

Third Annual Carnegie Mellon Conference on the Electricity Industry

Enhancing IGCC economics with a diurnal syngas storage scheme

Adam Newcomer and Jay Apt Carnegie Mellon University

March 14, 2007

Preliminary data. Do not cite or quote without permission of the authors.

Research Question

What is the value of adding gas storage capabilities to a coal gasification facility?

or, put another way

Can syngas storage lower the carbon price at which IGCC enters the generation mix?

² Preliminary data. Do not cite or quote without permission of the authors.

Project overview and methodology

Storage scenario: Turbine can operate independently of gasifier

Storage allows for additional flexibility in facility configuration and operation

Example: Producing Peak Electricity with Stored Syngas

Preliminary data. Do not cite or quote without permission of the authors.

4

Scenarios

Baseline: No Storage

Diurnal Syngas Storage

Carnegie Mellon 👘

⁵ Preliminary data. Do not cite or quote without permission of the authors.

Scenario Data Sources

Carnegie Mellon 👘

Storage Options

- Examined only compressed gas storage options
- Diurnal storage
- Storage technologies considered
 - Above ground
 - Low pressure (gasometers)
 - High Pressure
 - (cylindrical bullets, gas spheres)
 - Underground
 - Rock caverns
 - Salt caverns
- Explored the costs and tradeoffs between
 - storage pressures and storage volumes
 - storing low energy density syngas versus storing methanated syngas (synthetic natural gas or SNG)

7

Economic Data Sources

• Input

<u>Coal</u> Historical (Aug 05-06) : Monthly average FOB prices for Illinois Basin coal Future (2007): EIA AEO forecast, EIA AEO forecast with accuracy factor, NYMEX futures

Output

8

<u>Electricity</u> Historical (Aug 05-06) Locational marginal price (LMP) data from Midwest ISO (MISO)

• CDFs of all price data were created for input into the engineering economic model

Source: Adapted from Midwest ISO

Preliminary data. Do not cite or quote without permission of the authors.

Coal Price Data

9

Carnegie Mellon 📶

Electricity Price Data

Price duration curve. Cinergy node, Aug 05 - Aug 06

Parameter	Description	Value(s)
i	hourly index	1 to 24
X_i	syngas output from gasifier	260 tons (IECM)
xd_i	syngas from gasifier direct to turbine	0-260 tons
xs_i	syngas from gasifier to storage	0-260 tons
xt_i	syngas from storage to turbine	0-260 tons
S_{max}	maximum storage size	4, 8, 12 hours
MW_{li}	electricity produced from turbine 1	0-270 MW (IECM)
MW_{2i}	electricity produced from turbine 2	0-270 MW (IECM)

¹¹ Preliminary data. Do not cite or quote without permission of the authors.

 $ROI = \frac{annual revenue}{total levelized annual expenses}$

where

annual revenue = availability
$$\cdot \sum_{i=1}^{8760} (MW_{1i} + MW_{2i}) \cdot LMP_i$$

total levelized annual expenses = levelized capital costs + fixed O&M costs + (availability • variable O&M costs)

12

12 hour storage

8 hour storage

Preliminary data. Do not cite or quote without permission of the authors.

14

Preliminary Results: Gasifier + Turbine (baseline)

Key financial parameters: 30 year economic/loan life, 100% financing, 8% interest rate, Cinergy node, historical coal prices Key operating parameters: 80 percent availability, 1 operating gasifier and 1 spare gasifier (1+1)

Carnegie Mellon

Preliminary Results: Syngas Storage

Key financial parameters: 30 year economic/loan life, 100% financing, 8% interest rate, Cinergy node, historical coal prices Key operating parameters: 80 percent availability, 1 operating gasifier and 1 spare gasifier (1+1)

Carnegie Mellon

Preliminary Syngas Storage NPV

Storage Hours

Carnegie Mellon

Key financial parameters: 30 year economic/loan life, 100% financing, 8% interest rate, Cinergy node Key operating parameters: 80% availability, 35 bar pressure, above ground storage, 2000 hp compressor, 1 operating gasifier and 1 spare gasifier (1+1)

¹⁷ Preliminary data. Do not cite or quote without permission of the authors.

Preliminary Syngas Storage NPV

Key financial parameters: 30 year economic/loan life, 100% financing, 8% interest rate Key operating parameters: 80% availability, 35 bar pressure, above ground storage, 2000 hp compressor, 1 operating gasifier and 1 spare gasifier (1+1)

¹⁸ Preliminary data. Do not cite or quote without permission of the authors.

