E

E

tot f f f f

f

f f f f s f f f f f f

s f
f f f f f f

f

s

d p S p

dp

D p S p p p p D p S p

d p p
D p S p c S p

dp

p p

π ε

φ φ φ
φ

φφ

−

+

    ′ ′ ′′ ′′= − − − −    

 −  ′ ′ ′− ⋅ − ⋅ −    

−

��

� �
����	���
 ��������	�������


� �
���	��
���������	��������


( ) ( ) ( ){ }( ) ( )01 1 0 2 2

?

, .f f f f f f f fc c D p S p S pε ′′ − + − 
� �

�������������	������������


 (B.24) 

The three terms marked with “?” on the right-hand side of eq. (B.24) are of indeterminate 

sign.363  Because of these analytical indeterminacies, we restrict the quantitative analysis 

to an imputed admissible forward market SF ( )2
f fS p�  for firm 2 (computed numerically), 

a domain of forward market prices fp , and parameter values such that the right-hand 

side of eq. (B.24) is negative, so that  

 
( )( )

( )
2

1 2 0

2

, ,
0

tot f f f f

f

d p S p

dp

π ε
<

��
. (B.25) 

That is, in text chapter 7’s specific numerical examples for the forward market problem, 

we verify numerically for the equilibria we study that the second-order condition 

expressed by eq. (B.24) and inequality (B.25) in fact holds.   

                                                 

363 Note that we derived expressions for ( )0

f fD p′ , ( )E s fp p , and ( )E s f fd p p dp  in text 

chapters 6 and 7, and can obtain an expression for ( )0

f fD p′′  by differentiating ( )0

f fD p′ .  Even if we 
were to use these expressions to simplify eq. (B.24), however, it would not eliminate the indeterminacy of 
terms’ signs in this equation.   
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 We conclude by noting that, under our assumptions, eq. (B.24) and inequality 

(B.25) comprise the second-order sufficient condition for fp  to be a global profit 

maximum for firm 1.  We may make a completely symmetric argument for firm 2’s 

global profit maximum.   
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When you reach an equilibrium in biology you are dead.   
—Arnold Mandell 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix C: Interpretation of ( )fpψ1  and the forward market 

equilibrium optimality condition    

THIS APPENDIX derives eq. (4.43) in the text, rewritten below as eq. (C.1),  

 ( ) { } ( )
*

1 1 2 1
1

, ,
=E E

s f f s f
f f s f

f f

d q q dqp p p p
dp dp

π ε
ψ

 
 + ⋅
 
 

, (C.1) 

and provides an interpretation of ( )1
fpψ  as well as of the forward market equilibrium 

optimality condition.  Eq. (C.1) states that ( )1
fpψ  is the expected change in firm 1’s 

equilibrium optimal provisional spot profits caused by a marginal change in fp  while 

netting out the expected change in its forward contract settlement payment, ( )1
s fp q− , due 

to this change in fp .  In other words, ( )1
fpψ  captures the effect of a marginal change in 
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fp  on firm 1’s expectation of spot market revenue less production cost.  Later in chapter 

8, we also identify ( )1
fpψ  as firm 1’s strategic effect, accounting, in part, for the firm’s 

participation in the forward market.   

 We restate the FOC for the forward market, text eq. (4.19), given the equilibrium 

imposed for this market later in text chapter 4.  As explained in that chapter, this entails  

1. replacing ( ) ( )0 2,f f f f fD p S pε − �  pointwise (i.e., for each 0
fε ) with ( )1

f fS p  

(recall text eq. (4.35) and the associated discussion),  

2. replacing ( )0,f f fD p ε′  with ( )0
f fD p′  (using text eq. (3.13)), and  

3. conditioning the expectation on fp  rather than on 0
fε  (see note 140).   

Making these changes to text eq. (4.19), we may restate this equation as  

 

( ){ } ( ) ( ) ( )

( ) ( ){ }

1 2 0
1 0 2

*
1 1 2

, ,

, ,
E

0.

tot f f f f
f f f f f f f

f

s f f f f s
f

f

d p S p
S p p D p S p

dp

d S p S p
p

dp

π ε

π ε

 ′ ′= + −
 

 
 +
 
 

=

��
�

�
 (C.2) 

Equating eq. (C.2) and text eq. (4.37), a simplified version of the same FOC, we have that  
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( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )
( ) ( ){ }( ){

( ) ( ){ } ( ) ( )

( ) ( ){ }

*
1 1 2

1 0 2

1 0 2

1 1 1 2

2 2 1
0 2

1

2 2 1

, ,
E

E

E ; ,

; ,

; ,

s f f f f s
f f f f f f f f

f

f f f s f f f f f

s s s f f f f

s s f f f f
f f f f

f

s s f f f f

d S p S p
S p p D p S p p

dp

S p p p p D p S p

p C p S p S p

p S p S p
D p S p

q

p S p S p

π ε 
   ′ ′+ − +
   

 
   ′ ′= + − −   

  ′− − Σ  
∂Σ

 ′ ′⋅ ⋅ −
 ∂



∂Σ
+

∂

�
�

�

�

�
�

�

� ( )2
2

.f f f
f S p p

q

 ′ ⋅    

�

 (C.3) 

Next, recall text eq. (4.39) for ( )1
fpψ , rewritten below as eq. (C.4): 

 

( ) ( ) ( ){ }( ){
( ) ( ){ } ( ) ( )

( ) ( ){ } ( )

1 1 1 1 2

2 2 1
0 2

1

2 2 1
2

2

E ; ,

; ,

; ,
.

f s s s f f f f

s s f f f f
f f f f

f

s s f f f f
f f f

f

p p C p S p S p

p S p S p
D p S p

q

p S p S p
S p p

q

ψ   ′≡ − − Σ  
∂Σ

 ′ ′⋅ ⋅ −
 ∂


∂Σ  ′ + ⋅  ∂   

�

�
�

�
�

�

 (C.4) 

Substituting eq. (C.4) into eq. (C.3), simplifying, and solving for ( )1
fpψ , we have that  

  ( ) ( ) ( ){ } ( ) ( ) ( )
*

1 1 2
1 0 2

, ,
E E

s f f f f s
f f s f f f f f

f

d S p S p
p p p p D p S p

dp

π ε
ψ

 
   ′ ′= + −
  

 

�
� . (C.5) 

Using text eqs. (3.43) and (3.42) to simplify eq. (C.5) and imposing Nash equilibrium in 

the forward market, we may rewrite this equation as  
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 ( ) { } ( )
*

1 1 2 1
1

, ,
=E E

s f f s f
f f s f

f f

d q q dqp p p p
dp dp

π ε
ψ

 
 + ⋅
 
 

, (C.6) 

which is eq. (C.1) (and also text eq. (4.43)), the result that we set out to show.   

 To conclude this appendix, we provide an interpretation of the forward market 

equilibrium optimality condition (4.41) in the text.  Given an arbitrary forward market 

demand shock 0
fε , firm 1 faces the forward market residual demand function 

( ) ( )0 2,f f f f fD p S pε − � .  Firm 1’s forward market revenue ( )1 0,f f fR p ε  may then be 

written as  

 ( ) ( ) ( )1 0 0 2, ,f f f f f f f f fR p p D p S pε ε = − 
� . (C.7) 

The derivative of ( )1 0,f f fR p ε  with respect to fp  is, from eq. (C.7),  

 
( ) ( ) ( ) ( ) ( )1 0

0 2 0 2

,
, ,

f f f
f f f f f f f f f f f

f

R p
D p S p p D p S p

p
ε

ε ε
∂  ′ ′ = − + −   ∂

� � . (C.8) 

Substituting eq. (C.8) into the second equality of text eq. (4.19), firm 1’s FOC for the 

forward market, we get  

 
( ) ( ) ( ) ( ){ }*

1 0 2 21 0
0

, , ,,
E 0

s f f f f f f f sf f f
f

f f

d D p S p S pR p
p dp

π ε εε
ε

  −∂   + = ∂
  

� �
. (C.9) 

 Eq. (C.9) is a restatement of firm 1’s forward market FOC, text eq. (4.19).  It is 

the necessary condition for optimality (assuming interiority) for the problem  

( )( )
( ) ( ) ( ) ( ){ }( )

*
1 2 0

*
1 0 1 0 2 2 0

,

max , E , , , ,
f

tot f f

f f f s f f f f f f f s f

p

S

R p D p S p S p

π ε

ε π ε ε ε  ≡ + −   

�� i

� �
 (C.10) 
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which is itself a restatement of text eq. (4.16), the original forward market problem.  Eq. 

(C.9) indicates that, given firm 2’s imputed forward market SF ( )2
f fS p�  and the demand 

shock 0
fε , firm 1’s optimal price ( )*

1 0
f f fp p ε≡  will be such that the following two 

marginal changes sum to zero:  

1. the marginal change in forward market revenue due to increased fp , and  

2. the marginal change in expected optimal provisional spot market profits (which 

includes the forward contract settlement payment) due to increased fp .   
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I have yet to see any problem, however complicated, which, when you look at it in the 
right way, did not become still more complicated.   

—Poul Anderson 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix D: Computational details of the spot market SFE under 

the simplified affine example   

D.1 Comparative statics of firm i’s spot market SF slope s
iβ  and 

parameter iφ  with respect to the parameters ic , jc , and sγ   

TEXT EQ. (5.4) for the parameter iφ  is  

 ( )
1 ( , 1, 2; )

1i s s
i j

i j i j
c

φ
γ β

≡ = ≠
+ +

, (D.1) 

where under our parametric assumptions, we note (recalling the expression (5.8) in the 

text) that  

 0 1iφ< < . (D.2) 

Rewriting text eq. (5.6) (or (5.11)) for a generic firm i and using eq. (D.1) for iφ , we may 

write the slope of firm i’s spot market SF s
iβ  as  
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 ( )1

s s
js

i s s
i jc
γ β

β
γ β
+

=
+ +

. (D.3) 

Interchanging arbitrary subscripts i and j in eq. (D.3), we may express the corresponding 

slope s
jβ  for firm j as  

 ( )1

s s
s i
j s s

j ic
γ ββ
γ β
+=

+ +
. (D.4) 

Clearly, we could solve eqs. (D.3) and (D.4) for ( ), ,s s s
i i i jc cβ β γ=  explicitly.  To sign 

the derivatives of s
iβ  with respect to the parameters ic , jc , and sγ , however, it is 

simpler to differentiate eqs. (D.3) and (D.4) implicitly, as done in subsections D.1.1–

D.1.3 below.  Using these results and eq. (D.1), we may similarly sign derivatives of 

( ), , s
i i i jc cφ φ γ=  with respect to these parameters, as in subsections D.1.4–D.1.6.  As in 

the text, we assume throughout this appendix that 0s
iβ > , 1, 2i = .364   

D.1.1 The partial derivative of ( ), ,s s
i i jc cβ γ  with respect to ic   

From eq. (D.3), we may partially differentiate ( ), ,s s s
i i i jc cβ β γ=  with respect to ic  as 

follows:  

                                                 

364 As noted in text section 1.3, there is a unique solution to eqs. (D.3) and (D.4) for which this is 
the case.  Namely, Rudkevich’s (1999) result implies that the solution to eqs. (D.3) and (D.4) for 

( ), ,s s s

i i i jc cβ β γ=  ( , 1, 2;i j i j= ≠ ) has exactly one root in which both 1

sβ  and 2

sβ  are positive.   
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( )

( ) ( ) ( )

( )

( )
( )
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2

2

, ,

1

1

,
1

s ss
i i ji

i i

s s
j js s s s s s

i j j j i
i i

s s
i j

s
j s s

j
i

s s
i j

c c
c c

c c
c c

c

c

c

β γβ

β β
γ β γ β γ β

γ β

β
γ β

γ β

∂∂ =
∂ ∂

 ∂ ∂
 ⋅ + + − + + + ⋅  ∂ ∂ =

 + + 
∂

− +
∂=
 + + 

  

which, using the definition (D.1), we may write as  

 ( )22
ss
j s si

i j
i ic c

ββ φ γ β
 ∂∂ = − + ∂ ∂  

. (D.5) 

From eq. (D.4), we may differentiate s
jβ  with respect to ic  to obtain  

 

( )

( ) ( )
( )

( )

2

2

, ,

1

1

,
1

s ss
j j ij

i i
s s

s s s si i
j i i j

i i

s s
j i

s
i

i

s s
j i

c c
c c

c c
c c

c

c

c

β γβ

β βγ β γ β

γ β

β

γ β

∂∂
=

∂ ∂

∂ ∂ ⋅ + + − + ⋅ ⋅ ∂ ∂=
 + + 

∂
∂=

 + + 

 

which, again using the definition (D.1), we may write as  

 2
s s
j i

j
i ic c
β βφ
∂ ∂= ⋅
∂ ∂

. (D.6) 

 Substituting eq. (D.6) into eq. (D.5) yields  
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 ( )22 2
s s

s si i
i j j

i ic c
β βφ φ γ β

 ∂ ∂= ⋅ − + ∂ ∂ 
 

which, solving for s
i icβ∂ ∂ , becomes  

 
( )22

2 21

s ss
i ji

i i jc
φ γ ββ

φ φ
+∂ = −

∂ −
. (D.7) 

Rewriting text eq. (5.6) for generic firms i and j, we get  

 ( )s s s
i i jβ φ γ β= + . (D.8) 

We may substitute from eq. (D.8) to simplify eq. (D.7) as  

 
( )2

2 21

ss
ii

i i jc
ββ
φ φ

∂ = −
∂ −

. (D.9) 

Since the subscript in the expression (D.2) is arbitrary, we have that  

 2 21 0i jφ φ− > . (D.10) 

Given inequality (D.10), we conclude from eq. (D.9) that  

 0
s
i

ic
β∂ <
∂

. (D.11) 

D.1.2 The partial derivative of ( ), ,s s
i i jc cβ γ  with respect to jc   

From eq. (D.6), by symmetry, the partial derivative of ( ), ,s s s
i i i jc cβ β γ=  with respect to 

jc  is  
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 2
ss
ji

i
j jc c

ββ φ
∂∂ = ⋅

∂ ∂
. (D.12) 

Letting i j=  in inequality (D.11), we have that 0s
j jcβ∂ ∂ <  which, together with eq. 

