Green, Richard, and Iain Staffell. “Richard Green and Iain Staffell - The Contribution of Taxes, Subsidies and Regulations to British Electricity Decarbonisation,” Working Paper.Abstract

    Great Britain’s carbon emissions from electricity generation fell by two-thirds between 2012 and 2019, providing an important example for other nations. This rapid transition was driven by a complex interplay of policies and events: investment in renewable generation, closure of coal power stations, raising carbon prices and energy efficiency measures. Previous studies of the impact of these simultaneous individual measures miss their interactions with each other and with exogenous changes in fuel prices and the weather. Here we use Shapley values, a concept from cooperative game theory, to disentangle these and precisely attribute outcomes (CO2 saved, changes to electricity prices and fossil fuel consumption) to individual drivers. We find the effectiveness of each driver remained stable despite the transformation seen over the 7 years we study. The four main drivers each saved 19–29 MtCO2 per year in 2019, reinforcing the view that there is no ‘silver bullet’, and a multi-faceted approach to deep decarbonisation is essential.

    Panagiotis, Andrianesis, Michael C. Caramanis, and William W. Hogan. “Computation of Convex Hull Prices in Electricity Markets with Non-Convexities using Dantzig-Wolfe Decomposition.” In, 2020. Publisher's VersionAbstract
    —The presence of non-convexities in electricity markets has been an active research area for about two decades. The — inevitable under current marginal cost pricing — problem of guaranteeing that no truthful-bidding market participant incurs losses in the day-ahead (DA) market is addressed in current practice through make-whole payments a.k.a. uplift. Alternative pricing rules have been studied to deal with this problem. Among them, Convex Hull (CH) prices associated with minimum uplift have attracted significant attention. Several US Independent System Operators (ISOs) have considered CH prices but resorted to approximations, mainly because determining exact CH prices is computationally challenging, while providing little intuition about the price formation rational. In this paper, we describe CH price estimation problem by relying on DantzigWolfe decomposition and Column Generation. Moreover, the approach provides intuition on the underlying price formation rational. A test bed of stylized examples elucidate an exposition of the intuition in the CH price formation. In addition, a realistic ISO dataset is used to suggest scalability and validate the proof-of-concept.
    Hogan, William W. Transmission Investment Beneficiaries and Cost Allocation: New Zealand Electricity Authority Proposal, 2020.Abstract

    Excerpt from the introduction:


    In a 2019 Issues Paper under its Transmission Pricing Review, the Electricity Authority of New Zealand set out a framework for efficient electricity system investment, cost allocation, and pricing. The basic design accords with beneficiary-pays principles. The challenges of transmission investment preclude pure market approaches and require consistency across both competitive and monopoly elements of the system. In comments on the Authority’s proposal, submissions of some parties include critiques or alternative recommendations that appeal to implicit assumptions inconsistent with the basic requirements of the technology and associated electricity market components. Although perfection is only possible under narrow conditions, the Authority’s framework provides a careful balance that adheres to first principles and can accommodate workable implementation.

    Hogan, William W.Cross-product Manipulation in Electricity Markets, Microstructure Models and Asymmetric Information.” In, 2019. Publisher's VersionAbstract

    Electricity market manipulation enforcement actions have moved from conventional analysis of generator market power in real-time physical markets to material allegations of sustained crossproduct price manipulation in forward financial markets. A major challenge is to develop and apply forward market analytical frameworks and models. This task is more difficult than for the real-time market. An adaptation of cross-product manipulation models from cash-settled financial markets provides an existence demonstration under uncertainty and asymmetric information. The implications of this analysis include strong empirical predictions about necessary randomized strategies that are not likely to be observed or sustainable in electricity markets. Absent these randomized strategies and other market imperfections, the means for achieving sustained forward market price manipulation remains unexplained.

    Keywords: market manipulation; electricity markets; limits to arbitrage; asymmetric information