Sensitivity Analysis

Syngas storage scenario, + 10% variation in parameters

ROI is most sensitive to : Availability, Financing and Coal Price

Carnegie Mellon

Note: ROI is also sensitive to facility size and gasifier configuration 12 hours of syngas storage at a larger 800 MW facility (with 3 operating gasification trains and 1 spare) increases ROI by 14 percentage points (from 1.06 to 1.14)

3+1 analysis

Key financial parameters: 30 year economic/loan life, 100% financing, 8% interest rate, Cinergy node, historical coal prices Key operating parameters: 80% availability, 35 bar pressure, above ground storage, 2000 hp compressor,

3 operating gasifiers and 1 spare gasifier (3+1), 4 GE 7FA turbines total with 2 turbines in baseload operation and 2 turbines operating with the diurnal storage scheme

²⁰ Preliminary data. Do not cite or quote without permission of the authors.

Preliminary Results

	ROI, 90% CI		NPV	Sensitivity Analysis	
Scenario	min	mid	max	(million)	(parameters most affecting ROI)
Baseline					Availability
no storage [†]	0.89	0.92	0.96	-\$80	Financing structure
no storage [#]	0.86	0.88	0.91	-\$127	Coal price
C					Gasifier + cleanup capital costs
Syngas Storage					
4 hours [†]	0.92	0.96	0.98	-\$61	Availability
4 hours#	0.89	0.91	0.94	-\$107	Financing structure
					Coal price
8 hours [†]	1.00	1.03	1.07	\$40	Gasifier + cleanup capital costs
8 hours#	0.97	0.99	1.03	-\$7	Turbine capital costs
12 hours [†]	1.05	1.08	1.12	\$101	
12 hours#	1.02	1.04	1.07	\$54	

† 2005-06 historical coal price

modified 2007 EIA coal price forecast

Key financial parameters: 30 year economic/loan life, 100% financing, 8% interest rate Key operating parameters: 80% availability, 35 bar pressure, above ground storage, 2000 hp compressor, 1 operating gasifier and 1 spare gasifier (1+1)

²¹ Preliminary data. Do not cite or quote without permission of the authors.

High pressure storage in industry

²² Preliminary data. Do not cite or quote without permission of the authors.

Wabash River

~250 net MW IGCC facility, ~40 acres

12 hours of storage adds <10 acres, or 25%

Carbon Price Implications

Steps

24

- Use IGCC facility with carbon capture, transport and storage (IECM)
- Increase the LMP prices by adding a carbon price using an appropriate CO₂/kWh factor for the MISO region
- Plot the mean facility ROI versus the carbon price and examine the hurdle rate crossover

Key financial parameters: 30 year economic/loan life, 100% financing, 8% interest rate Key operating parameters: 80% availability, 35 bar pressure, above ground storage,

2000 hp compressor, 1 operating gasifier and 1 spare gasifier (1+1) Preliminary data. Do not cite or quote without permission of the authors.

Preliminary Conclusions and Implications

- The ability to store syngas adds value to gasification facilities
- Syngas storage in above ground vessels appears to be the most cost effective storage method
- Availability and structure of the financing are the most important parameters over which the designer/operator has control
- Syngas storage can lower the carbon price at which IGCC enters the generation mix
- This engineering economic tool can be used to quantify this value under different facility configurations, and under any cost and price distributions
- Increases in profitability may make gasification facilities more attractive to investors and developers – thereby providing a valuable physical resource to the electricity industry

Questions

Selected Data Sources

Amos, W. Costs of Transporting and Storing Hydrogen; NREL/TP-570-25106; National Renewable Energy Laboratory: November, 1998.

Taylor, J. B.; Alderson, J. E. A.; Kalyanam, K. M.; Lyle, A. B.; Phillips, L. A., Technical and economic assessment of methods for the storage of large quantities of hydrogen. *International Journal of Hydrogen Energy* **1986**, *11*, (1), 5-22.

Padró, C.; Putsche, V. Survey of the Economics of Hydrogen Technologies; NREL / TP-570-27079; National Renewable Energy Laboratory: September, 1999.

IEA GHG Transmission of CO2 and Energy; International Energy Agency Greenhouse Gas R&D Programme: Cheltenham, 2002.

Walker, M., e3 Ventures. Personal communication, April 27, 2006.

Gray, D.; Salerno, S.; Tomlinson, G. *Potential Application of Coal-Derived Fuel Gases for the Glass Industry: A Scoping Analysis*; National Energy Technology Laboratory, DOE: December, 2004.

Gray, D.; Salerno, S.; Tomlinson, G.; Marano, J. J. *Polygeneration of SNG, Hydrogen, Power, and Carbon Dioxide from Texas Lignite*; 0601CTC4; National Energy Technology Laboratory, DOE: December, 2004.

Mozaffarian, M.; Zwart, R. W. R. *Feasibility of Biomass / Waste-Related SNG Production Technologies*; ECN-C--03-066; Energy Research Centre of the Netherlands (ECN): Petten, The Netherlands, July, 2003.

Carnegie Mellon 👘

²⁶ Preliminary data. Do not cite or quote without permission of the authors.