(D.12), implies that  

 0
s
i

jc
β∂ <
∂

. (D.13) 

D.1.3 The partial derivative of ( ), ,s s
i i jc cβ γ  with respect to sγ   

From eq. (D.3), we may partially differentiate ( ), ,s s s
i i i jc cβ β γ=  with respect to sγ  as 

follows:  

 

( )

( ) ( )

( ) 2

, ,

1 1 1

,
1

s ss
i i ji

s s

s s
j js s s s

i j j is s

s s
i j

c c

c c

c

β γβ
γ γ

β β
γ β γ β

γ γ

γ β

∂∂ =
∂ ∂

    ∂ ∂
 + + + − + +        ∂ ∂     =

 + + 

  

which simplifies to  

 
( ) 2

1

1

s
j

s s
i
s s s

i jc

β
β γ
γ γ β

∂
+

∂ ∂=
∂  + + 

.  

Using the definition (D.1), this equation becomes  

 2 1
ss
ji

is s

ββ φ
γ γ

 ∂∂ = +  ∂ ∂ 
. (D.14) 

Interchanging arbitrary subscripts i and j in eq. (D.14), we may write this equation as  
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 2 1
s s
j i

js s

β βφ
γ γ
∂  ∂= + ∂ ∂ 

. (D.15) 

 Substituting eq. (D.15) into eq. (D.14) yields  

 2 21 1
s s
i i

i js s

β βφ φ
γ γ

  ∂ ∂= + +  ∂ ∂  
,  

which, solving for s s
iβ γ∂ ∂ , yields  

 
( )2 2

2 2

1
1

s
i ji

s
i j

φ φβ
γ φ φ

+∂ =
∂ −

. (D.16) 

Using inequality (D.10), we conclude from eq. (D.16) that  

 0
s
i
s

β
γ
∂ >
∂

. (D.17) 

We collect the signs of the derivatives of s
iβ  in inequalities (D.11), (D.13), and (D.17) in 

the first column of Table 5.1 in the text.   

D.1.4 The partial derivative of ( ), , s
i i jc cφ γ  with respect to ic   

We may partially differentiate ( ), , s
i i i jc cφ φ γ=  from eq. (D.1) with respect to ic  as 

follows:  

 
( )

( ) 2
1

s
js s

j i
i i

s si i j

c
c

c c

β
γ β

φ

γ β

∂
+ + ⋅

∂ ∂= −
∂  + + 

,  

which, using the definition (D.1), becomes  
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 2
s
js si

i j i
i i

c
c c

βφ φ γ β
 ∂∂ = − + + ⋅ ∂ ∂  

. (D.18) 

Substituting eq. (D.9) into eq. (D.6) and the result, in turn, into eq. (D.18) for s
j icβ∂ ∂  

yields  

 
( )2

2 2
2 21

s
is si

i j i j
i i j

c
c

βφ φ γ β φ
φ φ

  ∂   = − + + ⋅ −
  ∂ −

  

,  

which we may write as  

 
( ) ( ) ( )22 2

2 2
2 2 1

1

s s s
i j i i ji

i j s s
i i j j

c
c

φ γ β β φφ φ φ
φ φ γ β

 +∂  = − ⋅ − −
 ∂ − +
 

. (D.19) 

 Solving eq. (D.8) for ( )s s s
i j iβ γ β φ+ = , we may substitute for this expression in 

the last term in brackets on the right-hand side of eq. (D.19) to obtain  

 
( ) ( )

2
2 2 2

2 2 1
1

s s
i j si

i j i i i j
i i j

c
c

φ γ βφ φ φ β φφ
φ φ
+∂  = − ⋅ − − ∂ −

. (D.20) 

Next, on the right-hand side of eq. (D.20), we (1) substitute for ( )s s
i jφ γ β+  from eq. 

(D.8) in the first factor, and (2) rearrange the bracketed expression to obtain  

 ( )2
2 2 1

1

s
si i i

i j i i i
i i j

c
c
φ β φ φφ φ β

φ φ
∂  = − ⋅ − + ∂ −

. (D.21) 

By rearranging text eq. (5.7), we find that 1s
i i icφ β+ =  which, substituted into eq. (D.21), 

yields simply  
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( )2

2 2

1
1

s
i i i ji

i i jc
β φ φφφ

φ φ
−∂ = −

∂ −
. (D.22) 

Since the subscript in the expression (D.2) is arbitrary, we have that 21 0i jφφ− >  in eq. 

(D.22).  Recalling the inequality (D.10) and our parametric assumptions, both the 

numerator and the denominator of the ratio on the right-hand side of eq. (D.22) are 

positive.  We conclude from eq. (D.22), therefore, that  

 0i

ic
φ∂ <
∂

. (D.23) 

D.1.5 The partial derivative of ( ), , s
i i jc cφ γ  with respect to jc   

We may partially differentiate ( ), , s
i i i jc cφ φ γ=  from eq. (D.1) with respect to jc  as 

follows:  

 
( ) 2

1

s
j

i
ji

s sj i j

c
c

c c

β
φ

γ β

∂
⋅
∂∂ = −

∂  + + 

,  

which, using the definition (D.1), becomes  

 2
s
ji

i i
j j

c
c c

βφ φ
∂∂ = − ⋅

∂ ∂
. (D.24) 

Interchanging arbitrary subscripts i and j in eq. (D.9), we may write  

 
( )2

2 21

ss
jj

j i jc
ββ
φ φ

∂
= −

∂ −
. (D.25) 

Substituting eq. (D.25) into eq. (D.24) yields  
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( )2

2
2 21

s
ji

i i
j i j

c
c

βφ φ
φ φ

 ∂  = − −
 ∂ −
 

,  

which simplifies to  

 
( )2 2

2 21

s
i j ii

j i j

c
c

β φφ
φ φ

∂ =
∂ −

. (D.26) 

Recalling inequality (D.10) and our parametric assumptions, both the numerator and the 

denominator of the ratio on the right-hand side of eq. (D.26) are positive.  We conclude 

from eq. (D.26), therefore, that  

 0i

jc
φ∂ >
∂

. (D.27) 

D.1.6 The partial derivative of ( ), , s
i i jc cφ γ  with respect to sγ   

We may partially differentiate ( ), , s
i i i jc cφ φ γ=  from eq. (D.1) with respect to sγ  as 

follows:  

 
( ) 2

1

1

s
j

i s
i
s s s

i j

c

c

β
γφ

γ γ β

 ∂
+  ∂∂  = −

∂  + + 

,  

which becomes, using the definition (D.1),  

 2 1
s
ji

i is sc
βφ φ

γ γ
 ∂∂ = − +  ∂ ∂ 

. (D.28) 

Interchanging arbitrary subscripts i and j in eq. (D.16), we may write  
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( )2 2

2 2

1
1

s
j ij

s
i j

φ φβ
γ φ φ

+∂
=

∂ −
. (D.29) 

Substituting eq. (D.29) into eq. (D.28) yields  

 
( )2 2

2
2 2

1
1

1
j ii

i is
i j

c
φ φφ φ

γ φ φ

 +∂  = − +
 ∂ − 

,  

which simplifies to  

 
( )2 2

2 2

1
1

i i ji
s

i j

cφ φφ
γ φ φ

+∂ = −
∂ −

. (D.30) 

Recalling inequality (D.10) and our parametric assumptions, both the numerator and the 

denominator of the ratio on the right-hand side of eq. (D.30) are positive.  We conclude 

from eq. (D.30), therefore, that  

 0i
s

φ
γ
∂ <
∂

. (D.31) 

We collect the signs of the derivatives of iφ  in inequalities (D.23), (D.27), and (D.31) in 

the second column of Table 5.1 in the text.   

D.2 Comparing derivatives of firms’ spot market SF slopes s
iβ  and s

jβ  

with respect to the slopes ic  and jc  of a firm’s own and the firm’s 

rival’s marginal cost function  

This section proves inequalities (5.14) and (5.15) in the text, rewritten below as eqs. 

(D.32) and (D.33) ( , 1, 2;i j i j= ≠ ):  
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s s
i i

i jc c
β β∂ ∂>
∂ ∂

, (D.32) 

and  

 
ss
ji

i ic c
ββ ∂∂ >

∂ ∂
, (D.33) 

whereby inequalities (D.32) and (D.33) obtain at all parameter values consistent with our 

parametric assumptions.   

 Equation (D.9) gives an expression for s
i icβ∂ ∂ .  To show that inequalities (D.32) 

and (D.33) hold, we first need to derive expressions for s
i jcβ∂ ∂  and s

j icβ∂ ∂  from the 

analysis in section D.1.  Substituting eq. (D.25) into eq. (D.12), we may write that  

 
( )2

2
2 21

ss
ji

i
j i jc

ββ φ
φ φ

 ∂  = −
 ∂ −
 

, 

or  

 
( )2 2

2 21

ss
j ii

j i jc
β φβ
φ φ

∂ = −
∂ −

. (D.34) 

Interchanging arbitrary subscripts i and j in eq. (D.34) yields  

 
( )2 2

2 21

ss
i jj

i i jc
β φβ
φ φ

∂
= −

∂ −
. (D.35) 

 Now we may demonstrate that inequality (D.32) holds.  Suppose, in contradiction, 

that it does not, that is,  
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s s
i i

i jc c
β β∂ ∂≤
∂ ∂

. (D.36) 

Substituting eqs. (D.9) and (D.34) into inequality (D.36) yields  

 
( ) ( )2 2 2

2 2 2 21 1

s s
i j i

i j i j

β β φ
φ φ φ φ

− ≤ −
− −

,  

which we may simplify and rearrange as  

 ( )
2

2s
si
j

i

β β
φ

 
≤ 

 
. (D.37) 

Solving eq. (D.8) for the ratio s
i iβ φ  yields  

 
s

s si
j

i

β γ β
φ

= + . (D.38) 

Substituting eq. (D.38) into inequality (D.37), we find that  

 ( ) ( )2 2s s s
j jγ β β+ ≤ ,  

or simplifying,  

 ( )2
2 0s s s

jγ γ β+ ≤ . (D.39) 

Since inequality (D.39) is false given our parametric assumptions that 0sγ >  and 

0s
jβ > , we have a contradiction.  Thus, the supposition (D.36) is false and we conclude 

that inequality (D.32) (identical to inequality (5.14)) holds for our parametric 

assumptions.     
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 We turn next to inequality (D.33), and show that it holds.  Suppose, in 

contradiction, that it does not, that is,  

 
ss
ji

i ic c
ββ ∂∂ ≤

∂ ∂
. (D.40) 

Substituting eqs. (D.9) and (D.35) into inequality (D.40) yields  

 
( ) ( )2 2 2

2 2 2 21 1

s s
i i j

i j i j

β β φ
φ φ φ φ

− ≤ −
− −

,  

which simplifies to  

 2 1jφ ≥ . (D.41) 

Since inequality (D.41) is false given the expression (D.2), we have a contradiction.  

Thus, the supposition (D.40) is false and we conclude that inequality (D.33) (identical to 

inequality (5.15)) also holds under our parametric assumptions.     

D.3 The geometry of the partial reaction functions ( )s s
i i j= Rβ β   

In text section 5.3, we defined the partial reaction functions ( )s s
i j iR β β≡  in the 1

sβ -

2
sβ  plane.  Using eq. (D.3) above for s

iβ , we may write ( )s
i jR β  as  

 ( ) ( ) ( , 1, 2; )
1

s s
js s

i i j s s
i j

R i j i j
c
γ β

β β
γ β
+

= ≡ = ≠
+ +

. (D.42) 

The present section demonstrates that the functions ( )s
i jR β  in eq. (D.42) have the 

properties claimed in text section 5.3 and depicted in text Figure 5.2.   
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 We first show that each function ( )s
i jR β  is everywhere increasing and concave in 

its argument 0s
jβ > .  Taking the derivative of ( )s

i jR β  with respect to s
jβ , we get  

 ( ) ( ) ( )
( ) 2

1 1

1

s s s s
i j j is

i j
s s

i j

c c
R

c

γ β γ β
β

γ β

 ⋅ + + − + ⋅ ′ =
 + + 

,  

which simplifies to  

 ( )
( ) 2

1 0
1

s
i j

s s
i j

R
c

β
γ β

′ = >
 + + 

. (D.43) 

From eq. (D.43), the second derivative ( )s
i jR β′′  is  

 ( )
( ) 3

2 0
1

s i
i j

s s
i j

cR
c

β
γ β

′′ = − <
 + + 

. (D.44) 

From eqs. (D.43) and (D.44) and given our parametric restrictions, ( )s
i jR β  is everywhere 

increasing and concave in its argument 0s
jβ > .   

 Next, consider how the function ( )s
i jR β  behaves as 0s

jβ
+→ .  From eq. (D.42),  

 ( ) ( )0 0
lim lim

1s s
j j

s s
js

i j s s
i j

R
cβ β

γ β
β

γ β+ +→ →

+
=

+ +
,  

or simply  

 ( )
0

lim 0
1s

j

s
s

i j s
i

R
cβ

γβ
γ+→

= >
+

. (D.45) 

From eq. (D.43),  
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 ( )
( ) 20 0

1lim lim
1

s s
j j

s
i j

s s
i j

R
cβ β

β
γ β

+ +→ →
′ =

 + + 

,  

which is  

 ( )
( )20

1lim 0
1

s
j

s
i j s

i

R
cβ

β
γ+→

′ = >
+

. (D.46) 

As 0s
jβ

+→ , eqs. (D.45) and (D.46) indicate that ( )s
i jR β  approaches a positive s

iβ -axis 

intercept ( )1s s
icγ γ+  with a positive slope ( )2

1 1 s
ic γ+ .   

 We now examine the limiting behavior of the function ( )s
i jR β  as s

jβ →∞ .  From 

eq. (D.42),  

 

( ) ( )lim lim
1

1lim ,1

s s
j j

s
j

s s
js

i j s s
i j

is s
j

R
c

c

β β

β

γ β
β

γ β

γ β

→∞ →∞

→∞

+
=

+ +

=
+

+

  

which is simply  

 ( ) 1lim 0
s
j

s
i j

i

R
cβ

β
→∞

= > . (D.47) 

From eq. (D.43),  

 ( )
( ) 2

1lim lim
1

s s
j j

s
i j

s s
i j

R
cβ β

β
γ β→∞ →∞

′ =
 + + 

,  

which yields  
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 ( )lim 0
s
j

s
i jR

β
β

→∞
′ = . (D.48) 

As s
jβ →∞ , eq. (D.47) indicates that ( )s

i jR β  approaches 1 ic  (an upper bound, by 

inequality (D.43)), while by eq. (D.48), the slope ( )s
i jR β′  goes to zero.   

 Finally, we note that the above properties guarantee a unique intersection of the 

partial reaction functions ( )1 2
sR β  and ( )2 1

sR β  in the positive orthant corresponding, 

naturally, to firms’ equilibrium choices of 1
sβ  and 2

sβ .365  That is, there is a unique 

solution ( )1 2,s sβ β  corresponding to a strictly increasing spot market SF for each firm.  

                                                 

365 See also note 364.   
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Someone told me that each equation I included in the book would halve the sales.   
—Stephen Hawking, A Brief History of Time 

 
 
 
 
 
 
 
 
 
 
 
 

Appendix E: Computational details of the derivation of optimal 

forward market supply functions and results of 

numerical examples   

E.1 Supporting analysis for text equations (7.25) and (7.26)   

THIS SECTION provides some algebraic details and explicit parameter definitions for the 

derivation of text eqs. (7.25) and (7.26).   

 Given the definitions in text section 7.1, we may recast text eqs. (7.11) and (7.12) 

—the firms’ respective forward market equilibrium optimality conditions—as  

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 1 1
1,1 1 1,2 2 1,3 1,4 1

1 1 1 1
2,1 1 2,2 2 2,3 2,4 2

1 1 1 1
3,1 1 3,2 2 3,3 3,4 0

f f f f f f f

f f f f f f f

f f f f f

C S p C S p C p C S p

C S p C S p C p C S p

C S p C S p C p C

′ + + + 
′ + + + + 

 + + + + = 

 (E.1) 

and  
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( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2 2 2 2
1,1 1 1,2 2 1,3 1,4 1

2 2 2 2
2,1 1 2,2 2 2,3 2,4 2

2 2 2 2
3,1 1 3,2 2 3,3 3,4 0.

f f f f f f f

f f f f f f f

f f f f f

C S p C S p C p C S p

C S p C S p C p C S p

C S p C S p C p C

′ + + + 
′ + + + + 

 + + + + = 

 (E.2) 

We may define the coefficients ,
i
k lC  in eqs. (E.1) and (E.2) by direct comparison with text 

eqs. (7.11) and (7.12) as follows:  

( ) ( )
( ) ( )
( ) ( )

( ) ( ) 2

1 2
1,1 1 1

1 2
1,2 1 2

1 2
1,3 1

,1 2
1,4 1 2

1 2
2,1 1 1 2

1 1 1 ,

1 1 1 ,

2 1 1 ,

1 1 2 ,
2

1 2

R

R

R

R R

R

R

R

s
a R a a

s
a R a a

s s
a R a a

s s
a R a a b a R

R a

C

C

C

C

C c

ν

ν

ν

ν ν
ν

ν

ν

φω φ λ σ ω γ ω

φω φ λ σ ω γ ω

φ γ ω λ σ ω γ ω

σ
φω λ σ ω γ ω ω γ ω ν

σ

φφ λ σ ω

 = − + − 
 = − + − 
 = − − + − 

  
 = + − + − −        

= + ( )
( ) ( ) ( ){ }

( ) ( ) ( ){ }
( ) ( ){ }( )

( )

( ) 2

2
1 1 2 2 2

1 2
2,2 2 1 2 2 2

1 2
2,3 2 2 1 2

1 2
2,4 01 1 2

,
2

1 1 1 ,

1 1 1 ,

2 1 1 ,

1 2

2
2

R

R

R

R

R R

R

s
a

s
a R a a

s
a R a a

s s
a R a a

s
R a a

s
a b a R

C

C

C c

ν

ν

ν

ν

ν ν

ν

γ ω

ω φ λ σ ω φφ φ γ ω φ

ω φ λ σ ω φφ φ γ ω φ

γ ω λ σ ω φ γ ω φ φφ

φφ λ σ ω γ ω

σ
ω ω γ ω ν

σ

 − 

 + − − + − + 

 = − − + − + 

 = − − + − + + 

 = + − 

 
+ + − −

 
( ) ( ){ }

( ) ( )

( ) 2

2
1 2 2 2

1 2
3,1 1

1
3,2 2

1
3,3

,1
3,4 2

1 1 ,

1 1 2 ,

1 ,

2 ,

2 ,
2

R

R

R R

R

s
R a a

s
R a a

s
a

a

s
b a R

C

C

C

C

ν

ν

ν ν

ν

λ σ ω φφ φ γ ω φ

φ λ σ ω γ ω

φ

γ ω
ω

σ
ω γ ω ν

σ























   − + − +       
 = − + + −  
= − 
−
= −

  = + − −   

  

(E.3) 

and  
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( ) ( ) ( ){ }
( )

( ) ( ) ( ){ }
( ) ( ){ }( )

( )

2 2
1,1 1 1 2 1 1

2 2
1,2 2 1 2

2
2 1 2 1 1

2 2
1,3 1 1 1 2

2 2
1,4 02 1 2

1 1 1 ,

1 2

1 1 1 ,

2 1 1 ,

1 2

2

R

R

R

R

R

s
a R a a

s
R a a

s
a R a a

s s
a R a a

s
R a a

s
a b

C

C c

C

C c

ν

ν

ν

ν

ν

ω φ λ σ ω φφ φ γ ω φ

φφ λ σ ω γ ω

ω φ λ σ ω φφ φ γ ω φ

γ ω λ σ ω φ γ ω φ φφ

φφ λ σ ω γ ω

ω ω γ

 = − − + − + 

 = + − 

 + − − + − + 

 = − − + − + + 

 = + − 

+ + −( ) ( ) ( ){ }
( ) ( )
( ) ( )
( ) ( )

( )

2 , 2
1 2 1 12

2 2
2,1 2 1

2 2
2,2 2 2

2 2
2,3 2

2 2
2,4 2

1 1 ,
2

1 1 1 ,

1 1 1 ,

2 1 1 ,

1 1

R R

R

R

R

R

R

R

s
a R R a a

s
a R a a

s
a R a a

s s
a R a a

s
a R a a

C

C

C

C

ν ν
ν

ν

ν

ν

ν

ν

σ
ω ν λ σ ω φφ φ γ ω φ

σ

φ ω φ λ σ ω γ ω

φ ω φ λ σ ω γ ω

φ γ ω λ σ ω γ ω

φ ω λ σ ω γ ω

  
 − − + − +        

 = − + − 
 = − + − 
 = − − + − 

 = + −  ( )

( ) ( )

( )

2

2

,
2

2
3,1 1

2 2
3,2 2

2
3,3

,2
3,4 2

2 ,
2

1 ,

1 1 2 ,

2 ,

2 .
2

R R

R

R

R R

R

s
b a R

s
R a a

s
a

a

s
b a R

C

C

C

C

ν ν

ν

ν

ν ν

ν

σ
ω γ ω ν

σ

φ

φ λ σ ω γ ω

γ ω
ω

σ
ω γ ω ν

σ























   + − −        
= −

 = − + + −  
−
= −

  = + − −   

  

 (E.4) 

 We next show that the coefficients of the form 1 2 1 2
j k k j−P P P P  in text eqs. (7.20) 

and (7.21) are quadratic forms in the elements of ( )f fS p++ , where  

 ( ) ( ) ( )( )1 2 1f f f f f f fS p S p S p p++ ≡
®

 (E.5) 

from text eq. (7.13).  Using the definition of i
kP  from text eq. (7.17), we may express the 

coefficients in text eqs. (7.20) and (7.21) in terms of the coefficients ,
i
k lC  above as 
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follows.  In text eq. (7.20), 1 2 1 2
1 2 2 1−P P P P  is  

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 1 2 1 1 1 1
1 2 2 1 1,1 1 1,2 2 1,3 1,4

2 2 2 2
2,1 1 2,2 2 2,3 2,4

1 1 1 1
2,1 1 2,2 2 2,3 2,4

2 2 2 2
1,1 1 1,2 2 1,3 1,4 ,

f f f f f

f f f f f

f f f f f

f f f f f

C S p C S p C p C

C S p C S p C p C

C S p C S p C p C

C S p C S p C p C

 − = + + + 
 ⋅ + + + 
 − + + + 
 ⋅ + + + 

P P P P

 (E.6) 

or expanding the products,  

 

( ) ( )
( ) ( )
( )
( ) ( ) ( )

21 2 1 2 1 2 1 2
1 2 2 1 1,1 2,1 2,1 1,1 1

21 2 1 2
1,2 2,2 2,2 1,2 2

21 2 1 2
1,3 2,3 2,3 1,3

1 2 1 2 1 2 1 2
1,1 2,2 1,2 2,1 2,1 1,2 2,2 1,1 1 2

1 2 1 2 1 2
1,1 2,3 1,3 2,1 2,1 1,3 2

f f

f f

f

f f f f

C C C C S p

C C C C S p

C C C C p

C C C C C C C C S p S p

C C C C C C C

 − = −  

 + −  

 + −  
 + + − −  

+ + − −

P P P P

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2
,3 1,1 1

1 2 1 2 1 2 1 2
1,2 2,3 1,3 2,2 2,2 1,3 2,3 1,2 2

1 2 1 2 1 2 1 2
1,1 2,4 1,4 2,1 2,1 1,4 2,4 1,1 1

1 2 1 2 1 2 1 2
1,2 2,4 1,4 2,2 2,2 1,4 2,4 1,2 2

1 2 1 2 1
1,3 2,4 1,4 2,3 2,3

f f f

f f f

f f

f f

C S p p

C C C C C C C C S p p

C C C C C C C C S p

C C C C C C C C S p

C C C C C

 
 
 + + − −  

+ + − −

+ + − −

+ + −( )
( )

2 1 2
1,4 2,4 1,3

1 2 1 2
1,4 2,4 2,4 1,4 .

fC C C p

C C C C

−

+ −

 (E.7) 

In text eq. (7.21), 1 2 1 2
2 1 1 2−P P P P  is just the additive inverse of 1 2 1 2

1 2 2 1−P P P P  given by eq. 

(E.6), so we have from eq. (E.7) that  
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( ) ( )
( ) ( )
( )
( ) ( ) ( )

21 2 1 2 1 2 1 2
2 1 1 2 2,1 1,1 1,1 2,1 1

21 2 1 2
2,2 1,2 1,2 2,2 2

21 2 1 2
2,3 1,3 1,3 2,3

1 2 1 2 1 2 1 2
2,1 1,2 2,2 1,1 1,1 2,2 1,2 2,1 1 2

1 2 1 2 1 2
2,1 1,3 2,3 1,1 1,1 2,3 1

f f

f f

f

f f f f

C C C C S p

C C C C S p

C C C C p

C C C C C C C C S p S p

C C C C C C C

 − = −  

 + −  

 + −  
 + + − −  

+ + − −

P P P P

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2
,3 2,1 1

1 2 1 2 1 2 1 2
2,2 1,3 2,3 1,2 1,2 2,3 1,3 2,2 2

1 2 1 2 1 2 1 2
2,1 1,4 2,4 1,1 1,1 2,4 1,4 2,1 1

1 2 1 2 1 2 1 2
2,2 1,4 2,4 1,2 1,2 2,4 1,4 2,2 2

1 2 1 2 1
2,3 1,4 2,4 1,3 1,3

f f f

f f f

f f

f f

C S p p

C C C C C C C C S p p

C C C C C C C C S p

C C C C C C C C S p

C C C C C

 
 
 + + − −  

+ + − −

+ + − −

+ + −( )
( )

2 1 2
2,4 1,4 2,3

1 2 1 2
2,4 1,4 1,4 2,4 .

fC C C p

C C C C

−

+ −

 (E.8) 

In text eq. (7.20), 1 2 1 2
2 3 3 2−P P P P  is  

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 1 2 1 1 1 1
2 3 3 2 2,1 1 2,2 2 2,3 2,4

2 2 2 2
3,1 1 3,2 2 3,3 3,4

1 1 1 1
3,1 1 3,2 2 3,3 3,4

2 2 2 2
2,1 1 2,2 2 2,3 2,4 ,

f f f f f

f f f f f

f f f f f

f f f f f

C S p C S p C p C

C S p C S p C p C

C S p C S p C p C

C S p C S p C p C

 − = + + + 
 ⋅ + + + 
 − + + + 
 ⋅ + + + 

P P P P

 (E.9) 

or expanding the products,  
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( ) ( )
( ) ( )
( )
( ) ( ) ( )

21 2 1 2 1 2 1 2
2 3 3 2 2,1 3,1 3,1 2,1 1

21 2 1 2
2,2 3,2 3,2 2,2 2

21 2 1 2
2,3 3,3 3,3 2,3

1 2 1 2 1 2 1 2
2,1 3,2 2,2 3,1 3,1 2,2 3,2 2,1 1 2

1 2 1 2 1 2
2,1 3,3 2,3 3,1 3,1 2,3 3

f f

f f

f

f f f f

C C C C S p

C C C C S p

C C C C p

C C C C C C C C S p S p

C C C C C C C

 − = −  

 + −  

 + −  
 + + − −  

+ + − −

P P P P

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2
,3 2,1 1

1 2 1 2 1 2 1 2
2,2 3,3 2,3 3,2 3,2 2,3 3,3 2,2 2

1 2 1 2 1 2 1 2
2,1 3,4 2,4 3,1 3,1 2,4 3,4 2,1 1

1 2 1 2 1 2 1 2
2,2 3,4 2,4 3,2 3,2 2,4 3,4 2,2 2

1 2 1 2 1
2,3 3,4 2,4 3,3 3,3

f f f

f f f

f f

f f

C S p p

C C C C C C C C S p p

C C C C C C C C S p

C C C C C C C C S p

C C C C C

 
 
 + + − −  

+ + − −

+ + − −

+ + −( )
( )

2 1 2
2,4 3,4 2,3

1 2 1 2
2,4 3,4 3,4 2,4 .

fC C C p

C C C C

−

+ −

 (E.10) 

In text eq. (7.21), 1 2 1 2
1 3 3 1−P P P P  is  

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 1 2 1 1 1 1
1 3 3 1 1,1 1 1,2 2 1,3 1,4

2 2 2 2
3,1 1 3,2 2 3,3 3,4

1 1 1 1
3,1 1 3,2 2 3,3 3,4

2 2 2 2
1,1 1 1,2 2 1,3 1,4 ,

f f f f f

f f f f f

f f f f f

f f f f f

C S p C S p C p C

C S p C S p C p C

C S p C S p C p C

C S p C S p C p C

 − = + + + 
 ⋅ + + + 
 − + + + 
 ⋅ + + + 

P P P P

 (E.11) 

or expanding the products,  
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( ) ( )
( ) ( )
( )
( ) ( ) ( )

21 2 1 2 1 2 1 2
1 3 3 1 1,1 3,1 3,1 1,1 1

21 2 1 2
1,2 3,2 3,2 1,2 2

21 2 1 2
1,3 3,3 3,3 1,3

1 2 1 2 1 2 1 2
1,1 3,2 1,2 3,1 3,1 1,2 3,2 1,1 1 2

1 2 1 2 1 2
1,1 3,3 1,3 3,1 3,1 1,3 3

f f

f f

f

f f f f

C C C C S p

C C C C S p

C C C C p

C C C C C C C C S p S p

C C C C C C C

 − = −  

 + −  

 + −  
 + + − −  

+ + − −

P P P P

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2
,3 1,1 1

1 2 1 2 1 2 1 2
1,2 3,3 1,3 3,2 3,2 1,3 3,3 1,2 2

1 2 1 2 1 2 1 2
1,1 3,4 1,4 3,1 3,1 1,4 3,4 1,1 1

1 2 1 2 1 2 1 2
1,2 3,4 1,4 3,2 3,2 1,4 3,4 1,2 2

1 2 1 2 1
1,3 3,4 1,4 3,3 3,3

f f f

f f f

f f

f f

C S p p

C C C C C C C C S p p

C C C C C C C C S p

C C C C C C C C S p

C C C C C

 
 
 + + − −  

+ + − −

+ + − −

+ + −( )
( )

2 1 2
1,4 3,4 1,3

1 2 1 2
1,4 3,4 3,4 1,4 .

fC C C p

C C C C

−

+ −

 (E.12) 

 The right-hand sides of each of eqs. (E.7), (E.8), (E.10), and (E.12) are indeed 

quadratic forms in the elements of ( )f fS p++ .  Below, we specify explicitly the 

( ) ( )2 x 2n n+ +  symmetric coefficient matrices jkQ  associated with these four quadratic 

forms.  Text eq. (7.23), rewritten below as eq. (E.13),  

 ( ) ( ) 1 2 1 2f f f f
jk j k k jS p S p++ ++ ≡ −Q P P P P

®

, (E.13) 

defined implicitly the coefficient matrix jkQ  with reference to the quadratic forms 

1 2 1 2
j k k j−P P P P  (from the left-hand sides of eqs. (E.7), (E.8), (E.10), and (E.12)).  Recalling 

the four quadratic forms in text eqs. (7.25) and (7.26) of the form 

( ) ( )f f f f
jkS p S p++ ++Q

®

, each has a corresponding coefficient matrix 12Q , 21Q , 23Q , and 

13Q  which we now specify.   

 Denote the element in row x and column y of the coefficient matrix jkQ  as xy
jkq .  In 
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terms of the coefficients ,
i
k lC  given in the expressions (E.3) and (E.4), the elements of 12Q  

are as follows (see the right-hand side of eq. (E.7)):  

     

11 1 2 1 2
12 1,1 2,1 2,1 1,1

22 1 2 1 2
12 1,2 2,2 2,2 1,2

33 1 2 1 2
12 12 1,3 2,3 2,3 1,3

44 1 2 1 2
12 1,4 2,4 2,4 1,4

12 21 1 2 1
12 12 1,1 2,2 1,2

12

Diagonal elements
 

of 

1
2

Off-diagonal elements
 

of 

C C C C

C C C C

C C C C

C C C C

C C C C

 = −


= −


= −
 = −

= = +

Q

Q

q
q
q
q
q q ( )

( )

( )

( )

2 1 2 1 2
2,1 2,1 1,2 2,2 1,1

13 31 1 2 1 2 1 2 1 2
12 12 1,1 2,3 1,3 2,1 2,1 1,3 2,3 1,1

14 41 1 2 1 2 1 2 1 2
12 12 1,1 2,4 1,4 2,1 2,1 1,4 2,4 1,1

23 32 1 2 1 2 1 2 1 2
12 12 1,2 2,3 1,3 2,2 2,2 1,3 2,3 1,2

12

1
2
1
2
1
2

C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C

− −

= = + − −

= = + − −

= = + − −

q q
q q
q q
q ( )

( )

24 42 1 2 1 2 1 2 1 2
12 1,2 2,4 1,4 2,2 2,2 1,4 2,4 1,2

34 43 1 2 1 2 1 2 1 2
12 12 1,3 2,4 1,4 2,3 2,3 1,4 2,4 1,3

1
2
1 .
2

C C C C C C C C

C C C C C C C C










 
 
 
 






 
 
 
 
 = = + − − 
 
 = = + − −  

q
q q  (E.14) 

 Since 21 12= −Q Q , the elements of 21Q  are simply the additive inverses of the 

expressions in (E.14) above (see the right-hand side of eq. (E.8)).  Similar to the above, in 

terms of the coefficients ,
i
k lC  given in the expressions (E.3) and (E.4) we write the 

elements of 21Q  as follows:  
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11 1 2 1 2
21 2,1 1,1 1,1 2,1

22 1 2 1 2
21 2,2 1,2 1,2 2,2

33 1 2 1 2
21 21 2,3 1,3 1,3 2,3

44 1 2 1 2
21 2,4 1,4 1,4 2,4

12 21 1 2 1
21 21 2,1 1,2 2,2

21

Diagonal elements
 

of 

1
2

Off-diagonal elements
 

of 

C C C C

C C C C

C C C C

C C C C

C C C C

 = −


= −


= −
 = −

= = +

Q

Q

q
q
q
q
q q ( )

( )

( )

( )

2 1 2 1 2
1,1 1,1 2,2 1,2 2,1

13 31 1 2 1 2 1 2 1 2
21 21 2,1 1,3 2,3 1,1 1,1 2,3 1,3 2,1

14 41 1 2 1 2 1 2 1 2
21 21 2,1 1,4 2,4 1,1 1,1 2,4 1,4 2,1

23 32 1 2 1 2 1 2 1 2
21 21 2,2 1,3 2,3 1,2 1,2 2,3 1,3 2,2

21

1
2
1
2
1
2

C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C

− −

= = + − −

= = + − −

= = + − −

q q
q q
q q
q ( )

( )

24 42 1 2 1 2 1 2 1 2
21 2,2 1,4 2,4 1,2 1,2 2,4 1,4 2,2

34 43 1 2 1 2 1 2 1 2
21 21 2,3 1,4 2,4 1,3 1,3 2,4 1,4 2,3

1
2
1 .
2

C C C C C C C C

C C C C C C C C










 
 
 
 






 
 
 
 
 = = + − − 
 
 = = + − −  

q
q q  (E.15) 

 In terms of the coefficients ,
i
k lC  given in the expressions (E.3) and (E.4), the 

elements of 23Q  are as follows (see the right-hand side of eq. (E.10)):  
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11 1 2 1 2
23 2,1 3,1 3,1 2,1

22 1 2 1 2
23 2,2 3,2 3,2 2,2

33 1 2 1 2
23 23 2,3 3,3 3,3 2,3

44 1 2 1 2
23 2,4 3,4 3,4 2,4

12 21 1 2 1
23 23 2,1 3,2 2,2

23

Diagonal elements
 

of 

1
2

Off-diagonal elements
 

of 

C C C C

C C C C

C C C C

C C C C

C C C C

 = −


= −


= −
 = −

= = +

Q

Q

q
q
q
q
q q ( )

( )

( )

( )

2 1 2 1 2
3,1 3,1 2,2 3,2 2,1

13 31 1 2 1 2 1 2 1 2
23 23 2,1 3,3 2,3 3,1 3,1 2,3 3,3 2,1

14 41 1 2 1 2 1 2 1 2
23 23 2,1 3,4 2,4 3,1 3,1 2,4 3,4 2,1

23 32 1 2 1 2 1 2 1 2
23 23 2,2 3,3 2,3 3,2 3,2 2,3 3,3 2,2

23

1
2
1
2
1
2

C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C

− −

= = + − −

= = + − −

= = + − −

q q
q q
q q
q ( )

( )

24 42 1 2 1 2 1 2 1 2
23 2,2 3,4 2,4 3,2 3,2 2,4 3,4 2,2

34 43 1 2 1 2 1 2 1 2
23 23 2,3 3,4 2,4 3,3 3,3 2,4 3,4 2,3

1
2
1 .
2

C C C C C C C C

C C C C C C C C










 
 
 
 






 
 
 
 
 = = + − − 
 
 = = + − −  

q
q q  (E.16) 

 In terms of the coefficients ,
i
k lC  given in the expressions (E.3) and (E.4), the 

elements of 13Q  are as follows (see the right-hand side of eq. (E.12)):  
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11 1 2 1 2
13 1,1 3,1 3,1 1,1

22 1 2 1 2
13 1,2 3,2 3,2 1,2

33 1 2 1 2
13 13 1,3 3,3 3,3 1,3

44 1 2 1 2
13 1,4 3,4 3,4 1,4

12 21 1 2 1
13 13 1,1 3,2 1,2

13

Diagonal elements
 

of 

1
2

Off-diagonal elements
 

of 

C C C C

C C C C

C C C C

C C C C

C C C C

 = −


= −


= −
 = −

= = +

Q

Q

q
q
q
q
q q ( )

( )

( )

( )

2 1 2 1 2
3,1 3,1 1,2 3,2 1,1

13 31 1 2 1 2 1 2 1 2
13 13 1,1 3,3 1,3 3,1 3,1 1,3 3,3 1,1

14 41 1 2 1 2 1 2 1 2
13 13 1,1 3,4 1,4 3,1 3,1 1,4 3,4 1,1

23 32 1 2 1 2 1 2 1 2
13 13 1,2 3,3 1,3 3,2 3,2 1,3 3,3 1,2

13

1
2
1
2
1
2

C C C C

C C C C C C C C

C C C C C C C C

C C C C C C C C

− −

= = + − −

= = + − −

= = + − −

q q
q q
q q
q ( )

( )

24 42 1 2 1 2 1 2 1 2
13 1,2 3,4 1,4 3,2 3,2 1,4 3,4 1,2

34 43 1 2 1 2 1 2 1 2
13 13 1,3 3,4 1,4 3,3 3,3 1,4 3,4 1,3

1
2
1 .
2

C C C C C C C C

C C C C C C C C










 
 
 
 






 
 
 
 
 = = + − − 
 
 = = + − −  

q
q q  (E.17) 

 Some simplifications of the elements xy
jkq  of the coefficient matrices jkQ  in the 

expressions (E.14)–(E.17) would be possible if we were to substitute the definitions of 

the coefficients ,
i
k lC  from the expressions (E.3) and (E.4).  These simplifications are 

insufficient, however, to justify recasting the elements xy
jkq  in (E.14)–(E.17) in terms of 

the underlying primitive parameters.  As done above, representing the xy
jkq  as functions of 

the coefficients ,
i
k lC  is relatively transparent and convenient for our purposes.  The 

MATLAB code used to solve the system in text eqs. (7.25) and (7.26) uses this 

representation of the problem’s parameters in the firms’ forward market equilibrium 

optimality conditions.   
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E.2 Theory and computation of singularities in the system of text equation 

(7.32)    

In text section 7.2.1, we claimed that the system (7.32) is an example of a singular 

quasilinear ODE system.  In this section, we explain why this terminology is appropriate.   

 Singular ODEs bear a close resemblance to—but are distinct from—so-called 

differential-algebraic equations (DAEs), commonly expressed in the form (Rabier and 

Rheinboldt 2002, 189)  

 
( )
( )

1 1 2

1 2

,

0 ,

m

n m

x f x x

g x x −

= ∈ 


= ∈ 

� \

\
 (E.18) 

where ( )1 2, m n mx x −∈ ×\ \ .366  To investigate the distinction between singular ODEs and 

DAEs, first consider the general form for an implicit ODE,  

 ( ), 0x x =�F , (E.19) 

where (letting r x≡ �  for notational clarity) ( ), : n n nx r × →\ \ \F  is a sufficiently 

smooth function.367  If the (partial) derivative ( ),rD x rF  is invertible at a point ( )0 0,x r , 

then eq. (E.19) is clearly reducible to an explicit initial-value problem with initial 

conditions ( ) 00x x=  and ( ) 00x r=� , and the standard theory of ODEs applies.  If on the 

other hand ( ),rD x rF  is not invertible at ( )0 0,x r , then eq. (E.19) is either a DAE or a 

                                                 

366 As Rabier and Rheinboldt (2002, 190) point out, DAEs need not be clearly divisible into 
“differential” and “algebraic” components (as is the case in the system (E.18) having m differential 
equations and the n m−  algebraic equations).  While (E.18) is a familiar form for DAEs from numerous 
applications, they may also have the more general—implicit—form of ( ), 0x x =�F , as we discuss further 
below.   

367 This discussion follows closely that of Rabier and Rheinboldt (2002, 190).   
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singular ODE.  The distinction between the two lies in how the singularity of ( ),rD x rF  

at ( )0 0,x r  affects the total derivative of ( ),x rF  with respect to both arguments, denoted 

as ( ),D x rF .  Equation (E.19) is classified as a DAE if and only if two conditions hold:  

1. The derivative ( )0 0,D x rF  is surjective, despite the singularity of ( )0 0,rD x rF .  

(Note that when ( )0 0,rD x rF  is invertible, ( )0 0,D x rF  is surjective, i.e., the 

function maps onto \ ). 

2. The rank of ( )0 0,rD x rF  is constant (and hence not full) on some neighborhood 

of ( )0 0,x r .   

In all other cases—particularly when ( )0 0,x r  may be approximated arbitrarily closely by 

points ( ),x r  at which ( ),rD x rF  is invertible—eq. (E.19) is a singular ODE.   

 Now consider conditions 1 and 2 above with respect to the implicit equation in the 

text, the system (7.35), for the problem at hand.  Whether the first condition above is 

satisfied depends, in general, on the parameters of the problem, so it will be easier to 

proceed by examining the second condition above.  Replacing x with fS ++  (from eq. 

(E.5)) and now letting ( ) ( ) ( )( )1 2 1f f f f f fr S p S p S p+′ ′ ′≡ =
®

, we may write ( ),x rF  

as ( ),fS r++F .  Let 0
fp ∈ \  be a price, and choose the augmented vector of SFs 

( ) ( ) ( )( )1 2
f f f f f f fS p S p S p p+ ≡

®

 such that the point ( )0
f fS p+  lies on the singular 
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locus (see text subsection 7.2.1).368  Next, let ( )0 0
f f fS S p++ ++≡  be the corresponding 

doubly-augmented vector of SFs evaluated at 0
fp , and define ( )0 0

f fr S p+′≡  such that 

( )0 0,f
rD S r++F  is singular and of rank 0k .  Then, it is clear from the geometry of the 

singular locus369 that although ( )0 0,f
rD S r++F  is not invertible, there exist prices 

00 0
f fp p≠  arbitrarily close to 0

fp  (defining ( )00 00
f f fS S p++ ++≡  and ( )00 00

f fr S p+′≡ ) for 

which ( )00 00,f
rD S r++F  is invertible.  Hence, there is no neighborhood of ( )0

f fS p+  for 

which the rank of ( )( ),f f
rD S p r++F  is constant at 0k  throughout.  We conclude that 

the second condition above (i.e., that concerning constant rank)—necessary for the 

system (7.35) in the text to be a DAE—does not hold.  This confirms our classification 

(in text section 7.2.1) of the system (7.35) as a singular ODE rather than a DAE.   

 Singular systems of ODEs are a relatively recent research focus in 

mathematics.370  For example, Rabier (1989) was the first systematic study of singular 

quasilinear (and related) ODE systems (Rabier and Rheinboldt 2002, 324).  Rabier and 

Rheinboldt conjecture (p. 324) that this paucity of attention may be due to a lack of 

appreciation for the connections between singular DAEs and singular ODEs.  Such DAEs 

do arise naturally, for example, in the theory of electrical networks, in flow problems, and 

                                                 

368 Here, we have used ( )3

f f fS p p≡  from text eq. (7.29).   

369 Recall from text subsection 7.2.1 and Figure 7.1 that the singular locus of the system (7.35) is a 
quadratic surface in ( )1 2, ,f f fS S p -space, a subset of 3\ .   

370 Rabier and Rheinboldt (2002, 324).  These authors also note, however, that the case of scalar 
singular ODEs was analyzed at least as early as 1873.   
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in plasticity theory.371  Under a geometric reduction procedure,372 the DAEs that 

characterize such phenomena may be recast as singular ODEs, and as such, are often 

more amenable to analysis.  For our purposes, we note that no previous economic 

applications of singular ODEs are known to the present author, whether in the literature 

on supply function equilibria or, more broadly, in the fields of game theory or industrial 

organization.  The present investigation thus suggests that the theoretical and numerical 

tools developed in Rabier and Rheinboldt (2002) may find a new area of application in 

solving multi-settlement market SFE models.   

 Presenting the details of Rabier and Rheinboldt’s (2002, chs. VII and XIV) 

analysis of singular quasilinear ODEs would take us too far afield, so we simply state 

their essential results without proof, insofar as they apply to the system (7.32) in the text, 

our problem of interest.  First, denote a singular point373  

 ( ) ( ) ( )( )0 1 0 2 0 0 1f f f f f f fS p S p S p p++ ≡
®

 

at a price 0
fp  as a simple singular point if the following two conditions hold:374  

                                                 

371 Among other fields; see Rabier and Rheinboldt (2002, 323) for relevant references.   

372 Rabier and Rheinboldt (2002).  See their chapter IV for details of this reduction procedure.   

373 Augmented by “1” as the final element of the vector ( )0

f fS p++ , for compatibility with system 
(7.32)–(7.34) in the text.   

374 Regarding these conditions, recall the following definitions from the theory of linear 
transformations (de la Fuente 2000, 123).  Let X and Y be two vector spaces defined over the same field F, 
and let :T X Y→  be a linear function.  Then:  

1. The range of T, rge T , is the subset of Y given by  

 ( ) ( ){ }rge :  for some T T X y Y y T X x X= = ∈ = ∈ .   

2. The kernel (or null space) of T, ker T , is the subset of X given by  

 ( ) ( ){ }1ker :  T T x X T x−= = ∈ =0 0 .   
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Condition 1: ( )( )0dim ker 1f fS p++ =A  

Condition 2: ( )( ) ( )( )0 0rgef f f fS p S p++ ++∉G A  

 Consider whether text eqs. (7.32)–(7.34) that characterize our problem satisfy 

these two conditions.  We argue, first, that no point in the singular locus of the system 

(7.32) in the text satisfies Condition 1 above.  This is because at every singular point in 

our problem, both text eqs. (7.36) and (7.37) hold, implying that  

 ( )( )0dim ker 2f fS p++ =A . (E.20) 

Therefore, even before considering Condition 2, we may conclude—since Condition 1 is 

violated everywhere—that points in the singular locus of the system (7.32) in the text are 

not simple singular points.  Examining Condition 2 above for completeness’ sake, this 

condition implies that any point lying on the manifold at which the singular locus 

intersects the graph of either of the first two terms of the vector ( )( )0
f fS p++G 375 is also 

not a simple singular point.  That is, Condition 2 requires that, for ( )0
f fS p++  to be a 

simple singular point, it is necessary that  

 ( ) ( )0 23 0 0f f f fS p S p++ ++ ≠Q
®

 (E.21) 

and  

                                                                                                                                                 

In words, rge T  is the set of vectors y Y∈  for which ( )T X y=  has at least one solution, while ker T  is 

the set of solutions to the homogeneous linear system ( )T x = 0 .   

375 Recall that these graphs are also quadratic forms.   
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 ( ) ( )0 13 0 0f f f fS p S p++ ++ ≠Q
®

. (E.22) 

Most, but not all, singular points in the present problem do satisfy eqs. (E.21) and (E.22), 

as text Table 7.1 explains.376   

 Rabier and Rheinboldt’s (2002, 330–31) Theorem 39.1 is an existence theorem 

for solutions to singular ODEs in the neighborhood of simple singular points.  It posits 

the existence of two distinct solutions in such a neighborhood whose (joint) graph does 

not cross (i.e., is not transverse to) the singular locus.  In contrast, the existence theory for 

solutions to singular ODEs in the neighborhood of singular points that are not simple, 

according to Rabier and Rheinboldt (2002, 331), “is much more involved and virtually 

untouched in the published literature. . . .  The problems when 

[ ( )( )0dim ker 2f fS p++ ≥A ] or [ ( )( ) ( )( )0 0rgef f f fS p S p++ ++∈G A ] are open.”  

Recalling eq. (E.20), this statement applies to the system (7.32) in the text.   

 Apart from existence theory for solutions, Rabier and Rheinboldt (2002, ch. XIV) 

also outline a computational approach for solving singular ODEs.  Their procedure is 

based on computational methods for nonlinear algebraic equations, that is, equation 

systems lacking a dynamic component.  This procedure exploits a reparameterization of 

the problem that renders the equations computable in the neighborhood of the (erstwhile) 

singularity.  It was originally developed in earlier work by these authors (Rabier and 

Rheinboldt 1994a, 1994b), and remarkably, is applicable not only to simple singular 

points, but also to more complex singularities (Rabier and Rheinboldt 2002, 483).  The 

                                                 

376 Condition 2 above is, of course, superfluous in this case since points on our singular locus do 
not satisfy Condition 1.  As noted above, the singular locus contains only singular points that are not 
simple.   
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algorithm has not yet, to the author’s knowledge, been implemented using standard 

numerical analysis software packages such as MATLAB, Maple, or Mathematica.377  

Such an effort would be worthwhile to the extent that computing solutions near the 

singularities of systems such as (7.32) in the text is of concern.   

E.3 The MATLAB ode15s solver  

The MATLAB ODE solver used in this investigation is named ode15s.  This solver 

performed quite well for the qualitative and numerical investigations of text chapter 7, 

permitting the author to compute SF trajectories quite close to the singular locus.  

Nonetheless, it is important to keep in mind when interpreting the MATLAB-based 

results of text chapter 7 that Rabier and Rheinboldt’s procedure for solving singular 

ODEs discussed in section E.2 above is not reflected in the solver ode15s.  That is, the 

algorithm in ode15s may not be fully robust in the presence of singularities.  As a 

consequence, in the neighborhood of singularities, it is a priori unclear whether a 

particular trajectory reflects underlying theoretical properties of the singular ODE 

system, or whether characteristics of an SF trajectory might only be artifacts of the solver 

algorithm itself.  Because this investigation does not explore in detail trajectories’ 

behavior in the neighborhood of singularities, we need not explore this issue further here.   

 The ode15s solver performed best with the “backwards differentiation” option 

enabled, which exploits the so-called backwards differentiation formulae (BDFs).  To 

                                                 

377 The author is indebted to Werner Rheinboldt for making available some FORTRAN codes—
still under development—for solution of singular DAEs.  The performance of these codes on the problem at 
hand has not yet been investigated; this, too, is a matter for future research.   
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understand the essentials of the BDFs, first define ( )f f fS S p=  as the vector of firms’ 

supply functions: 

 ( ) ( ) ( )( )1 2
f f f f f f fS S p S p S p= ≡

®

. (E.23) 

Next, express the system (7.40)–(7.42) in the text in vector form as  

 ( ) ( ),f f f fS p g S p′ = .  

Index the iterates in the numerical approximation to the trajectory ( )f fS p  with a 

superscript “ t,” and thus write the tth iterate of this approximation as  

 ( ), ,,f t f tS p .  

Next, define the backward difference operator of order 0j ≥ , j∇ , inductively as 

follows:  

 0 , ,f t f tS S∇ = ;  

 1 , , , 1j f t j f t j f tS S S+ −∇ = ∇ − ∇ .  

For a particular ˆt t= , the implicit formula for ( )ˆ ˆ, 1 , 1,f t f tS p+ +  given the ˆ 1t +  iterates 

( ){ }ˆ, ,

0
,

t tf t f t

t
S p

=

=

378 and a step size h is (Shampine and Reichelt 1997, 2)  

 ( )ˆ ˆ ˆ, 1 , 1 , 1

1

1 , 0
k

m f t f t f t

m

S h g S p
m

+ + +

=

∇ − ⋅ =∑ . (E.24) 

                                                 

378 The first such iterate, of course, is a given initial condition ( ), 0 , 0,f fS p .   
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The MATLAB ode15s solver approximates the implicit nonlinear equation (E.24) with 

simplified Newton iteration starting with the predicted value  

 ˆ ˆ, 1 ,

0

k
f t m f t

m
S S+

=

= ∇∑ .  

 The routine ode15s is a variable order solver, meaning that the solver varies the 

order k of the finite differences used to compute ˆ, 1f tS +  via eq. (E.24).379  The choice of 

order entails, in general, a tradeoff between efficiency (speed of computation) and 

stability (roughly speaking, the property that small perturbations in the initial condition 

lead to small deviations in the sequence of iterates).  In this work, we find via 

experimentation that a maximum order of max 5k =  consistently produces stable solutions 

of the system (7.40)–(7.42) in the text, so we use this value as the default maximum order 

for all results.   

 Shampine and Reichelt (1997, 2) characterize the routine ode15s as having a 

“quasi-constant” step size h (see eq. (E.24)).  By this they mean that “the step size is held 

constant [by the solver] during an integration unless there is good reason to change it.”  

The good reason, in this instance, would be to maintain the local discretization error 

within desired tolerances (see note 380 below).  In text subsection 7.4.2, for example, we 

noted that when the SF trajectory is “absorbed” by the ∞ -locus (as with trajectory  in 

text Figure 7.5), the MATLAB solver fails and numerical integration halts.  Here, solver 

failure indicates that it is no longer numerically feasible for the solver to maintain 

simultaneously the following two conditions:  
                                                 

379 In addition, MATLAB permits the user to specify the maximum order maxk  to be equal to any 
integer between 1 and 5 (inclusive).   
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1. enforce the chosen tolerance on numerical errors380 by selecting a sufficiently 

small step size, and  

2. keep the step size large enough381 to make “acceptable” progress in the 

integration.   

E.4 Numerical results of comparative statics analysis  

Table 7.2 in text subsection 7.6.3 reports the qualitative effects on firms’ forward market 

quantities, ( )1 1
f f fq S p=  and ( )2 2

f f fq S p= , of perturbing each of the ten elements in the 

parameter vector Θ ; we refer to the study of such effects as comparative statics analysis 

(see text section 7.6).  The qualitative effects documented in text Table 7.2 are based on 

the numerical results of chapter 7’s discrete Excel model.  This section reports these 

numerical results.   

 Table E.1 below summarizes the comparative statics results produced by the 

discrete Excel model.  Each test case reported in the table has row headings—for the top 

                                                 

380 Any MATLAB solver (again, we use the solver ode15s) will compute a numerical 
approximation to the true solution ( ) ( )( )1 2, ,f f f f fS p S p p  to the system in text eqs. (7.40)–(7.42).  
Naturally, numerical error is inherent in this numerical approximation.  Numerical errors are of two types, 
discretization error, and roundoff error (Moler and Moler 2003, section 6.13).  The former depends on the 
underlying differential equation system and the chosen numerical method, while the latter is a function of 
computer software and hardware.  Using current computing platforms, roundoff error is only likely to 
become important if very high accuracies are requested or the interval of integration is very large.  Through 
adjustments of the step size h, the solver algorithm controls the (local) discretization error (related to the 
order k of the numerical method), maintaining it within prescribed tolerances.  The higher the order, the 
smaller the local discretization error.  As discussed above, we use the highest possible order, 5k = , in the 
BDFs.  Given a step size th  for step t , the local discretization error is ( ) ( )1 6k

t tO h O h+ = , which is likely to 
be acceptably small.  We used MATLAB’s default error tolerances for relative and absolute error; see the 
program’s documentation (The MathWorks 2001) for details.  For in-depth treatments of error analysis in 
numerical integration, consult Butcher (1987) or Hairer, Noersett and Wanner (1993).   

381 The minimum step size is a parameter in MATLAB’s ODE solvers that the model user may 
vary.  The default minimum step size is 14~ 10− .   
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four rows in the table—labeled “θ ,” “ baseθ ,” “ multδ ,” and “ testθ ” (see the upper left 

corner of Table E.1).  We define these headings as follows:   

•  θ : Comparative statics parameter (that is, the elements of Θ : 01c , 02c , and so 

forth; see Table 7.2 in the text for an explanation of each parameter)  

•  baseθ : The base case value of each comparative statics parameter θ , based on 

empirical data from the California PX, circa 1999 (see Appendix F for details).   

•  multδ : The multiplicative shock relating the base case parameter value to the test 

case parameter value (see eq. (E.26) below).  The results of Table E.1 below 

assume that  

 1.001multδ =  (E.25) 

for each comparative statics scenario, corresponding to a 0.1% increase in the 

parameter under consideration.382   

•  testθ :  The test case value of the comparative statics parameter θ , that is,  

 test mult baseθ δ θ= ⋅ . (E.26) 

 As explained below, the body of Table E.1 has a pair of columns corresponding to 

each of the ten test cases in which we perturb the parameters in Θ  ( 01c , 02c , and so forth) 

                                                 

382 Recall that each parameter in Θ  enters the underlying equilibrium optimality conditions (text 
eqs. (7.11) and (7.12)) highly nonlinearly and through multiple pathways.  It is therefore not surprising that 
not only the magnitude but also the sign of the comparative statics effects on ( )f f

iS p  can vary with 

sufficiently large variations in the magnitude of the multiplicative shock multδ .  The sign of the comparative 
statics effects reported in Table E.1 below are valid at least for small to moderate shocks in the interval 

[ ]1.001, 1.01multδ ∈  (i.e., shocks of 0.1% to 1% of base case values), and usually for a much larger range of 
multδ .   
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individually, as well as a column of base case values (the third column of the table) for 

s
iβ  and the discretized SFs ( )f f

iS p .  The rows in the body of Table E.1 comprise three 

sections, as follows:  

•  The upper section of the body of the table (consisting of two rows only) contains 

values of the spot market SF slopes 1
sβ  and 2

sβ  for the base case and each test 

case, including (in the columns labeled “∆ ”) the absolute change in s
iβ  between 

the test case and the base case.   

•  The middle and lower sections of the body of the table contain, respectively, 

quantities (in MWh) defining firm 1’s and firm 2’s discretized SFs in the price 

range of [ ]0, 2,750 $ MWhfp ∈  with a step size of $250 MWhfp∆ = .  For ease 

of readability, we denote firm i’s discretized SF as “Si_t” in the table.  Here, 

1, 2=i  indexes the supplier firms, while 0,1, 2, ,11= …t  indexes the points, or 

quantities, at which we evaluate each firm’s discrete SF.  (The notation Si_0 

represents, naturally, firm i’s initial quantity).    

 The middle and lower sections of the columns labeled “∆ ” in Table E.1 

give—for firms 1 and 2, respectively—the absolute change in the respective 

discretized SF (i.e., change in quantity) between the test case and the base case.  

For example, in the section of Table E.1 corresponding to 02c  (on the first page of 

the table), consider the point on the discretized forward market SF “S1_2” at 

$500 MWhfp = , or ( )1 500fS , in our customary notation.  For this point on firm 

1’s SF, we have that (to four decimal places)  
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( ) ( )1 1Test case Base case
500 500

2723.0530 MWh 2722.9917 MWh
0.0613 MWh.

f fS S∆ = −

= −
=

 

 For purposes of the comparative statics analysis, we ignore in Table E.1 below the 

lowest and highest points on each discretized SF, since the first- and second-order 

optimality conditions for the SFs are not imposed at these points.383  Finally, the 

abbreviation “NS” used in the row of headings in Table E.1 denotes “No Scaling.”  This 

designation indicates that automatic scaling was not used in the discrete Excel model in 

producing a comparative statics scenario that is so labeled (see note 284 in chapter 7).384   

                                                 

383 That is, we ignore the points Si_0 and Si_11 (i = 1, 2) on the discretized SFs at prices 
$0 MWhfp =  and $2,750 MWhfp = , respectively.   

384 As it happens, we did not use scaling in any of the scenarios reported in Table E.1.   
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TABLE E.1: COMPARATIVE STATICS RESULTS  

Spot mkt.
slopes & Base case 25.6 30.5 0.000341 0.00326 -5.95E-05
fwd. mkt. values 1.001 NS 1.001 NS 1.001 NS 1.001 NS 1.001 NS
quantities 25.6256 30.5305 0.000341 0.003263 -5.96E-05

2.4830 2.4830 0.0000 2.4830 0.0000 2.4829 -0.0001 2.4819 -0.0011 2.4843 0.0012
2.4740 2.4740 0.0000 2.4740 0.0000 2.4739 -0.0001 2.4729 -0.0011 2.4752 0.0012

0 S1_0 2551.4527 2551.4454 -0.0073 2551.4972 0.0445 2551.3602 -0.0925 2550.6716 -0.7812 2628.2261 76.7734
250 S1_1 2551.4527 2551.4454 -0.0073 2551.4972 0.0445 2551.3602 -0.0925 2550.6716 -0.7812 2628.2261 76.7734
500 S1_2 2722.9917 2723.0068 0.0151 2723.0530 0.0613 2722.9154 -0.0764 2722.3093 -0.6825 2809.5458 86.5540
750 S1_3 2865.6312 2865.6551 0.0239 2865.6961 0.0649 2865.5474 -0.0838 2864.9150 -0.7162 2958.9225 93.2913

1000 S1_4 2969.8024 2969.8395 0.0370 2969.8767 0.0743 2969.7328 -0.0697 2969.1800 -0.6224 3070.2596 100.4572
1250 S1_5 3050.0288 3050.0698 0.0409 3050.1042 0.0754 3049.9548 -0.0740 3049.4057 -0.6231 3156.2485 106.2197
1500 S1_6 3103.8514 3103.9018 0.0504 3103.9337 0.0823 3103.7917 -0.0597 3103.3242 -0.5272 3215.1220 111.2706
1750 S1_7 3145.8162 3145.8685 0.0523 3145.8989 0.0827 3145.7542 -0.0620 3145.3101 -0.5061 3262.4098 116.5936
2000 S1_8 3167.7511 3167.8112 0.0600 3167.8395 0.0884 3167.7037 -0.0475 3167.3407 -0.4105 3287.8595 120.1083
2250 S1_9 3184.9707 3185.0314 0.0608 3185.0591 0.0885 3184.9223 -0.0484 3184.5973 -0.3734 3310.2982 125.3275
2500 S1_10 3184.9707 3185.0382 0.0676 3185.0640 0.0933 3184.9369 -0.0338 3184.6912 -0.2795 3312.5914 127.6207
2750 S1_11 3184.9707 3185.0382 0.0676 3185.0640 0.0933 3184.9369 -0.0338 3184.7409 -0.2298 3317.8970 132.9264

0 S2_0 629.5157 629.5017 -0.0140 629.4905 -0.0253 629.5360 0.0203 629.5952 0.0794 645.7125 16.1968
250 S2_1 1863.9420 1863.9943 0.0524 1863.9563 0.0144 1863.8914 -0.0506 1863.4615 -0.4805 1918.8229 54.8809
500 S2_2 2326.6708 2326.7374 0.0665 2326.7062 0.0353 2326.6190 -0.0519 2326.1632 -0.5077 2401.0999 74.4290
750 S2_3 2588.6977 2588.7650 0.0673 2588.7393 0.0416 2588.6312 -0.0666 2588.0913 -0.6064 2672.3705 83.6727

1000 S2_4 2760.6702 2760.7434 0.0733 2760.7240 0.0539 2760.6135 -0.0566 2760.1432 -0.5270 2855.3364 94.6662
1250 S2_5 2878.1138 2878.1868 0.0730 2878.1705 0.0567 2878.0506 -0.0633 2877.5487 -0.5651 2977.4691 99.3553
1500 S2_6 2963.5659 2963.6436 0.0777 2963.6320 0.0661 2963.5150 -0.0509 2963.1085 -0.4574 3071.7044 108.1384
1750 S2_7 3020.6595 3020.7368 0.0774 3020.7270 0.0675 3020.6053 -0.0542 3020.1860 -0.4734 3131.3366 110.6771
2000 S2_8 3063.2945 3063.3759 0.0814 3063.3699 0.0754 3063.2535 -0.0410 3062.9431 -0.3514 3181.9061 118.6116
2250 S2_9 3086.0252 3086.1064 0.0812 3086.1011 0.0759 3085.9829 -0.0423 3085.6684 -0.3568 3205.7474 119.7222
2500 S2_10 3102.6736 3102.7582 0.0847 3102.7565 0.0829 3102.6448 -0.0288 3102.4485 -0.2251 3230.0090 127.3355
2750 S2_11 3102.6736 3102.7582 0.0847 3102.7565 0.0829 3102.6448 -0.0288 3102.4485 -0.2251 3230.0090 127.3355

1c 2c s
deme01c 02cθ

baseθ

testθ

fp
1
sβ
2
sβ

∆ ∆ ∆ ∆ ∆

multδ

Notes:  
 NS: No automatic scaling used to produce scenario.   
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TABLE E.1: COMPARATIVE STATICS RESULTS (CONT’D)  

4642.3791 2456747.9 334.59885 58604.631 0.0003198
1.001 NS 1.001 NS 1.001 NS 1.001 NS 1.001 NS

4647.0214 2459204.7 334.93345 58663.235 0.0003202
2.4830 0.0000 2.4830 0.0000 2.4830 0.0000 2.4830 0.0000 2.4830 0.0000
2.4740 0.0000 2.4740 0.0000 2.4740 0.0000 2.4740 0.0000 2.4740 0.0000 Price vector

2552.8893 1.4366 2627.4641 76.0114 2551.9295 0.4768 2549.7048 -1.7479 2550.5097 -0.9430 0
2552.8893 1.4366 2627.4641 76.0114 2551.9295 0.4768 2549.7048 -1.7479 2550.5097 -0.9430 250
2724.7653 1.7735 2808.9555 85.9637 2723.7001 0.7083 2721.1081 -1.8837 2722.1953 -0.7964 500
2867.4573 1.8261 2958.2769 92.6457 2866.4135 0.7823 2863.6329 -1.9983 2864.7765 -0.8548 750
2971.8791 2.0766 3069.7653 99.9629 2970.7493 0.9469 2967.7328 -2.0696 2969.0773 -0.7251 1000
3052.1331 2.1043 3155.7324 105.7036 3051.0146 0.9858 3047.9022 -2.1266 3049.2758 -0.7530 1250
3106.1602 2.3088 3214.7552 110.9038 3104.9680 1.1166 3101.6956 -2.1558 3103.2282 -0.6232 1500
3148.1387 2.3226 3262.0430 116.2268 3146.9528 1.1367 3143.6365 -2.1797 3145.1848 -0.6313 1750
3170.2502 2.4990 3287.6404 119.8892 3169.0005 1.2493 3165.5672 -2.1839 3167.2498 -0.5014 2000
3187.4751 2.5045 3310.0944 125.1237 3186.2283 1.2576 3182.7837 -2.1870 3184.4747 -0.4959 2250
3187.6325 2.6618 3312.5332 127.5626 3186.3301 1.3594 3182.7959 -2.1747 3184.6043 -0.3664 2500
3187.6325 2.6618 3317.8659 132.8952 3186.3301 1.3594 3182.8071 -2.1636 3184.6199 -0.3508 2750

630.1164 0.6007 645.9504 16.4347 627.1837 -2.3320 630.5148 0.9990 629.3678 -0.1480 0
1865.0770 1.1351 1918.4134 54.4714 1863.4250 -0.5170 1863.1679 -0.7740 1863.2790 -0.6630 250
2328.2668 1.5960 2400.7128 74.0420 2326.8055 0.1346 2325.3474 -1.3234 2326.0355 -0.6354 500
2590.3978 1.7000 2671.8600 83.1623 2589.0877 0.3899 2587.0875 -1.6102 2587.9514 -0.7463 750
2762.6497 1.9795 2854.9505 94.2803 2761.3111 0.6410 2758.8963 -1.7739 2760.0304 -0.6398 1000
2880.1372 2.0234 2977.0308 98.9170 2878.8619 0.7480 2876.2256 -1.8882 2877.4243 -0.6895 1250
2965.8076 2.2417 3071.4129 107.8469 2964.4720 0.9061 2961.6097 -1.9563 2963.0012 -0.5648 1500
3022.9216 2.2621 3131.0207 110.3613 3021.6285 0.9690 3018.6511 -2.0084 3020.0707 -0.5887 1750
3065.7422 2.4477 3181.7463 118.4518 3064.3809 1.0864 3061.2607 -2.0337 3062.8382 -0.4563 2000
3088.4808 2.4556 3205.5783 119.5531 3087.1556 1.1304 3083.9715 -2.0536 3085.5595 -0.4657 2250
3105.2940 2.6204 3230.0014 127.3278 3103.8980 1.2244 3100.6189 -2.0547 3102.3446 -0.3289 2500
3105.2940 2.6204 3230.0014 127.3278 3103.9325 1.2590 3100.6189 -2.0547 3102.3446 -0.3289 2750

Rη
2

Rη
σ Rν

2
Rν

σ Rλ∆ ∆ ∆ ∆ ∆
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[T]he trouble about arguments is, they ain’t nothing but THEORIES, after all, and 
theories don’t prove nothing, they only give you a place to rest on, a spell, when you are 
tuckered out butting around and around trying to find out something there ain’t no way 
TO find out. . . .  There’s another trouble about theories: there’s always a hole in them 
somewheres, sure, if you look close enough.   

—Mark Twain, Tom Sawyer Abroad 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix F: Base case parameter values used in the numerical 

examples of the multi-settlement SFE model  

THIS APPENDIX explains the provenance of the base case parameter values used for the 

qualitative and quantitative analysis of text chapter 7.  As the citations below suggest, the 

chosen parameter values are based (very roughly) on California’s fossil-fired generation 

capacity during the interval June 1998 to September 1999, which we call the “reference 

period.”385  Generating units in the California market which must run due to engineering 

constraints were bid into the PX with a (perfectly elastic and non-strategic) bid of zero 

dollars; these units were largely those using non-fossil fuel generation technologies: 

hydroelectric, nuclear, and geothermal plants.  These units almost never set the market-
                                                 

385 Unless otherwise noted, data reported apply to this reference period.   
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clearing price and might as a first approximation (following Borenstein, Bushnell and 

Wolak 2002) be treated as bidding non-strategically.  The analysis that follows nets out 

the load served by these non-fossil fuel units and focuses on the fraction of the market 

served by fossil-fired units.   

 We discuss spot market parameters in section F.1 below, followed by those 

parameters relevant to the forward market in section F.2.  In closing, section F.3 

summarizes the numerical findings of this appendix in the base case parameter vector 

baseΘ .   

F.1 Spot market  

Figure F.1 below depicts firms’ marginal cost functions ( )s
i iC q′  and the spot market 

demand function ( ),s s sD p ε  given a demand shock sε , using text chapter 5’s affine 

assumptions.  The figure also depicts an empirical reference price ,s mean
empirp  and empirical 

(aggregate) reference quantity ,s mean
empirq  for the spot market.  Subsection F.1.1 below 

provides values of ,s mean
empirp  and ,s mean

empirq  from the literature.   
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sp

sq

2c
1

1c 1
02c

01c

( ),s s s s s sD p pε γ ε= − +

sγ

1

sε

Spot market

( )2 2 02 2 2
s sC q c c q′ = +

( )1 1 01 1 1
s sC q c c q′ = +

,s mean
empirq

,s mean
empirp

 

FIGURE F.1: SPOT MARKET GEOMETRY  

F.1.1 Prices and quantities  

The following parameters are available directly from the literature:  

•  , $26.54 MWhs mean
empirp = : Mean California ISO spot market price during the 

reference period, averaged over all hours and the two zones NP15 and SP15 

(Borenstein, Bushnell and Wolak 2000, 13)  

•  , 4,955 MWhs mean
empirq = : Mean aggregate spot market demand facing fossil-fired 

units in the California ISO system during the reference period, averaged over all 

hours (Bushnell 2003a)  
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•  ,
, 26,511 MWhs mean

empir totq = : Mean aggregate spot market demand facing all 

generating units in the California ISO system during the reference period, 

averaged over all hours (Borenstein, Bushnell and Wolak 2002, 1393)  

F.1.2 Demand data  

In text chapter 7, we denoted as s
deme  the price elasticity of spot market demand facing 

fossil-fired units in the California ISO system during the reference period (evaluated at 

the empirical reference price ,s mean
empirp  and empirical (aggregate) reference quantity 

,s mean
empirq ).  One empirically-based approximation of the spot market demand elasticity is 

Bushnell and Mansur’s (2002, 19) estimate of 0.02s
deme = − .386  Unfortunately, this value 

of s
deme  did not lead to feasible solutions of the discrete Excel model when applied to the 

benchmarking procedure of text section 7.5.  As a consequence, we permitted s
deme  to be 

endogenous in the benchmarking procedure, and describe here how we obtained the value 

of s
deme  ultimately used in the analysis of text chapter 7.   

 The benchmarking procedure of text section 7.5 centers around a sequence of two 

optimization problems: 

1. Benchmarking step 1 (text problem (7.55))  

2. Benchmarking step 2 (text problem (7.56))   

                                                 

386 Bushnell and Mansur caution against interpreting the results of their calculations as elasticities, 
per se, since retail prices to consumers were being deregulated during the period that they study, and the 
price that consumers thought that they faced as consumption decisions were made is, of course, 
unobserved.  Moreover, these authors’ empirical work is based on data only for the San Diego area during 
the period August and September 2000, rather than data for the California market as a whole.   
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Trial and error with variants of text problem (7.55) leads to using 0.0015411s
deme = −  as 

an element of the reduced parameter vector ( )(0) 2 2\ , , ,
R RR Rη νη σ ν σΘ  in this problem, and 

hence also as the initial value of s
deme  in text problem (7.56).  The solution to text problem 

(7.56) in step 2 of the benchmarking procedure yields an endogenous value of s
deme ,  

 ( )(2)
5.9507e-5s

deme = − , (F.1) 

that we may then incorporate into the base case parameter vector baseΘ .  The elasticity in 

eq. (F.1) is practically equal to zero, and hence is probably smaller in magnitude than 

would be realistic for the California electricity market.  It is, however, the endogenous 

value of s
deme  that yielded the best fit of prices and quantities in the benchmarking 

procedure.   

 Assuming affine spot market demand as in the simplified affine example of text 

chapter 5, and using values of ( )(2)s
deme , ,s mean

empirp , and ,s mean
empirq  from this and the previous 

subsection, we may compute the corresponding slope sγ  of the affine spot market 

demand function facing fossil-fired units as387 (to five significant figures)  

( ) ( )( )
(2),

,

4,955 MWh 5.9507e-5 MWh0.011110
$ $ MWh26.54

MWh

s mean ss
empir dems

s s mean
empir

q edq
dp p

γ
−

= − = − = − =
 
 
 

. (F.2) 

                                                 

387 Minor discrepancies in numerical results are due to rounding.   
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F.1.3 Cost data  

We model the aggregate marginal cost function for fossil-fired units in the California ISO 

system during the reference period as comprising only two (hypothetical) firms, labeled 1 

and 2, in accordance with the duopoly model developed in the thesis.  Based on the 

aggregate marginal cost function for fossil-fired units in Figure 1 of Borenstein, Bushnell, 

and Wolak (2000), we find—graphically—the following parameter values for the 

intercepts and slopes of the two hypothetical firms’ marginal cost functions:  

 01
$25.6

MWh
c = ; (F.3) 

 02
$30.5

MWh
c = ; (F.4) 

 1
$ MWh0.000341
MWh

c = ;  (F.5) 

and  

 2
$ MWh0.00326
MWh

c = . (F.6) 

The parameter values in eqs. (F.3)–(F.6) imply that firm 1 is a “low-cost” firm and firm 2 

a “high-cost” firm in the sense that 1 2c c<  and 01 02c c< .  We use these values from eqs. 

(F.3)–(F.6) in the base case parameter vector baseΘ .   

F.1.4 Spot market SF slopes and related parameters  

Recalling the analysis of text section 5.2, we may solve the pair of equations  

 
( )
( ) ( ), 1, 2;

1

s s
js

i s s
i j

i j i j
c

γ β
β

γ β
+

= = ≠
+ +
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for the slopes 1
sβ  and 2

sβ  of the spot market SFs.  Evaluating these slopes at the values 

sγ , 1c , and 2c  from eqs. (F.2), (F.5), and (F.6) above, we have (to five significant 

figures)  

 1
MWh2.4830

$ MWh
sβ =  (F.7) 

and 

 2
MWh2.4740

$ MWh
sβ = . (F.8) 

Given eqs. (F.2) and (F.3)–(F.8), we may compute aω  and bω  (see text eqs. (5.24) and 

(5.25)) as  

 
1 2

1

1 ,MWh MWh MWh2.4830 2.4740 0.011110
$ MWh $ MWh $ MWh

a s s sω
β β γ

=
+ +

=
+ +

 

or  

 $ MWh0.20128
MWhaω = ,  (F.9) 

and  

 
01 1 02 2

$ MWh $ MWh25.6 2.4830 30.5 2.4740 ,
MWh $ MWh MWh $ MWh

s s
b c cω β β= +

      = +      
      

 

or  
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 139.02 MWhbω = .  (F.10) 

F.1.5 Distributional assumptions for spot market demand   

The solution to text problem (7.56) corresponding to step 2 of the benchmarking 

procedure yields optimal values of the mean Rη  and variance 2
Rη

σ  of the representative 

consumer’s signal Rη , as well as the mean Rν  and variance 2
Rν

σ  of the spot market noise 

parameter Rν .  To five significant figures, these optimal values are as follows:  

 ( )(2) 4,642.4 MWhRη = , (F.11) 

 ( )(2)2 22.4567e6 MWh
Rη

σ = , (F.12) 

 ( )(2) 334.60 MWhRν = , (F.13) 

and  

 ( )(2)2 258,605 MWh
Rν

σ = . (F.14) 

From eqs. (F.12) and (F.14), the standard deviations of Rη  and Rν  are  

 ( )(2)
1,567.4 MWh

Rη
σ =   (F.15) 

and  

 ( )(2)
242.08 MWh

Rν
σ = .   (F.16) 

The values in eqs. (F.11)–(F.14) are optimal in the sense that they solve text problem 

(7.55), ensuring also that the two benchmarking constraints ( ) ,E s s mean
empirp p=  and 
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( ) ,E s s mean
Agg empirq q=  imposed in that problem are met.  Finally, we incorporate the optimal 

values from eqs. (F.11)–(F.14) into the base case parameter vector baseΘ .   

 We now consider the higher moment ( )2
2

,
Cov ,

R R
R Rν νσ ν ν≡ , and make some 

additional distributional assumptions that permit us to compute 2 ,R Rν νσ  as a function of Rν  

and 2
Rν

σ  from eqs. (F.13) and (F.14).  Namely, we assume now that Rν  is lognormally 

distributed, and define moments of the natural logarithm of Rν , ( )ln Rν , as  

 ( )mean of ln Rµ ν≡   

and  

 ( )2 variance of ln Rσ ν≡ .  

Then, as a function of these parameters, the probability density function of Rν , ( )
R Rfν ν , 

is—in terms of the parameters µ  and 2σ — 

 ( ) ( ) 2

2

ln1 exp
22R

R
R

R

fν
ν µ

ν
σν σ π

 −   = ⋅ − 
  

. (F.17) 

As a function of the distributional parameters µ  and 2σ  in eq. (F.17), we may show (see, 

e.g., Hastings and Peacock 1975) that Rν  has a mean Rν  of  

 
2

exp
2R
σν µ 

= + 
 

, (F.18) 

a standard deviation 
Rν

σ  of  
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 ( ) ( ) ( ) 1 22 2exp exp 2 exp
Rν

σ µ σ σ = −  , (F.19) 

a variance 2
Rν

σ  of  

 ( ) ( )2 2 2exp 2 exp 1
Rν

σ µ σ σ = + −  , (F.20) 

and a coefficient of skewness 3α  of  

 ( ) ( ) 1 22 2
3 exp 2 exp 1α σ σ   = + −    . (F.21) 

 From note 217 in text chapter 6, we may express the higher moment 2 ,R Rν νσ  as  

 ( )2

3 22
3,

2
RR R

R
Vνν ν
ν

σ σ α
 

= + 
  

, (F.22) 

where 3α  is the coefficient of skewness and 
R

Vν  is the coefficient of variation of Rν , that 

is  

 R

R
R

V ν
ν

σ
ν

≡ . (F.23) 

To express 2 ,R Rν νσ  in terms of the underlying distributional parameters µ  and 2σ —and 

ultimately in terms of Rν  and 2
Rν

σ —begin by substituting for 
R

Vν  in eq. (F.22) from eq. 

(F.23):  

 ( )2

3 22
3,

2
RR R

R

R
νν ν

ν

νσ σ α
σ

 
= + 

  
. (F.24) 

Next, substitute into eq. (F.24) from eqs. (F.18)–(F.21) to obtain  
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( ) ( ){ } ( ) ( ){

( ) ( ) ( )

2

3 2 1 22 2 2 2
,

2

1 22 2

exp 2 exp 1 exp 2 exp 1

2exp
2

,
exp exp 2 exp

R Rν νσ µ σ σ σ σ

σµ

µ σ σ

     = + − + −     

 
+  

 + 
 −   

 

which simplifies to  

 ( )2

22 2
,

5exp 3 exp 2 1
2R Rν ν

σ µ σ σ   = + −    
. (F.25) 

 Solving eqs. (F.18) and (F.20) for µ  and 2σ  yields  

 ( )
2

2

1ln ln 1
2

R
R

R

νσµ ν
ν

 
= − +  

 
 (F.26) 

and  

 
2

2
2ln 1R

R

νσσ
ν

 
= +  

 
. (F.27) 

Substituting eqs. (F.26) and (F.27) into eq. (F.25), we have  

 ( )2

2
2 2 2

2 2 2,

1 5exp 3 ln ln 1 ln 1 exp 2ln 1 1
2 2

R R R

R R
R

R R R

ν ν ν
ν ν

σ σ σ
σ ν

ν ν ν

            = − + + + + −                              
,  

which we may simplify as388  

 2

22 2
3

2 2,
1 2 0R R R

RR R
R R R

ν ν ν
νν ν

σ σ σ
σ σ

ν ν ν
   

= + + >        
. (F.28) 

                                                 

388 The positivity of 2 ,R Rν ν
σ  follows from 0Rν > , recalling that Rν  is lognormally distributed.   
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In terms of the coefficient of variation 
R

Vν  (see eq. (F.23)), we may write eq. (F.28) as  

 ( )( )2

23 2 2
,

1 2 0
R R R RR R
V V Vν ν ν νν νσ σ= + + > . (F.29) 

Using values of the mean and standard deviation of Rν  from eqs. (F.13) and (F.16), we 

may compute 
R

Vν  from eq. (F.23) as  

 242.08 MWh 0.72349
334.60 MWh

R

R
R

V ν
ν

σ
ν

≡ = = . (F.30) 

Substituting from eqs. (F.16) and (F.30), eq. (F.29) becomes (to five significant figures)  

 ( ) ( )( )( )2

23 2 2
,

242.08 MWh 0.72349 0.72349 1 0.72349 2
R Rν νσ = + + ,  

or  

 ( )2

3

,
9.9568e7 MWh

R Rν νσ = .  (F.31) 

F.2 Forward market  

Figure F.2 below depicts a representative forward market demand function ( )0,f f fD p ε .  

The figure also depicts an empirical reference price ,f mean
empirp  and empirical (aggregate) 

reference quantity ,f mean
empirq .  Subsection F.2.1 below provides a value of ,f mean

empirp  based on 

the literature, and explains how we compute ,f mean
empirq .  Unless otherwise noted, chapter 7’s 

numerical analysis considers forward market SFs over the range  

 [ ]0, 2,750 $ MWhfp ∈ . (F.32) 
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This price range in (F.32) also includes the price $2,500 MWh , which was the 

applicable (software-imposed) California PX price cap as of March 1999 (Market 

Monitoring Committee of the California Power Exchange 1999, 47).389   

fp

fq

( ) ( )0 0 0,f f f f f fD p D pε ε= +

Forward market

,f mean
empirp

,f mean
empirq 0

fε

0
fp

 

FIGURE F.2: FORWARD MARKET GEOMETRY  

F.2.1 Prices and quantities  

The following parameters are available directly from the literature:  

                                                 

389 We emphasize that the restriction in the range of forward market prices considered, 
[ ]0, 2,750 $ MWh,fp ∈  is for computational purposes only; it applies, in particular, to the specific 

numerical examples of text section 7.6.  Text subsection 3.1.5’s definition of ( )f f

iS p  as a function over 
fp ∈ \  still applies.  If desired, we may specify the interval of fp  over which we compute the functions 

( )f f

iS p  to include negative prices.   
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•  , $26.60 MWhf mean
empirp = : Mean California PX unconstrained forward market price 

during the reference period, averaged over all hours (Borenstein, Bushnell and 

Wolak 2002, 1393)  

•  ,
, 21,579 MWhf mean

empir totq = : Mean aggregate forward market demand in the 

California PX (facing all generating units) during the period April 1998 to April 

1999,390 averaged over all hours (California Power Exchange 1999, 27)  

We now compute the empirical (aggregate) reference quantity ,f mean
empirq  for the forward 

market, corresponding to the (aggregate) reference demand level facing only fossil-fired 

generating units.  Recalling the mean hourly spot market demand , 4,955 MWhs mean
empirq = , 

assume that the fraction of this quantity that is transacted in the forward market is given 

by the ratio , ,
, ,

f mean s mean
empir tot empir totq q .  We may then compute ,f mean

empirq  as  

 ( )
,

,, ,
,

,

21,579 MWh4,955 MWh 4,033 MWh
26,511 MWh

f mean
empir totf mean s mean

empir empir s mean
empir tot

q
q q

q
= ⋅ = ⋅ = . (F.33) 

F.2.2 Consumers’ risk preferences   

Text subsection 6.2.1 defined the parameter jλ  as the constant absolute risk aversion—or 

CARA—coefficient for consumer j.  The purpose of this subsection is to determine an 

appropriate value of the CARA coefficient, Rλ , for the representative consumer R 

introduced later in text chapter 6.  In the absence of data on consumers’ risk aversion in 

the context of electricity markets, we turn to other economic settings to provide a basis 

                                                 

390 This period does not coincide exactly with the reference period, but we take this as a suitable 
approximation of average forward market demand during the reference period.   
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for quantitative estimates of Rλ .  It is reasonable to suppose that consumers’ risk 

preferences in electricity markets are comparable to those governing behavior in markets 

for other goods and services.  Accordingly, this subsection briefly surveys the literature 

on empirical estimates of the CARA coefficient from a variety of economic contexts, and 

places these estimates on a comparable basis.   

 Table F.1 below reports the results of numerous empirical studies of agents’ risk 

preferences, conducted in a wide variety of economic settings (notably, the agricultural 

sector, which has often been studied in this context).  The rightmost column of the table 

gives the estimates of the CARA coefficient λ  computed in each study, expressed in 

uniform units of ($1999)–1 for purposes of comparison across the studies.391  Table F.1 lists 

the various studies in order of increasing CARA coefficients (i.e., increasing risk 

aversion).392  Note 198 in the text provides an intuitive interpretation of the CARA 

coefficient λ .   

                                                 

391 See the notes to Table F.1 for details of currency and current-to-constant dollar conversions, 
where applicable.   

392 When Table F.1 reports a range of values for λ  (see the respective original studies for details), 
the geometric mean of the endpoints of this range is used to order the studies.   
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TABLE F.1: EMPIRICAL ESTIMATES OF THE CONSTANT ABSOLUTE RISK AVERSION 
(CARA) COEFFICIENT λ  (IN ORDER OF INCREASING λ )  

Citation Object of study and data 
reference yeara 

λ  
(original 

units) 

Constant dollar and 
currency conversion 

factorsb 

λ  
($1999)-1 

Buccola (1982) 
Processing tomato 

producer in California, 
USA – 1979 

0.0012– 
0.00196 

($1000)–1 
PPF1979 = 66 

6.9e-7
1.12e-6

−
 

Bar-Shira, Just, 
and Zilberman 

(1997) 
Farmers in Arava region, 

Israel – 1978 
4.5e-6  

$–1 PPF1978 = 58 2.3e-6  

Lien (2002) 
Lowland crop and 

livestock farmers in 
Norway – 1996 

1.44e-6
NOK–1 

PPF1996 = 115 
9.305 (NOK/$)1996 

1.34e-5  

Ozanne (1998) Crop and livestock farmers 
in the USA – 1964 

4.28e-4
$–1 PPF1964 = 23.8 8.86e-5  

Zacharias and 
Grube (1984) 

Experiment at Agronomy 
South Farm, Urbana, IL, 

USA – 1971 

9.2e-5
3.5e-3

−

$–1 
PPF1971 = 30.7 2.5e-5

9.3e-4
−  

Simmons and 
Pomareda (1975) 

Crop farmers in Mexico 
exporting to the USA – 

1972 

0.5 
Pesos–1 

PPF1972 = 32.9 
0.00632 (Pesos/$)1972 

0.0009 

Kramer and Pope 
(1981) 

Field crop farmers in Kern 
County, CA, USA – 1974 

0.00125–
 0.03 $–1 PPF1974 = 42.9 

4.66e-4
1e-2

−
 

Love and Buccola 
(1991) 

Corn and soybean farmers 
in Iowa, USA – 1967 

0.016– 
0.538 $–1 PPF1967 = 26 0.0036– 

0.122 
Brink and McCarl 

(1978) 
Large corn belt cash grain 
farmers in the USA – 1975 0.23 $–1 PPF1975 = 47 0.094 

Beetsma and 
Schotman (2001) 

Television game show 
contestants in the 

Netherlands – 1996 

0.11–
0.24 

Guilders–

1 

CPI-U1996 = 156.9c 
CPI-U1999 = 166.6 

2.09 (Guilders/$)1996 

0.22–0.47 

Wolf and 
Pohlman (1983) 

A dealer in USA Treasury 
Bill auctions – 1977 2–4.5 $–1 4.4d 0.5–1.0 

Chavas and Holt 
(1996) 

Corn and soybean farmers 
in the USA – 1967 

12.171 
$–1 PPF1967 = 26 2.8 

Antle (1987) Rice farmers in Aurepalle 
Village, India – 1979 

3.272 
Rupees–1 

PPF1979 = 66 
3.162 (Rupees/$)1979 

5.9 

Notes:  
 a Where data are drawn over multiple years, we use the midpoint of this time interval as the data 
reference year.   
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Notes to Table F.1 (cont’d):  
 b For agricultural studies, we convert dollars from the data reference year to 1999 dollars using the 
price indices for prices paid by farmers for all commodities, services, interest, taxes, and wage rates for the 
relevant years (Economic Report of the President 1991, Table B-98 for data reference years prior to 1975; 
Economic Report of the President 2003, Table B-101 for data reference years 1975 and later).  For year t, 
we denote this price index as “PPFt,” and note that it is normalized using PPF1991 = 100.  For 1999, 
recalling that the CARA coefficients reported in the rightmost column of Table F.1 have units of ($1999)–1, 
we have PPF1999 = 115.  For non-agricultural studies, we report the appropriate conversion factors in the 
fourth column of Table F.1.  We use purchasing power parity exchange rates from the Penn World Table 
(Heston, Summers and Aten 2002) to perform currency conversions to current dollars in the data reference 
year.  See below for an example of the use of the various conversion factors.   
 c CPI-Ut is the consumer price index for all items in year t, where CPI-U1983-1984 = 100 (Economic 
Report of the President 2003, Table B-60).   
 d Because this particular study addresses the behavior of a Treasury bill dealer, the conversion 
factor 4.4 is the approximate return on $1 invested at the average annual Treasury bill rate beginning in 
1977, and compounded annually until 1999 (International Monetary Fund 2003, Treasury Bill Rate).   

As an example of the conversions used in Table F.1, consider Simmons and Pomareda’s 

1975 study of Mexican farmers that export to the USA.  The authors report a value of 

( ) 1
19720.5 Pesosλ −= , which we convert to units of ($1999)-1 as follows:  

 ( ) ( )1 11972 1972
1972 1999

1972 1999

0.00632 Pesos 32.9 PPF0.5 Pesos 9e-4 $
$ 115 PPF

− −⋅ ⋅ = . (F.34) 

 The CARA coefficients λ  in Table F.1 (in the rightmost column) lie in the 

interval [ ]6.9e-7, 5.9 , a range of nearly 7 orders of magnitude, with geometric mean  

 ( ) 1
19990.0033 $geomλ −= . (F.35) 

The economic agents whose risk preferences are characterized in Table F.1 tend to be 

smaller-scale (in terms of revenues, for example) and, plausibly, less financially 

sophisticated than most of the electricity consumers participating in the California PX.  

Thus, we would expect the electricity consumers that we wish to model here to be less 

risk averse, on average, than the “average” agent characterized in Table F.1.  Taking the 

geometric mean geomλ  of the coefficients λ  in Table F.1 to be representative of the 
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agents characterized in the table, the above observation suggests that the representative 

consumer’s CARA coefficient Rλ  is related to geomλ  as follows:  

 ( ) 1
19990.0033 $R geomλ λ −< = . (F.36) 

Based on the considerable range of CARA coefficients reported in Table F.1, we assume, 

more specifically, that Rλ  and geomλ  differ by one order of magnitude.  We assume, 

therefore, that as a rough estimate ( )est
Rλ  of Rλ , we may use the value  

 ( ) ( ) 1
19990.00033 $est

Rλ
−= . (F.37) 

 Because of the approximate nature of the above discussion, we use eq. (F.37) as 

merely an initial condition  for Rλ  in text section 7.5’s benchmarking procedure using the 

discrete Excel model.  That is, we use the value ( )est
Rλ  in eq. (F.37) as an element of the 

parameter vector (0)Θ  in text problem (7.55), and hence also in (1)Θ , the vector of initial 

values for text problem (7.56).  The solution to this benchmarking problem (step 2 of the 

benchmarking procedure) yields an endogenous value of Rλ —only slightly different 

from ( )est
Rλ  above—namely,  

 ( ) ( ) 1
19990.00031984 $opt

Rλ
−= . (F.38) 

Recalling the illustrative interpretation of the CARA coefficient from note 198 in chapter 

6, we observe that the value of ( )opt
Rλ  in eq. (F.38) corresponds to a “risk tolerance” 

parameter Rτ  of  



 

 445 

 
( )

( )19991
1999

1 1 $ 3126.60
0.00031984 $

R
R

τ
λ −≡ = = . 

For a risk-averse consumer R with CARA coefficient Rλ  given in eq. (F.38), the 

interpretation of the risk tolerance Rτ  is that the consumer R is (approximately) 

indifferent between accepting and not accepting a lottery offering even odds over payoffs 

of ( )1999$ 3126.60Rτ =  and ( )19992 $ 1563.30Rτ− = − .  We incorporate the value ( )opt
Rλ  

from eq. (F.38) into the base case parameter vector baseΘ .   

F.3 Summary  

Collecting the numerical results documented in this appendix, we may write the base case 

parameter vector baseΘ  as (rounding results to three significant figures)  

 

( )
( )

01

02 2

1
2

2

2 2

2 2

1

$25.60 MWh
$30.50 MWh

$0.000341 MWh

$0.00326 MWh

5.95e-5
4640 MWh

2.46e6 MWh
335 MWh

5.86e4 MWh

3.20e-4 $

R

R

base

s
dembase

R

R

R

c

c
c
c

e

η

ν

η
σ
ν
σ
λ −

  
  
  
  
  
  
  
   −Θ ≡ =  
  
  
  
  
 
 
     





. (F.39) 

For ease of reference, the vector baseΘ  in eq. (F.39) also appears in the text as eq. (7.46).   
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The melancholia of everything COMPLETED!   
—Nietzsche, Beyond Good and Evil 
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